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Abstract. Locally conformal almost quasi-Sasakian manifolds set up a wide class of almost
contact metric manifolds containing several interesting subclasses. Contact-complex Rieman-
nian submersions whose total space belongs to each of the considered classes are studied. In
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are related. The main properties of the O’Neill invariants are stated. This allows discussing
the integrability of the horizontal distribution and the minimality of the fibres.
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Introduction

The theory of Riemannian submersions whose total space admits an almost
contact metric structure has been developed in the last three decades [2], [18],
[6], [4], [14], [1]. It is known that one can consider two types of such submer-
sions, namely contact metric submersions (almost contact metric submersions
of type I) and contact-complex Riemannian submersions (almost contact metric
submersions of type II). In particular, we recall that a contact-complex Rieman-
nian submersion is a Riemannian submersion 7 : M — B from an almost contact
metric manifold (M, ¢, £, n, g) onto an almost Hermitian manifold (B, J, ¢’) such
that J o, = my 0 .

Contact-complex submersions are relevant in certain physical theories, mainly
if Hamiltonian dynamics and symplectic geometry are involved, [8].
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e In Hamiltonian mechanics, contact structures are pivotal in studying sym-
plectic geometry. It is known that Hamiltonian dynamics describes the
evolution of physical systems and can be formulated by using symplectic
geometry. Contact-complex submersions have the potential to understand
the dynamics of specific systems.

e In the study of certain field theories and gauge theories, differential ge-
ometry concepts, including almost contact structures, can be employed.
The geometric structures provided by contact complex submersions may
be useful in describing the geometry of the configuration space of fields.

e Geometric quantization is an approach to quantizing classical mechanics
using geometric structures on phase spaces. Symplectic and contact struc-
tures are central to this theory. The choice of contact complex submersions
have a potential to play a role in defining a suitable quantization scheme
for specific systems.

In this paper we develop a detailed study of almost contact submersions of
type II, assuming that the total space M?™*! (m > 2) is a locally conformal
(Lc.) almost quasi-Sasakian manifold. The class of these manifolds, which is
closely related to the Chinea and Gonzalez-Davila classification of almost con-
tact metric manifolds, contains several interesting subclasses, such as locally
conformal cosymplectic, almost cosymplectic, a—Kenmotsu, a—Sasakian, and
quasi-Sasakian manifolds. Contact metric submersions whose total space is an
l.c. almost quasi-Sasakian manifolds are studied in [4].

Firstly we establish the main properties of the O’Neill invariants. This helps
in determining the Chinea and Gonzalez-Dévila class of the fibres, which inherit
from the total space an almost contact metric structure, and the Gray-Hervella
class of the base space. One also proves that the 1-form 7 is co-closed. It follows
that contact-complex Riemannian submersions from an a-Kenmotsu manifold,
a # 0, cannot exist.

Then, we consider submersions such that the Lee form of the total space van-
ishes, namely the fundamental form is closed. New results are stated. In partic-
ular, the horizontal distribution is totally geodesic, if the total space is almost
cosymplectic or it is a Cio-manifold. The submersion has minimal fibres, if the
total space is almost cosymplectic or quasi-Sasakian. We give a method useful
to obtain explicit examples. In particular, if the structure of the total space is
a-Sasakian, « # 0, the horizontal distribution cannot be integrable, the fibres
are minimal and the base space is a Kahler manifold.

The last section deals with submersions whose total space is an l.c. (almost)
cosymplectic manifold. In this case, the O’Neill integrability tensor depends on
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the vertical component of the Lee vector field and the mean curvature of the
fibres is represented by the horizontal component.

Explicit examples are the canonical projections of warped product manifolds
M' x¢ F onto M', M’ being a Kéahler manifold of (real) dimension two, and F
an almost cosymplectic (cosymplectic) manifold. In fact, for any non-constant
smooth function f : M’ — R, f > 0, we define a conformal almost cosymplectic
(conformal cosymplectic) structure on the manifold M’ x s F' which makes the
projection 7 : M’ xy F'— M’ a contact-complex Riemannian submersion.

