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1 σ-sets are Laver null

A subtree T ⊆ ω<ω of the finite sequences of elements of ω = { 0, 1, 2, . . . }
is called a Laver tree [14] iff there exists s ∈ T (called the root node of T ) with
the property that for every t ∈ T with s ⊆ t there are infinitely many n ∈ ω
with tn in T . Here tn is the sequence of length exactly one more than t and
ending in n. We use [T ] to denote the infinite branches of T , i.e.,

[T ] = {x ∈ ωω : ∀n ∈ ω x ↾ n ∈ T }.

A set X ⊆ ωω is Laver-null iff for every Laver tree T there exists a Laver
subtree T ′ ⊆ T such that

[T ′] ∩X = ∅

This is analogous to the ideal of Marczewski null sets, (s)0. For some background
on this topic, see Kysiak and Weiss [12] and Brown [2].

A separable metric space X is a σ-set iff every Gδ in X is also Fσ. It is known
to be relatively consistent (Miller [16]) with the usual axioms of set theory that
every σ-set is countable.

iThanks to the conference organizers: Cosimo Guido, Ljubisa Kočinac, Boaz Tsaban, Lil-
jana Babinkostova, and Marion Scheepers for their generosity in inviting me to speak at the
Second Workshop on Coverings, Selections and Games in Topology, December 2005, University
of Lecce, Italy.
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At the Second Lecce conference, Kysiak asked if it is consistent to have a
σ-set which is not Laver-null. The answer is no.1

1 Theorem. Every σ-set is Laver-null. In fact, the Borel hierarchy of a
non-Laver-null set must have ω1 levels.

Proof. Here we use a result of Rec law that appears in Miller [19]. Rec law
proved that if X is a set of reals and there exists a continuous onto map f :
X → 2ω, then the Borel hierarchy on X has ω1 levels, in particular, X is not a
σ-set.

2 Lemma. Every set not Laver-null can be continuously mapped onto 2ω.

Let X ⊆ ωω be a set which is not Laver-null. Hence there exists a Laver tree
T such that for every Laver subtree T ′ ⊆ T we have that [T ′] meets X.

To simplify our notation assume that T = ω<ω. Define the following contin-
uous function f : ωω → 2ω:

f(x)(n) =

{
0 if x(n) is even
1 if x(n) is odd.

The function f is the parity function. Note that f maps X continuously onto 2ω.
This is because for any y ∈ 2ω there is a Laver-tree T such that f([T ]) = { y }.
But since [T ] meets X there is some x ∈ X with f(x) = y.

In the more general case T is an arbitrary Laver-tree. In this case note that
there is a natural bijection from the splitting nodes of T to ω<ω. If g : [T ] →
ωω is the continuous function corresponding to this natural map, then f ◦ g
will map X ∩ [T ] continuously onto 2ω. This proves the Lemma and hence the
Theorem. QED

It follows from Lemma 2 that all S1-type properties in the Scheepers diagram
imply being Laver-null.

2 γk-sets

In Kočinac [11] the notion of a γk-set is defined. See also Caserta, Di Maio,
Kočinac, and Meccariello [3]. A k-cover of topological space X is a family of
open subsets with the property that every compact subset of X is subset of an
element of the family. X is called γk-set iff for every k-cover U of X there exists
a sequence (Un ∈ U : n ∈ ω) such that for every compact C ⊆ X we have that
C ⊆ Un for all but finitely many n.

1As I was writing this I learned from Jack Brown that M. Kysiak, A. Nowik, and T.
Weiss [13], also solved this problem at about the same time. In fact, their solution is a little
better as it also solves the analogous problem for Ramsey null sets.
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This is a generalization of γ-sets which were first considered by Gerlits-
Nagy [8] and studied in many papers.

A theorem of Galvin and Todorčević (see Galvin and Miller [7]) shows that
it is consistent that the union of two γ-sets need not be a γ-set. Kočinac asked
at the Lecce conference if such a counterexample exists for γk-sets. We show
that it does.

