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bukovsky@kosice.upjs.sk

Received: 23/03/2006; accepted: 09/10/2006.

Abstract. We present a survey of some recent results concerning thin sets of trigonometric
series. We focus on those that are related to some set theoretical problems and either depend
on the assumed set theory or used a typical set theoretic tool.

Keywords: trigonometric thin sets

MSC 2000 classification: primary 03E99

Let
a0

2
+
∞∑

n=1

(an cos 2πnx+ bn sin 2πnx) , (1)

be a trigonometric series, an, bn, n ∈ ω, b0 = 0, being reals. In Comptes Rendus
des l’Académie des Sciences de Paris 1912 two papers by A. Denjoy [12] and
N. N. Luzin [13] with the same title Sur l’absolue convergence des séries trigo-
nométriques have independently appeared. In both papers the same result has
been proved:

1 Theorem (A. Denjoy – N. N. Luzin). If the series (1) absolutely conver-
ges on a set of positive Lebesgue measure, then

∞∑

n=0

(|an| + |bn|) <∞,

i.e. the series (1) absolutely converges everywhere.

Note that the set of points in which the series (1) absolutely converges is
Borel and therefore Lebesgue measurable. Later on N. N. Luzin proved:

2 Theorem (N. N. Luzin). If the series (1) absolutely converges on a non-
meager set, then

∞∑

n=0

(|an| + |bn|) <∞,
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i.e. the series (1) absolutely converges everywhere.

In accordance with these results a notion of an AC-set — see e.g. [2] — was
introduced: a set A ⊆ T = R/Z is an AC-set if every trigonometric series (1)
converging absolutely on A converges absolutely everywhere. Thus the Denjoy-
Luzin theorem says that any set of positive Lebesgue measure is an AC-set.
Similarly the Luzin theorem says that any non-meager set is an AC-set. A set
that is not an AC-set is called an N-set — see [14]. That was essentially R.
Salem (see e.g. [18]) who proved that a set A is an N-set if and only if there
exists a sequence {an}

∞
n=0 of nonnegative reals such that

∑∞
n=0 an = ∞ and∑∞

n=0 an| sin(πnx)| <∞ for every x ∈ A.
We shall work on the compact topological group T = R/Z. Usually we

identify T with the interval 〈0, 1〉 with identified end points 0 and 1. For any
real x ∈ R we denote by ‖x‖ the distance of x to the nearest integer. Since

‖x‖ ≤ | sin(πx)| ≤ π‖x‖

for every x ∈ R we shall often use ‖x‖ instead of | sin(πx)|.
In harmonic analysis another thin sets are considered. Let G be a locally

compact topological group, Ĝ being its dual group. Elements of Ĝ are continuous
homomorphism of G into T and are called characters. Let us consider the
Banach space C∗(X) of continuous bounded real functions on a subset X ⊆ G
with the supremum norm ‖f‖ = sup{ |f(x)| : x ∈ X }. Evidently Ĝ|X ⊆ C∗(X).
A set X is said to be a Dirichlet set if 1X belongs to the topological closure of
Ĝ|X in C∗(X). One can easily see that X is a Dirichlet set if and only if there
exists an increasing sequence {nk}

∞
k=0 of positive integers such that ‖nkx‖ ⇉ 0

on X. See [8] for bibliographical sources concerning introduced notion.
Denote by C∗(X)∗ the dual space of C∗(X). Thus C∗(X)∗ is the space of all

continuous linear functionals on C∗(X). There is another important topology on
C∗(X) — the weak topology: the weakest topology in which every F ∈ C∗(X)∗

is continuous. Thus it seems to be natural to say that a set X ⊆ G is a “weak
Dirichlet set” if 1x belongs to the closure of Ĝ|X in the weak topology. If X
is a locally compact space then by the Riesz theorem C∗(X)∗ is the space of
all Borel measures on X. In accordance with this we introduce a notion. A set
X ⊆ T is a weak Dirichlet set (shortly wD-set) if there exists a universally
measurable set B ⊆ T such that X ⊆ B and for every positive Borel measure µ
on B there exists an increasing sequence {nk}

∞
k=0 such that

lim
k→∞

∫

B

‖nkx‖ dµ(x) = 0.