1 Fundamental properties of the O’Neill invariants
and transference of the structure

We recall some definitions and results on almost contact metric manifolds
(ACM-manifolds) and almost Hermitian manifolds (AH-manifolds).

Let (M, p,&,n,9) be an ACM-manifold with dim M = 2m + 1 and denote
by V the Levi-Civita connection of (M, g) and by ¢ the fundamental form,

P(X,Y) = g(X, 9Y). (1.1)

The covariant derivative V¢ is a section of the vector bundle C(M) over M
whose fibre, at each point x € M, is the linear space C(T,M) defined in [3].
For any x € M the natural representation on U(m) x {I} on T, M induces a
representation on C(T, M) and the inner product g, determines inner product
on C(TyM). In [3] the authors define twelve U(m) x {I} invariant, mutually
orthogonal subspaces Cp, (T, M) of C(T, M), h € {1,...,12}, then determining
the orthogonal splitting C(M) = ;<19 Ch(M), where each Cp,(M) is the
vector bundle over M with fibre C}, (T, M), x € M. The manifold M is named
a Cp—manifold, h € {1,...,12} if V¢ is a section of Cj(M). Analogously, one
defines the concepts of Cj @& Cy, Cp, ® C, & Cj—manifold, h < k < j, and
so on. This allows to consider 2'? classes of ACM-manifolds, including the to-
tal class and the one of the cosymplectic manifolds, that are characterized by
V¢ = 0. The theory developed in [3] is strictly related to the well-known Gray-
Harvella work [7], where 16 classes of AH-manifolds are defined, starting by
the fundamental classes W;, i € {1,...,4}. In partcular, for any i € {1,...,4},
a (C;—manifold is, locally, almost contact isometric to a Riemannian product
I x M’, where I C R is an open interval and M’ carries an AH-structure which
falls in the Gray-Harvella class W;. Analogously, a cosymplectic manifold is,
locally, a Riemannian product I x M’, M’ being a Kéahler manifold.

Other results involving the relationship between ACM and AH manifolds
are stated in [4], [5], [9] , [10].
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Now, we recall that the Lee form of M is the 1-form w defined by

1 o
w 2(m_1)(5¢090+V§17)+72m17, if m>2, (1.2)
on .

2

where § denotes the co-differential operator.
According to the theory developed in [3], we denote 7;, i € {1,...,12}, the
C; — component of V¢. In particular, one has

on = &(15)(§),
dp(pX) = —c(m)(pX) +7112(£, &, 0 X),
(an)X = 712(§, & 9 X),

where, for any section « of the vector bundle C(M) = @.;<15 Ci(M), c(a)
and ¢(«) are the 1-forms acting as

()X) v = Y aleenX),
1<i<2m+1
E(CY)(X) ’U - Z a(eiv(peiaX)v

1<i<2m+1

{e1,...,€2m+1} being a local orthonormal frame on an open set U. Therefore,
the Lee form satisfies

o(X) = g elmeX) + PR, if mza ()
w(X) = a6 0x) + ) iy m=1 )

Through the paper we denote by B = w# the Lee vector field. Locally conformal
almost quasi-Sasakian manifolds, introduced by Vaisman in [16], are charac-
terized as the ACM-manifolds (M, ¢, £, n,g) admitting a closed 1-form w such
that

dp = —2w A ¢. (1.6)

Moreover, if dim M > 5 and there exists a 1-form w satisfying (1.6), then w is
closed and it is the Lee form of M. We recall another characterization of these
manifolds.

Theorem 1. [}] Let (M, p,&,m,g) be an ACM-manifold, dim M > 5. The
following conditions are equivalent:
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i) dé=—2wA ¢,

i) V¢ has no components in Cy, Cs, Cs, and the projections 119 and 111 are
related by
27—10(X7 Y7 g) + Tll(gv X7 Y) =0.