3 Example. There exist disjoint subsets of the plane X and Y such that
both X and Y are γk-sets but X ∪ Y is not.

Let X be the open disk of radius one, i.e., X = { (x, y) : x2 + y2 < 1 },
and Y be any singleton on the boundary of X, e.g., Y = { (1, 0) }. The result
follows easily from the following:

4 Lemma. Suppose that Z is a metric space. Then Z is a γk-set iff Z is
locally compact and separable.

Proof. First suppose that Z is locally compact and separable. Then we
can write Z as an increasing union of compact subsets Cn whose interiors cover
Z. Given a k-cover U we simply choose Un ∈ U so that Cn ⊆ Un. This works
because for every compact set C there exists n with C ⊆ Cn.

Conversely, suppose that Z is not locally compact. This means that for some
x ∈ Z we have that x is not in the interior of any compact set. Define a sequence
(Un : n < ω) as follows: For each n, let Un be the set of all open subsets of Z
such that U does not contain the open ball of radius 1/2n around x, i.e. there
exists y /∈ U such that d(x, y) < 1/2n.

Note that each Un is a k-cover of Z. To see this, suppose C is a compact
subset of Z. Since x is not in the interior of C, the set C cannot contain an
open ball centered at x. Choose y /∈ C with d(x, y) < 1/2n. Now cover C with
(finitely) many open balls not containing y. The union of this cover is in Un.

We can use the trick of Gerlits and Nagy to get a single k-cover from the
sequence of k-covers, (Un : n ∈ ω). Since Z cannot be compact there must
exist a sequence (xn : n ∈ ω) with no limit point. Define

U = {U\{xn } : n < ω, U ∈ Un }.

Since any compact set can contain at most finitely many of the xn, we see that
U is a k-cover of Z.

For contradiction, suppose Z is γk-set and (Un ∈ U : n ∈ ω) eventually
contains each compact set. Without loss, we may assume that Un ∈ Uln with ln
distinct. This is because at most finitely many Un can be “from” any Ul since
they eventually must include xl. Choose yn /∈ Un with d(x, yn) < 1/2ln . Then

{ yn : n ∈ ω } ∪ {x }
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is a convergent sequence, hence compact. But it is not a subset of any Un.
It is easy to see that Z must be separable as we can take Un to be the family

of finite unions of open balls of radius less than 1/2n, then apply the Gerlits
Nagy trick as above to obtain a countable basis for Z. QED

In Example 3 each of X and Y are locally compact metric spaces but X ∪Y
is not locally compact at the point (0, 1), so the result follows.

Kočniac also asked if X×Y is γk-set if both X and Y are. For metric spaces,
this must be true by the Lemma, since the product of locally compact separable
metric spaces is a locally compact separable metric space.

This is very different from the situation for usual γ-sets.

5 Proposition (Tsaban). If X × Y is a γ-set, then X ∪ Y is a γ-set.

Proof. If U is an open ω-cover of X ∪ Y , then U2 = {U2 : U ∈ U } is an
open ω-cover of X × Y , so there is V ⊆ U such that V2 = {V 2 : V ∈ V } is a
γ-cover of X × Y , but then V is a γ-cover of X ∪ Y . QED

This was not noticed in Galvin-Miller [7], where a direct argument for X×Y
not being a γ-set is provided after it is shown that X ∪ Y is not a γ-set.

3 Q-sets

A Q-set is a separable metric space X such that every subset of X is a
(relative)Gδ-set. It is easy to see that 2|X| = 2ω, hence, if there is an uncountable
Q-set, then 2ℵ1 = 2ℵ0 . So uncountable Q-sets might not exist. Martin’s axiom
(MA) implies that every separable metric space of size less than the continuum
is a Q-set (see Martin and Solovay [15]).

The Rothberger cardinal, b, is defined to be the cardinality of the smallest
family F ⊆ ωω such that for every g ∈ ωω there is some f ∈ F with f(n) ≥ g(n)
for infinitely many n. That is to say, b is the size of the smallest unbounded
family in the quasi-ordering (ωω,≤∗). Martin’s Axiom implies that b is the
continuum.

A set U is a universal Gδ-set, if it is Gδ and for every Gδ-set V ⊆ 2ω there
exists x ∈ 2ω such that

U(x)
def
= { y ∈ 2ω : (x, y) ∈ U } = V.

6 Theorem. Suppose κ < b. Then the following are equivalent:

(1) There exists a Q-set X ⊆ 2ω with |X| = κ.

