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Abstract. We consider a selective version of the notion of countable set tightness and
characterize Cp(X)-spaces with this property via a corresponding covering property of the
space X.
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A space X is said to have countable set tightness if for each A ⊆ X and each
point x ∈ A \ A there is a sequence 〈An | n < ∞〉 of subsets of A such that
x ∈

⋃
n<∞An \

⋃
n<∞An. This notion was first introduced in [1], where a bit

different terminology was used, while the term set tightness was suggested later
in [2]. The selective version of this notion is given by the next definition.

1 Definition. A space X is said to be a selectively strictly A-space if for
each sequence 〈An | n < ∞〉 of subsets of X and each point x ∈ X with
x ∈ (

⋂
n<∞An) \ (

⋃
n<∞An), there is a sequence 〈Bn | n <∞〉, where for each

n Bn ⊆ An, such that x ∈
⋃

n<∞Bn \
⋃

n<∞Bn.

This notion can also be viewed as a modification of the notion of strictly
A-spaces, which are defined in exactly the same way with the addition that the
sequence 〈An | n < ∞〉 must be decreasing (see [3] and [4]). So this should
account for the term selectively strictly A-space.

As it has become customary that closure properties of the function space
Cp(X) are characterized by covering properties of X, it is natural to ask if a
similar characterization could be established for selectively strictly A-function
spaces. The analogue of this question for function spaces with countable set
tightness has been answered in [5]. It is from there that the following definition
actually originates.

For a set H we put domH = {x | ∃y ( (x, y) ∈ H ) }, ranH = {x |
∃y ( (y, x) ∈ H ) }, and call domH and ranH, respectively, the domain and the
range of the set H.
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2 Definition. Call a set R a t-relation on a space X if:

(i) the domain of R is a family of cozero sets of the space X not containing
the whole space X,

(ii) if (U,Z) ∈ R then Z ⊆ U and Z is a zero set of the space X,

(iii) the range of R is an ω-cover of X.

Let us point out here that by an ω-cover of a set X we mean any collection
L of its subsets different from X such that every finite subset of X is contained
in a member of L.

We shall make use of these t-relations to formulate the appropriate dual
property for selectively strictly A-spaces.

3 Definition. We say that a space X has property S(X) if for each sequence
〈Rn | n < ∞〉 of t-relations of the space X there is a sequence 〈Vn | n < ∞〉
such that:

• Vn ⊆ Rn for all n,

• no ranVn is an ω-cover of X, but

•
⋃

n<∞ domVn is an ω-cover of X.

Now the mentioned result can be stated in the following theorem, the proof
of which is based on the Sakai’s technique used in [5].

4 Theorem. A T3 1
2

space X has the property S(X) if and only if Cp(X) is

a selectively strictly A-space.

Proof. Let Cp(X) be a selectively strictly A-space and let 〈Rn | n < ∞〉
be a sequence of t-relations on X. For each n ∈ { 1, 2, . . . } and (U,Z) ∈ Rn

choose a function fn
U,Z ∈ Cp(X) such that fn

U,Z |(X \ U) ≡ 1, fn
U,Z |Z ≡ 0. Put

An = { fn
U,Z | (U,Z) ∈ Rn }.

Since for each n Zn is an ω-cover, it follows that o ∈ An for each n, where
o ∈ Cp(X) stands for the constant 0 function. Also, we have that o 6∈

⋃
n<∞An,

because the contrary would mean that o = fn
U,Z , for some n ∈ { 1, 2, . . . } and

some (U,Z) ∈ Rn, so fn
U,Z |(X \U) ≡ 1 would imply U = X, which is impossible.