Remark 1. The condition ii) in Theorem 1 means that M falls in the class
Coe P Chve P Cn
4<h<T 9<h<12
and the projections 719 and 71 satisfy 270(X, Y, &) +m1(£, X,Y) = 0. By (1.4)
and Theorem 1, it follows that ¢ is closed if and only if M is in the class
Co0CedCrd @ Cn and 2mp(X,Y,€) + (& X,Y) =0.
9<h<12

Let (M',J,g") be and AH-manifold, dim M’ = 2n and denote by € the
fundamental form,

QX,Y) =4(X,JY). (1.7)
If n > 2 we call Lee form of M’ the 1-form
1
=—————6Qo J 1.
B 2(n—1)6 olJ. (1.8)

We remark that w’ = —20 is named the Lee form of (M’, J, ¢') by Vaisman [15].
If dim M’ > 6, then M’ falls in the class Wo @ Wy if and only if there exists

a 1l — form [ such that
A2 = —28 A Q. (1.9)

Moreover, (1.9) entails that § is the Lee form and 3 is closed.

In this section, we fix a contact-complex Riemannian submersion (contact-
complex R. submersion) 7 : (M, ¢,&,n,9) — (M, J,¢"), dim M =2m +1 > 5,
dim M’ = 2n and put m = n +r. If r = 0, any fibre F of 7 has dimension 1,
TF is spanned by £ |p. If » > 1, then any fibre (F, ¢ = ¢ |rF, E=¢ lp, =
N |lrr, § =9 |rrxrr) is an ACM-manifold.

We denote by v the projection on the vertical distribution ¥V = kerm, and
by h the projection onto the horizontal distribution H. The O’Neill invariants
T and A of 7w are defined as:

TeF = h(vaUF) + U(VUEhF),
ApF = U(thhF) +U(VhEUF),

for any vector fields F, F' on M.
We refer to [11], [6] for details on Riemannian submersions.



82 M. Falcitelli, C. Sayar

Proposition 1. Let 7 : M — M’ be a contact-complexr Riemannian sub-
mersion. Assume that dp = —2w A ¢. Then, one has:

(a) on =0,
(b) The invariant A of m satisfies:

o AxU =nU)Ax§ —w(pU)pX,
L4 AXY = U(AXY)f + (Zb(X?Y)'U((PB)?

o ApxU — p(AxU) = n(U)(Apx§ — p(AxE)),
e AxY — AoxoY =n(AxY — AoxpY )¢

for any X, Y € x"M(M), U € x*(M).

PROOF. Let X,Y be basic vector fields such that 7. (X) = X', m.(Y) =Y’
and U be vertical. Then [X, U], [Y, U] are vertical and

2AxY =v([X,Y)).
It follows that

3dp(X,Y,U) = U

>
= —QQ(AXY, (pU)
Being
3dp(X,Y,U) = —2(w(X) o(Y,U) 4w(Y) ¢(U, X) +w(U)p(X,Y))
=0 =0
one has
9(AxY, oU) = w(U)g(X, ¢Y). (1.10)

By putting U = ¢ in (1.10) one has w(¢) = 0 and 1. is proved. By (1.10), we
also have

9(AxeU,Y) =w(U)g(¢X,Y), Y basic.

Since basic vector fields locally span the horizontal distribution, we obtain

AxoU = w(U)eX, U € x"(M).
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It follows that
Axp*U = w(epU)pX.

So, we obtain the first relation in 2., for any basic X and then for any horizon-
tal vector field X. The other relations are an easy consequence of the stated
formulas. QED

Remark 2. Since the Cs-component of V¢ is determined by &7, by Propo-
sition 1 one has that if (M, ¢, £, n,g) is the total space of 7 and d¢ = —2w A ¢,
then M falls in the class

C,0CidCdCro @ Cn
9<h<12

and
210(X, Y, ) +mi(§, X, Y) =0.