(2) There exists (fα : ωω → 2ω : α < κ) continuous functions such that
given any (yα ∈ 2ω : α < κ) there exists x ∈ ωω with the property that
fα(x) =∗ yα for every α < κ.
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(3) There exists a sequence (Uα ⊆ 2ω × 2ω : α < κ) of Gδ-sets which is
universal for κ sequences of Gδ-sets, i.e., for every sequence

(Vα ⊆ 2ω : α < κ)

of Gδ-sets there exists x ∈ 2ω such that for every α < κ

Vα = Uα(x)
def
= { y : (x, y) ∈ Uα }.

Proof. We will need the following lemma and the details of its proof.

7 Lemma. There exists U ⊆ 2ω × 2ω which is a universal Gδ-set such that
for every x1, x2 ∈ 2ω if x1 =∗ x2, then U(x1) = U(x2).

Proof. Define

U = { (A, y) ∈ P (2<ω) × 2ω : ∃∞n y ↾ n ∈ A }

where ∃∞ stands for “there exists infinitely many”. It is easy to see that U is
Gδ. To see that it is universal, suppose that V =

⋂
n<ω Vn where the Vn ⊆ 2ω

are open and descending, i.e., Vn+1 ⊆ Vn for each n. For σ ∈ 2<ω nontrivial
let σ∗ ⊆ σ be the initial segment of σ of length exactly one less than σ, i.e.,
|σ∗| = |σ| − 1. Define

A = {σ : [σ] ⊆ V or ∃n [σ] ⊆ Vn and [σ∗] 6⊆ Vn }

Then U(A) = V . To see this, suppose x ∈ U(A). If for some n we have that
x ↾ n ∈ A because [x ↾ n] ⊆ V then clearly x ∈ V . On the other hand, if there
are infinitely many k such that for some n, [x ↾ k] ⊆ Vn but [x ↾ (k − 1)] 6⊆ Vn,
then these n’s must all be distinct and since the Vn were descending x ∈ V .

Conversely, if x ∈ V then either x is in the interior of V and so x ↾ k ∈ A
for all but finitely many k or it isn’t in the interior of V and there are thus
infinitely many n with x ↾ n ∈ A. Hence x ∈ U(A).

From the definition of U it is easy to check that if A =∗ A′, then U(A) =
U(A′). QED

2→3:
This follows immediately from the Lemma. Just define

(x, y) ∈ Uα iff (fα(x), y) ∈ U

and identify ωω with a Gδ subset of 2ω.

3→1:
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By the proof of Lemma 7 there exists Aα ⊆ 2<ω × 2<ω such that for any (x, y)
we have that (x, y) ∈ Uα iff ∃∞n (x ↾ n, y ↾ n) ∈ Aα. We claim that

{Aα : α < κ }

is a Q-set. Fix y ∈ 2ω arbitrary. Consider any Γ ⊆ κ and define the sequence of
Gδ sets (Vα : α < κ) by

Vα =

{
{ y } if α ∈ Γ
∅ if α /∈ Γ.

By assumption there exists x ∈ 2ω such that Uα(x) = Vα for every α < κ. But
then

α ∈ Γ iff y ∈ Uα(x) iff ∃∞n (x ↾ n, y ↾ n) ∈ Aα iff

Aα ∈ {A : ∃∞n (x ↾ n, y ↾ n) ∈ A }.

But this last set is Gδ. It follows that {Aα : α ∈ Γ } is relatively Gδ in the set
{Aα : α ∈ κ }.

1→2:

Let { vn
α ∈ 2ω : n < ω, α < κ } be a Q-set. Now for each α < κ define a

continuous map fα : ωω → 2ω as follows. Suppose x = (A, (In : n < ω)) where
A ⊆ 2<ω and each In ⊆ 2<ω is finite. (We can easily identify the set of such x
with ωω.) Define

fα((A, (In : n < ω)))(n) =

{
1 if ∃k vn

α ↾ k ∈ In ∩A
0 otherwise

Since the In are finite, the function fα is continuous. We verify that it has the
property required. Let xα ∈ 2ω for α < κ be arbitrary. Since { vn

α ∈ 2ω : n <
ω, α < κ } is a Q-set, there is a Gδ-set U ⊆ 2ω with the property that for every
α < κ and n < ω we have that vn

α ∈ U iff xα(n) = 1. By the proof of Lemma 7
there exists A ⊆ 2<ω such that for all α, n

vn
α ∈ U iff A ∩ { vn

α ↾ k : k < ω } is infinite.