One can easily prove that

Dirichlet set → N-set → weak Dirichlet set.
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The families of all Dirichlet sets, N-sets and weak Dirichlet sets will be de-
noted by D, N , and wD, respectively. All those families have important similar
properties and their members are called trigonometric thin sets.

Important tool in investigation of trigonometric thin sets is (for a proof see
e.g. [8]):

3 Theorem (Dirichlet – Minkowski theorem). Assume that {ni}
∞
i=0 is an

increasing sequence of natural numbers. For any reals x1, . . . , xk ∈ T and any
ε > 0, there are i, j ∈ ω such that 0 ≤ i < j ≤ (2/ε)k and

‖(nj − ni)xl‖ < ε for l = 1, 2, . . . , k. (2)

By this theorem we can omit the atomic measures (such that µ({x }) > 0
for some x) in the definition of a weak Dirichlet set.

Now we introduce a notion (see e.g. [6]). A family F ⊆ P(T) is a family of

thin sets if

(a) {x } ∈ F for every x ∈ T;

(b) if B ⊆ A ∈ F then B ∈ F ;

(c) no non-empty open interval belongs to F .

A set G ⊂ F is a base of F if for every A ∈ F there exists a set B ∈ G
such that A ⊆ B. Evidently {A ∈ N : A is a Fσ set } is a base of N . Similarly,
D has a base consisting of closed sets.

The arithmetic difference of two set is defined as

A−B = { z ∈ T : (∃x ∈ A)(∃y ∈ B) z = x− y }.

The basic result concerning families of thin sets is based on the famous theorem.

4 Theorem (H. Steinhaus). If A ⊆ T has positive Lebesgue measure or
has the Baire property and is not meager, then the arithmetic difference A−A
contains a non-empty open intervals.

As a consequence we obtain:

5 Theorem. If a family of thin sets F is closed under arithmetic difference,
then every set from F is meager and has Lebesgue measure zero.

Let us remark that both Denjoy-Luzin and Luzin theorems are easy conse-
quence of Theorem 5.

A set A ⊆ T is permitted for the family F if for any B ∈ F also A∪B ∈ F .
Perm(F) denotes the family of all permitted sets for F . One can easily see that
Perm(F) ⊆ F is an ideal and the equality Perm(F) = F holds true if and only
if F is an ideal. The notion was essentially introduced in [1]. By Theorem 3
every finite set is permitted for D.

For a proof of the next classical result see [1] or [18].
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6 Theorem (J. Arbault – P. Erdös). Every countable subset of T is per-
mitted for the family N .

Let us recall the definitions of another thin sets of harmonic analysis as
formulated e.g. in [8]. A set A ⊆ T is called:

– a pseudo Dirichlet set (shortly pD-set), if there exists an increasing se-
quence {nk}

∞
k=0 of positive integers such that {‖nkx‖}

∞
k=0 converges quasi-

normally to 0 on A;

– an A-set if there exists an increasing sequence {nk}
∞
k=0 of positive integers

such that {‖nkx‖}
∞
k=0 converges pointwise to 0 on A;

– an N0-set if there exists an increasing sequence {nk}
∞
k=0 of positive integers

such that
∑∞

k=0 ‖nkx‖ <∞ on A;

– a B0-set if there exist a real c > 0 and an increasing sequence {nk}
∞
k=0 of

positive integers such that
∑∞

k=0 ‖nkx‖ < c on A;

– a B-set if there exist a real c > 0 and a sequence {an}
∞
n=0 of nonnegative

reals, such that
∑∞

n=0 an = ∞ and
∑∞

n=0 an‖nx‖ < c on A.

The corresponding families will be denoted pD, A, N0, B0, B, respectively. Of
course, in all the definitions the function ‖x‖ may be replaced by | sinπx|.

7 Theorem.

(i) Every family D, pD, N0, B0, N , B, A, wD is a family of thin sets and
the following inclusions hold true:

D B0 B

pD N0 N

A wD

- -

- -

-

6 6 6

6 6

(ii) Every family D, pD, N0, B0, N , B, A, wD is closed under arithmetic
difference and therefore contains only meager sets of Lebesgue measure
zero.
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(iii) Every family D, pD, N0, B0, N , B, A, wD has a Borel basis.