In particular we have: d¢ = 0 (M is almost quasi-Sasakian) if and only if M
is in
CooCsdC7® @ Ch
9<h<12

and
27—10(X7 Y7 E) + 7-11(§7 X7 Y) =0.

In this case, by Proposition 1, the invariant A satisfies
AxU =n(U)AxE, AxY =n(AxY)E,

so Ax&, X € x"(M), determines A.

Proposition 2. Let (F, @,é,ﬁ,g) be a leaf of the contact-complex Rieman-
nian submersion w: M — M’', dim F = 2r +1 > 3. Assume that
dp = —2w A ¢. Then, we have

(a) 07=0,
(b) If r > 2, the fundamental form é of F satisfies dp = —20 A ¢ and & =
w |7F is the Lee form of F.

If r =1 the Lee form & of F acts as w(U) = (Ven)U, for any U tangent
to F.

PRrROOF. We consider a local orthonormal frame on M

{617 <y €20, V1, -eny 1)27’7&}
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such that {v1,...,ve,} are tangent to F. In this case, {e1, ..., e2, } are horizontal.
We have

577 = _ZQ VeZ§,€1 Zg vvzfavz

2r
- Ag.ei, (V€
;g(\?‘f Z; oo

= on.
So, 1. follows from Proposition 1.
Now, assume r > 2 and, applying Proposition 1, for every U € TF we have
1

wl) = —W(M(QOU)“‘(VW)U)

_ <Zg e 0)ei, oU) +Zg )UszU))

=1
- <Zg Aeipeir oU) +Zg vz,sow)
— <Z¢ez,<pel (¢B,U) = 2(r — 1)@ (U))

- ml_ (n(U) + (r — D(U).

Being m = n + r, we have w(U) = ©(U). It follows that & = w |7p .

The equality d(b = 2w A ¢ follows from d¢ = —2w A ¢.

Finally, if dim F' = 3, since 577 =0, we have & = V577 and then for any U € TF

w(U) = (Ven)(U). QED
Proposition 3. Let 7 : M — M’ be a contact-complex Riemannian sub-

mersion such that dimM = 2m + 1 > 5, dim M’ = 2n > 4. Assume that

dp = —2w N ¢. Then, the Lee form [ satisfies

B(m(X)) = w(X), (1.11)
for any basic vector field X. Moreover, (M',J,q') is in the Gray-Hervella class
Wo @ Wy.

PROOF. Let {eq,..., €2, U1, ..., Up, U1, ..., ©Uy, £} De alocal orthonormal frame
on M such that {ey,...,e2,} are basic. Put €, = m.(e;), i = 1,...,2n, so that
{€],...,e5,} is a local orthonormal frame on M.
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Given a basic vector field X, we put X’ = 7, X. Applying the equality
4(n—1)8 —SZdw el, Jel, X') (1.12)
and the hypothesis dp = —2w A ¢, we obtain

2n 2n
4n-1)BX") = 3Zdw<e;,Je;,X’>=3Zd¢(ei,¢ei,X>

i=1

— _QZ< b(ei, )+w(<pei)¢(X,€i))+4nw(X)

— Y eyl )+ () = - ().

Being n > 2, it follows that (X’) = w(X).
Finally, given X', Y’ Z' € x(M'), let X,Y, Z be their horizontal lifts. Then, we
have

WX, Y, 7)) = d6(X,Y,Z) = —2(w A §)(X,Y, 2)
— 2B AR)XLY, 7).
It follows that dQ2 = —28 A Q and M’ is a Wy @ Wy-manifold. QBED

Proposition 4. Let 7 : M — M’ be a contact-complex Riemannian sub-
mersion. Assume that dp = —2w A ¢. For any X € x"(M), U € x*(M) one
has