Since b > κ there exists a partition (Il : l < ω) of 2<ω into finite sets such
that for every α < κ and n < ω the set A ∩ { vn

α ↾ k : k < ω } is infinite iff
Il ∩A ∩ { vn

α ↾ k : k < ω } 6= ∅ for all but finitely many l < ω. But this implies
that for fα((A, (Il : l < ω))) =∗ xα for each α. QED

Condition 3 is a kind of uncountable version of Luzin’s doubly universal
sets, see Kechris [10] page 171 22.15 iv. Luzin used a doubly universal set to
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prove that the classical properties of separation and reduction cannot hold on
the same side of a reasonable point-class.

In condition 2, u =∗ v means that u(n) = v(n) except for finitely many n.
It is impossible to have the stronger condition with “=” in place of “=∗” at
least when κ is uncountable. To see this, fix y0 ∈ 2ω and define Eα = f−1

α (y0)
for α < ω1. It is not hard to see that the Fα =

⋂
β<αEβ would have to be a

strictly decreasing sequence of closed sets, which is impossible in a separable
metric space.

We do not know if the condition κ < b is needed for this result. There are
several models of set theory where there is a Q-set and b = ω1, Fleissner and
Miller [4], Judah and Shelah [6], and Miller [20].

We obtained this result while working on the square Q-set problem, see
Fleissner [5]. Unfortunately, Fleissner’s proof that it is consistent there is a Q-
set whose square is not a Q-set contains a gap. In his paper, he claims to show
that in his model of set theory:

(1) there is a Q-set Y ⊆ 2ω of size ω2, and

(2) for any set of Z = { zα : α < ω2 } ⊆ 2ω the set

{ (zα, zβ) : α < β < ω2 }

is not Gδ in Z × Z.

But we have a fairly easy proof that (1) implies the negation of (2).

8 Theorem. If there exists a Q-set Y ⊆ 2ω with |Y | = ω2, then there exists
Z = { zα : α < ω2 } ⊆ 2ω such that

{ (zα, zβ) : α < β < ω2 }

is (relatively) Gδ in Z2.

Proof. Let Y = { yα : α < ω2 } and let U ⊆ 2ω × 2ω be a universal Gδ-set.
Choose for each β < ω2 a uβ ∈ 2ω such that for every α < ω2

yα ∈ U(uβ) iff α < β.

Since U is Gδ there are clopen Cn,m, Dn,m ⊆ 2ω with

U =
⋂

n<ω

⋃

m<ω

(Cn,m ×Dn,m).

Now let zα = (yα, uα) and identify 2ω × 2ω with 2ω.
Then for any α, β < ω2 we have that
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α < β
iff (yα, uβ) ∈ U
iff (yα, uβ) ∈

⋂
n<ω

⋃
m<ω(Cn,m ×Dn,m)

iff (zα, zβ) = ((yα, uα), (yβ , uβ)) ∈
⋂

n<ω

⋃
m<ω((Cn,m × 2ω) × (2ω ×Dn,m)).

QED

As far as we know, the problem of the consistency of a Q-set whose square
is not a Q-set, is open. We do not know where the mistake in Fleissner’s proof
occurs. One way to connect this problem with Theorem 6 is the following:

9 Corollary. Suppose there is a Q-set of size ω2 and b > ω2. Then given
any family Γ ⊆ P (ω2 × ω2) with |Γ| = ω2 there is a Q-set

Z = { zα ∈ 2ω : α < ω2 }

such that for every A ∈ Γ the set { (zα, zβ) : (α, β) ∈ A } is Gδ in Z.

The corollary is also valid for any κ in place of ω2.

4 Minimal Q-like-sets

At the Slippery-Rock conference in June 2004, Ali A. Alikhani-Koopaei
asked me if the following Q-like example was possible. We show that it is.

10 Example. There exist a T0 space Y such that Y is not a Q-set but for
every A ⊆ Y there is a minimal Gδ set Q with A ⊆ Q. By minimal we mean
that for any Gδ set Q′ if A ⊆ Q′, then Q ⊆ Q′.