As Cp(X) is a selectively strictly A-space, there is a sequence 〈Bn | n <∞〉

such that: Bn ⊆ An for all n and o ∈
⋃

n<∞Bn \
⋃

n<∞Bn. For each n, let Vn

denote the set { (U,Z) ∈ Rn | fn
U,Z ∈ Bn }. Then Vn ⊆ Rn. Also, no ranVn is

an ω-cover of X; for otherwise o ∈ Bn.
Finally, assume an arbitrary F ⊆ X is given. As o ∈

⋃
n<∞Bn there is

a n0 and a (U,Z) ∈ Rn0
such that f

n0
U,Z ∈ Bn0

and F ⊆ f
n0
U,Z
← (R \ { 1 }),
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where R is the set of reals. But then (U,Z) ∈ Vn and f
n0
U,Z |(X \ U) ≡ 1, so

F ⊆ U ∈ domVn0
⊆
⋃

n<∞ domVn. Therefore
⋃

n<∞ domVn is an ω-cover of
X.

Thus we have shown that X has the property S(X).
Conversely, let X has the property S(X) and let a sequence 〈An | n <∞〉 be

given, where for each n An ⊆ Cp(X) and o ∈
⋂

n<∞An. Consider a bijection
i : ω2 → ω, and denote An,m = Ai(n,m). For each m,n and f ∈ Cp(X) put

Um
f = f←

(
− 1

m
, 1

m

)
, Zm

f = f←
[
− 1

m+1 ,
1

m+1

]
, Rn,m = { (Um

f , Z
m
f ) | f ∈ An,m }.

Case 1: The set M = {m ∈ ω | ∃ n ∃ f ∈ An,m (Um
f = X) } is infinite. Then

there are sequences m1 < m2 < · · · < mk < · · · , (nk)k∈ω and (fk)k∈ω such

that fk ∈ An
k
,m

k
, U

m
k

f
k

= X. It is now clear that fk
X
⇉

k→∞
o, so that, if we put

Bn
k
,m

k
= { fk } and Bn,m = ∅ if ∀k ((n,m) 6= (nk,mk)), we get the required

sequence of subsets of the sets An,m.
Case 2: The set M is finite. Let Bn,m = ∅ for each n ∈ ω and each m ∈
{ 0, 1, . . . ,maxM }. For each m > maxM , 〈Rn,m | n < ∞〉 is a sequence of
t-relations on the space X so, as X has the property S(X), there is a sequence
〈Vn,m | n <∞〉, such that Vn,m ⊆ Rn,m,

⋃
n<∞ domVn,m is an ω-cover but none

of the sets ranVn,m is an ω-cover.
For each m > maxM put Bn,m = { f ∈ An,m | (Um

f , Z
m
f ) ∈ Vn,m }. The fact

that o ∈ Bn,m0
, for a m0 > maxM , would imply that ranVn,m0

is an ω-cover,

which is impossible. Hence, o 6∈ Bn,m whenever m > maxM .
Let F ⊆ X be an arbitrary finite set and ǫ > 0 any real number. Choose an

integer m′ > max
(

1
ǫ
,maxM

)
. As

⋃
n<∞ domVn,m′ is an ω-cover there exist a

n′ ∈ ω and a f ∈ Bn′,m′ such that F ⊆ Um′

f = f←
(
− 1

m′ ,
1

m′

)
. In other words,

f→F ⊆
(
− 1

m′ ,
1

m′

)
⊆ (−ǫ, ǫ).

These last few lines actually say that o ∈
⋃

n,m∈ω Bn,m, which ends the
proof. QED

As the definition of strictly A-spaces differs from the definition of selectively
strictly A-spaces only in the part where the given family of sets is required to
be decreasing, it is no surprise that the next slight modification of the definition
of the property S(X) gives the dual property for strictly A-function spaces.

5 Definition. We say that a space X has property S′(X) if for each de-
creasing sequence 〈Rn | n <∞〉 of t-relations of the space X there is a sequence
〈Vn | n <∞〉 such that:

• Vn ⊆ Rn for all n,

• no ranVn is an ω-cover of X, but

•
⋃

n<∞ domVn is an ω-cover of X.
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Practically the same proof as the proof of the previous theorem shows that:

6 Theorem. A T3 1
2

space X has property S′(X) if and only if the function

space Cp(X) is a strictly A-space.
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