(iv) Every family pD, N0, N , A, wD contains each countable subset of T.

(v) Every finite subset of T is permitted for the families D, pD, N0, B0, N ,
B, A, wD.

(vi) Every countable subset of T is permitted for the families pD, N0, N , A,
wD.

(vii) None of the families D, pD, N0, B0, N , B, A, wD is closed under set
union.

In the next f, g : T −→ 〈0, 1〉 are supposed to be continuous and f(0) =
g(0) = 0.

Replacing the ‖ ‖ function in the above definitions by a function f we ob-
tain notions of a f-Dirichlet set (shortly Df -set), pseudo f-Dirichlet set

(shortly pDf -set), Af -set, N0 f -set, B0 f -set, Nf -set, Bf -set, and weak f-
Dirichlet set (shortly wDf -set).

Similar inclusions as above hold true for those families and every countable
set is a pDf -set, i.e. the conclusions (i), (iii) and (iv) of Theorem 7 hold true.
For the conclusion (ii) one needs some additional condition, see [3].

Let Z(f) denote the zero-set {x ∈ T : f(x) = 0 } of f . The main re-
sult [5], [4] in the study of the relationships between families Ff and Fg is:

8 Theorem. If n · Z(f) ⊆ Z(g) for some positive integer n, then Ff ⊆ Fg

for F = D, pD, A, B, N ,wD.

9 Corollary. If Z(f) is a finite set of rationals, then F = Ff for F = D,
pD, A, B, N , wD.

10 Corollary. D ⊆ Ff for any F = D, pD, N0, B0, B, N , A, wD.

The relationship of N0-sets is a little more complicated. We have [5] a
strengthening of a classical result by J. Arbault [1]:

11 Theorem. Assume that (∀x, |x| < 1/2) f(x/m) ≤ f(x) for any positive
integer m and Z(g) is a finite set of rationals. Then N0f ⊆ N0g if and only if

(∀{xk}
∞
k=0)

(
∞∑

k=0

f(xk) <∞ →
∞∑

k=0

g(xk) <∞

)
.

A long time the problem of the least size of a base of trigonometric families
was open. We give a solution [7].

Following the idea of J. Marcinkiewicz [14] we can construct a family M of
Dirichlet sets, |M| = c such that A − B contains a non-trivial interval for any
A,B ∈ M, A 6= B. Thus:
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12 Theorem. Let F be a family of thin sets such that D ⊆ F and there
exists a family of thin sets H closed under arithmetic difference and such that
F ⊆ H. Then any base of the family F has cardinality at least c.

13 Corollary. Every base of any trigonometric family of thin sets has car-
dinality at least c.

Let us recall that a topological space X is called a γ-space — for further
information see [8] — if the topological space Cp(X) of continuous real functions
on X with the topology inherited from the product space XR is Fréchet, i.e. for
any set A ⊆ Cp(X) and any f ∈ A there exists a sequence {fn}

∞
n=0 of elements

of A converging pointwise to f on X. In [8] the authors present recent results
on the size of permitted sets for trigonometric families of thin sets and prove:

14 Theorem. Every γ-set is permitted for any of the families pD, N0, N ,
A, and wD.

Since it is well known that it is consistent with ZFC that c > ℵ1 and there
exists a gamma set of reals of size c — for details see [8], the main consequence
of Theorem 14 is:

15 Metatheorem. It is consistent with ZFC that c > ℵ1 and there exists
a permitted set for any of the families pD, N0, N , A, and wD of size c.

J. Arbault presented a “proof” of the existence of a perfect permitted set
for N . N. K. Bary in [2] has found a gap in the proof. Improved result was
proved by M. Repický. He introduced [16] a notion of a set of perfect measure
zero. A set A has perfect measure zero if for every sequence of positive reals
{εn}

∞
n=1 there is an increasing sequence of integers {nk}

∞
k−0 and a sequence of

finite families of intervals {In}
∞
n=1 such that |In| ≤ n, |I| < εn for every I ∈ In,

and A ⊆
⋃

m

⋂
k>m

⋃
Ink

. Every γ-set has perfect measure zero and every set
of perfect measure zero has strong measure zero. Main result of [17] is:

16 Theorem (M. Repický). Let F be any of the families N , A, N0, and
pD. The unions of less than t sets having perfect measure zero are permitted for
pD, N0, N ,and A.