Proof. Let X be any Q-set, i.e., every subset of X is Gδ and X at least
T0. For example, a discrete space. Now let X ′ be a disjoint copy of X and let
p 7→ p′ a bijection from X to X ′. For each A ⊆ X let A′ = { p′ : p ∈ A }. Define
the topology on Y = X ∪X ′ by letting the open sets of Y be exactly those of
the form U ∪ V ′ where U, V ⊆ X are open in X and U ⊆ V . Then Y is T0, e.g.
X ′ is open in Y and separates any p and p′. QED

11 Claim. For A,B ⊆ X the set A∪B′ is Gδ in Y iff A ⊆ B. Furthermore,
given any A,B ⊆ X the set A ∪ (A ∪ B)′ is the minimal Gδ in Y containing
A ∪B′.

Proof. Suppose that A is not a subset of B and let p ∈ A\B. Then any
open set in Y which contains A must also contain p′. The same is true for any
Gδ and hence A ∪B′ is not Gδ.

On the other hand, suppose A ⊆ B. Let A =
⋂

n<ω Un and B =
⋂

n<ω Vn

where the Un and Vn are open in X. Now since A ⊆ B we may assume that
Un ⊆ Vn (if not just replace Un by Un ∩ Vn). But then

A ∪B′ =
⋂

n<ω

(Un ∪ V ′n).
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Furthermore, note that if C ∪D′ is Gδ and contains A ∪ B′, then A ⊆ C and
C ∪B ⊆ D and so A ∪ (A ∪B)′ ⊆ C ∪D′. QED

12 Problem. Can we get an example which is uncountable but contains
no uncountable Q-set?

Yes. Let X = ω1 have the topology with U ⊆ X is open iff U = ∅ or there
exists α with

U = [α, ω1)
def
= {β : α ≤ β < ω1 }.

Given any A ⊆ X the smallest Gδ containing A is [min(A), ω1).

5 σ-sets and retractive boolean algebras

The definition of thin set of reals is due to Rubin [22] who showed it equiv-
alent to a certain construction yielding a retractive boolean algebra which is
not the subalgebra of any interval algebra. Rubin asked whether or not there is
always an uncountable thin set of reals. We show that every thin set is a σ-set
and so by the results of Miller [16] that it is consistent there are no uncountable
σ-sets, it is also consistent there are no uncountable thin sets.

A thin set of reals is defined as follows. An OIT (ordered interval tree) is a
family of (Gn : n ∈ ω) such that each Gn is a family of pairwise disjoint open
intervals such that for n and I ∈ Gn+1 there exists J ∈ Gn with I ⊆ J . A set of
reals Y is (Gn : n ∈ ω)-small iff there exists (Fn ∈ [Gn]<ω : n ∈ ω) such that for
every x ∈ Y and n ∈ ω if x ∈ ∪Gn, then x ∈ ∪Fn. A set of reals X is thin iff for
every OIT, (Gn : n ∈ ω), the set X is a countable union of (Gn : n ∈ ω)-small
sets.

13 Proposition. If X ⊆ R is thin, then X is a σ-set.

Proof. A thin set cannot contain an interval (see Rubin [22]) so we may
suppose that X is disjoint from a countable dense set D ⊆ R. Let B be the
family of nonempty open intervals with end points from D. The following claim
is easy to prove and left to the reader.

14 Claim. Given any open set U ⊆ I where I ∈ B we can construct a
family of pairwise disjoint intervals G ⊆ B so that

(1) cl(J) ⊆ I for each J ∈ G and

(2)
⋃
G ⊆ U ⊆

⋃
G ∪D.

Now suppose that
⋂

n<ω Un is an arbitrary Gδ set of reals where the Un are
open sets. Using the claim it is easy to construct a sequence Gn ⊆ B of pairwise
disjoint intervals such that:
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(1) if I ∈ Gn+1, then for some J ∈ Gn we have cl(I) ⊆ J and

(2)
⋃
Gn ⊆ Un ⊆

⋃
Gn ∪D.

Since X is thin, we have that X =
⋃

m<ω Xm where each Xm is {Gn : n < ω }-
small. Fix m. There exists Fn,m ∈ [Gn]<ω for n < ω which witness the smallness
of Xm. Let

Cm =
⋂

n<ω

(∪Fn,m).

Note that we may assume that for each n and I ∈ Fn+1,m there is a J ∈ Fn,m

with cl(I) ⊆ J . Hence

⋂

n<ω

(∪Fn,m) =
⋂

n<ω




⋃

I∈Fn,m

cl(I)




and since each Fn,m is finite, Cm is closed. Since X is disjoint from D we have
that

X ∩

(
⋂

n<ω

Un

)
= X ∩

(
⋃

m<ω

Cm

)
.

Since we started with an arbitrary Gδ set we have that X is a σ-set. QED

Next we see that a set of reals is thin iff it is hereditarily Hurewicz. See
Miller and Fremlin [18] for the definition of the Hurewicz property.

15 Proposition. A set of reals X is thin iff it is hereditarily Hurewicz.

Proof. Suppose X is hereditarily Hurewicz and let (Gn : n ∈ ω) be an
OIT. Let

Y = {x ∈ X : ∀n x ∈ ∪Gn }.

Since Y has the Hurewicz property, there exists (Fn ∈ [Gn]<ω : n < ω) such
that ∀∞n x ∈ ∪Fn for each x ∈ Y . Let (Fm

n ∈ [Gn]<ω : n < ω) for m < ω list
all sequences such that Fm

n = Fn for all but finitely many n. Define

Xm = X ∩

(
⋂

n

∪Fm
n

)
.

Note that each Xm is (Gn : n ∈ ω)-small and

X =
⋃

m

Xm ∪ (X\ ∪G0)

because the Gn are refining.
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Conversely, suppose X is thin, Y ⊆ X, and (Un : n ∈ ω) a sequence of open
covers of Y . As in the above proof we can find an OIT, (Gn : n ∈ ω), such that
each Gn refines Un and covers Y . Since X is thin, we have that is the countable
union of (Gn : n ∈ ω)-small sets. Let (Fm

n ∈ [Gn]<ω : n < ω) for m < ω list the
finite sets given by the notion of smallness. Define

Fn = F 0
n ∪ F 1

n ∪ · · · ∪ Fn
n

Choose Vn ∈ [Un]<ω so that for each n and I ∈ Fn there exists V ∈ Vn with
I ⊆ V . For each x ∈ Y we have that x ∈ ∪Fn for all but finitely many n. QED

6 Souslin number and nonmeager sets

We obtained these results in March 2004. First we define the following small
cardinal number:

non(M) = min{ |X| : X ⊆ 2ω nonmeager }.

For X ⊆ 2ω we define ord(X) (the Borel order of X) to be the smallest
α < ω1 such that every Borel subset A of 2ω there exist a Σ0

α subset B of 2ω

such that A ∩X = B ∩X, if there is no such α < ω1, we define ord(X) = ω1.
To prove our main result (Theorem 18) we will use the following theorem:

16 Theorem. There exists X ⊆ 2ω with |X| ≤ non(M) and ord(X) = ω1.

Proof. This is similar to the proof of Miller [16] Theorem 18. Notice that
it is enough to show that for each α < ω1 there exists an Xα ⊆ 2ω with

|Xα| ≤ non(M)

and ord(Xα) ≥ α, since the ω1 union of these sets would be the X we need.
So fix α0 < ω1 with α0 > 1. According to Miller [16] Theorem 13, there

exists a countable subalgebra G ⊆ B where B is the complete boolean algebra:

B =
Borel(2ω)

meager(2ω)

such that G countably generates B in exactly α0 steps. This last statement
means the following:

Define G0 = G. For α > 0 an even ordinal define Gα to be the family of
countable disjuncts of elements from

⋃
β<α Gβ and for α an odd ordinal define

Gα to be the family of countable conjuncts of elements from
⋃

β<α Gβ . These

classes are analogous to the Σ0
α and Π0

α families of Borel sets. Then G has the
property that Gα0 = B but for each β < α0, Gβ 6= B.



36 A. W. Miller

Now let Y ⊆ 2ω be such that |Y | = non(M) and Y ∩ U is nonmeager for
every nonempty open subset U of 2ω. Note that Y has the property that for any
Borel subsets A and B of 2ω, if A ∩ Y = B ∩ Y , then the symmetric difference,
A∆B is meager.