In July 2003, L. Bukovský conjectured that:

17 Conjecture. Every A-permitted and N -permitted set is perfectly mea-
ger.

P. Eliaš [9, 10] successively proved the conjecture for both classes A-permit-
ted and N -permitted sets. We sketch briefly the idea of his proof.

In [11] the authors proved the following

18 Theorem (P. Erdös – K. Kunen – R. D. Mauldin). If P ⊆ T is perfect
set then there exists a perfect set Q of measure zero such that P +Q = T.

P. Eliaš improved it as:
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19 Theorem (P. Eliaš). Let P ⊆ T be a perfect set. Then there exists a
pseudo Dirichlet set Q such that the set P ∩ (x + Q) is dense in P for every
x ∈ T.

20 Corollary (P. Eliaš). Let P ⊆ T be a perfect set. Then there exists a
pseudo Dirichlet set Q such that P +Q = T.

Now, one can easily prove:

21 Theorem (P. Eliaš). Assume that F is a family of thin sets with a
Fσ basis containing every pseudo Dirichlet set. If F is closed under arithmetic
difference then every F–permitted set is perfectly meager.

Proof. Assume that A ⊆ T is an F–permitted set, P ⊆ T is perfect. By
Theorem 19 there exists a pseudo Dirichlet set Q such that P ∩ (x−Q) is dense
in P for every x ∈ T. By assumption about F we have Q ∈ F and therefore
A ∪Q ∈ F . Thus, there exists an Fσ set B ∈ F , B ⊇ A ∪Q. Since F is closed
under arithmetic difference we have B − B 6= T. Then there exists an x ∈ T

such that B∩ (x+B) = ∅. Then also B∩ (x+Q) = ∅ and therefore P ∩ (x+Q)
is a subset of Gδ set P \B dense in P . Hence P ∩A is meager. QED

22 Theorem. Every set permitted for any of the families pD, N , N0, and
A is perfectly meager.

Proof. For any of the families pD, N0 and N the assertion follows directly
from Theorem 21, since all of them have an Fσ base.

For A-sets we must a little change the proof. Let A,P,Q be as above. Since
A∪Q is an A-set there exists an increasing sequence {nk}

∞
k=0 such that A∪Q ⊆

{x ∈ T : ‖nkx‖ → 0 }. Denote

Bi = {x ∈ T : (∀k ≥ i)‖nkx‖ ≤ 1/8 }, B =
⋃

i

Bi.

Then B is an Fσ set and A ∪ Q ⊆ B. If x ∈ B − B then there are i1, i2 and
x1 ∈ Bi1 , x2 ∈ Bi2 such that x = x1 − x2. If i0 = max{ i1, i2 } then x1, x2 ∈ Bi0

and therefore x ∈ Bi0 −Bi0 . Thus B−B =
⋃

i(Bi −Bi). On the other hand we
have Bi − Bi ⊆ Bi+1 − Bi+1 and Bi − Bi ⊆ {x ∈ T : ‖nix‖ ≤ 1/4 }. One can
easily see that λ ({x ∈ T : ‖nx‖ ≤ 1/4 }) = 1/2 and therefore λ(Bn−Bn) ≤ 1/2
for any n > 0.1 Thus λ(B − B) ≤ 1/2. Hence B − B 6= T and we can continue
as in the proof of Theorem 21. QED

A. Miller [15] has shown that ZFC is consistent with c > ℵ1 and “every
perfectly meager set of reals has cardinality at most ℵ1”. Hence we obtain:

23 Metatheorem. ZFC+“every set permitted for any of the families pD,
N , N0, and A has cardinality ≤ ℵ1” is consistent.

1Actually λ(Bn) = 0.



24 L. Bukovský

24 Metatheorem. “Every set of cardinality < c is permitted for the fam-
ilies pD, N , N0, and A” is undecidable in ZFC.
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[5] Z. Bukovská, L. Bukovský: Comparing families of thin sets, Real Anal. Exchange, 27
(2001/2002), 609–625.
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[7] L. Bukovský: Cardinality of Bases and Towers of Trigonometric Thin Sets, Real Anal.
Exchange, 29 (2003/2004), 147–153.
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