Let F ⊆ Borel(2ω) be a family of representatives for G, i.e.,

G = { [A] : A ∈ F }

where [A] ∈ B is the equivalence class of A modulo the meager ideal in 2ω.
Assume F is chosen so that the map A 7→ [A] is one-to-one and 2ω and ∅ are
the representatives of 1 and 0. By throwing out a meager subset of Y we may
assume that for any A,B,C ∈ F

(1) [A] ∨ [B] = [C] iff (A ∪B) ∩ Y = C ∩ Y , and

(2) [A] ∧ [B] = [C] iff (A ∩B) ∩ Y = C ∩ Y .

Define FY = {Y ∩ A : A ∈ F }. Then we have that G and FY are isomorphic
as boolean algebras:

(G,∨,∧, 0, 1) ≃
(
FY ,∪,∩, ∅, Y

)
.

Define Fβ and FY
β exactly as we did Gβ but using countable unions and

intersections instead of disjuncts and conjuncts as we do in a boolean algebra.

17 Claim.

(1) By induction on β

a. Gβ = { [B] : B ∈ Fβ } and

b. FY
β = {B ∩ Y : B ∈ Fβ }.

(2) If β < α0, then FY
β 6= FY

α0
.

Proof. Item (1) is an easy induction. To see (2) suppose that [B] ∈ Gα0\
∪β<α0Gβ . Without loss B ∈ Fα0 and we claim that B ∩ Y ∈ FY

α0
\ ∪β<α0 FY

β .

Suppose for contradiction that B ∩Y ∈ FY
β for some β < α0. Then there would

exist C ∈ Fβ with B ∩ Y = C ∩ Y . But this would imply that [B] = [C] ∈ Gβ

which is a contradiction. This proves the claim. QED

Now let FY = {Cn : n < ω } and let i : Y → 2ω be the Marczewski
characteristic function of the sequence, which is defined by

i(a)(n) =

{
1 if a ∈ Cn

0 if a /∈ Cn.
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Let X = i(Y ). The map i need not be one-to-one but by definition, it is onto
X, so |X| ≤ |Y | = non(M). Note that

{C ∩X : C is clopen in 2ω } = { i(C) : C ∈ FY }.

Hence, since the Borel order of FY is at least α0 we have that ord(X) ≥ α0.
This proves Theorem 16. QED

We define the Souslin number sn:

sn = min{ |X| : X ⊆ 2ω, ∃A ∈ Σ1
1 ∀B ∈ Π1

1 A ∩X 6= B ∩X }.

In Zapletal [23] Appendix C, it is shown that sn ≥ b, where b is the small-
est cardinality of an unbounded family in ωω. In Miller [21] it is shown to be
consistent to have sn > b.

Define the following variant of the Souslin number sn
∗:

sn
∗ = min{ |X| : X ⊆ 2ω, ∃A ∈ Σ1

1 ∀B ∈ Borel A ∩X 6= B ∩X }.

The following theorem partially confirms a conjecture of Zapletal that sn ≤
non(M), since sn

∗ ≤ sn. Zapletal was motivated by results in [23] Appendix C
and [24], which roughly speaking show that it is impossible to force sn > non(M)
using a countable support iteration of definable real forcing in the presence of
suitable large cardinal axioms. Zapletal’s conjecture remains open.

18 Theorem. sn
∗ ≤ non(M).

Proof. Let U ⊆ 2ω × 2ω be a universal Σ1
1 set and consider the set of reals

X from Theorem 16. For each α < ω1 let Bα ⊆ 2ω be a Σ0
α such that for every

C which is Π0
α we have that

Bα ∩X 6= C ∩X.

Since U is universal there exists aα ∈ 2ω such that the cross section Uaα = Bα.
Let Z be defined by

Z = { aα : α < ω1 } ×X ⊆ 2ω × 2ω.

Then |Z| ≤ non(M) and there is no Borel set B ⊆ 2ω × 2ω such that Z ∩ U =
Z ∩B. This is because if B is say Π0

α, then every cross section of B is Π0
α, but

then

Bα ∩X = Uaα ∩X = Baα ∩X

which contradicts our choice of Bα. QED
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