M(Vxe)U) =w(U)pX — w(pU)X —n(U)p(AxE), (1.13)
hM(Vup)X) = n(U)(Apx€ — ¢(AxS))- (1.14)
PROOF. By Proposition 1, given X,Y € x"(M), U € x*(M), one has
9(Vxe)UY) = g(AxeU — p(AxU),Y)
= —w(@’D)g(pX,Y) = g(n(U)p(AxE) — w(pU)¢?X,Y)
= gw(U)pX —nU)p(AxE) —w(eU)X,Y).
Thus, we obtain (1.13). Moreover, if X is basic, by Proposition 1 we get
M(Vup)X) = h(VupX —¢(AxU))
= ApxU — p(AxU) = n(U)(Apx§ — p(AxE)).

Then, one gets (1.14), since basic vector fields locally span the horizontal dis-
tribution. QED
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The next result allows us to express the vertical components of (V x¢)U and
(Vue)X in terms of the invariant T, the Lee form w and the Nijenhuis tensor
field N, of ¢, which is denoted by N, acting as

No(X.Y) = @*[X,Y]+[pX, oY]— o[ X, 0Y]—p[pX,Y], X,Y € x(M). (1.15)

Proposition 5. Let 7 : M — M’ be a contact-complexr Riemannian sub-
mersion. Assume that dp = —2w A ¢. Then, we have

v(Vx)U) = —n(U)p(TeX) - g(TeX, U)E, X € X"(M), U € x*(M), (1.16)

v(Voe)X) = n(U)(TepX — o(TeX)) +w(X)pU + w(pX)p*U
+%A@QX#107XTEXhMJLLTEX%AH (1.17)
The invariant T satisfies:
TV —TouV = n(U)Tvé—n(V)Tué+26(U, V)h(B), U,V € x"(M). (1.18)
PROOF. Given U,V € x¥(M), X € x"(M), X basic, we have

2(X)H(U,V) = 3dé(U,V,X)
= —g9((Vup)V, X) +9((Vve)U, X) — g((Vxp)U,V)
= —g(TupV —TyeU,X) - g((Vxe)U,V)

and then
9(Vxp)U,V) = —g(TupV — Ty U, X) + 2w(X)$(U, V). (1.19)
In particular, we obtain:
9(Vxp)E, V) = —g(TepV, X) = g(Te X, V).

This relation entails
o(Vx€) = TeX — n(TeX)E. (1.20)

Moreover, by direct calculation, we have

I(Vxp)U, V) = g(VuouX,V)+g(VuX, V) + g([X, pU] — o[ X, U], V)
= 9(TuX,V)+9(TvX,oV) + 9((£xp)U,V)
= —g(TueV +T,uV, X) + g((£xe)U, V).

Hence applying (1.19), we have

§(TuX, V) +6(X)g(eU,V) = ~g(Sxp)U V). (121)
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We remark that, being X is basic, (£x¢)U is vertical, so (1.21) implies
1
Tou X +w(X)eU = =5 (Ex@)U, U € X" (M), X € X (M). (1.22)
Then, we also obtain
1 v
Ty X + w(X)p*U = —i(SXgo)goU, Uex’'(M), X € xb(M). (1.23)

Furthermore, a direct computation and (1.20) give

(Lxe)eU +o((Exp)U) = g(VxEU)E+nU)[X, €+ 9(VuX,§)E
= (29(TeX,U) = n(TeX)n(U))E + (U)X, €]

So applying (1.22) and (1.23), one has
ToouX + o(TouX) + 2w(X)p*U
= 5 29(TeX, U) — n(TeX)n(U)é — Sn(U)[X, €]
Equivalently, we have
TuX — p(T,uX) = — 2(X) (U — n(U)¢) + n(U)TeX
+ 5 Q(TX,U) ~ (TX)n(U))6 + Ju(©)X.€). (1:24)
We consider V € x?(M). By (1.20), (1.24), one obtains

9TV = TouV, X) = = g(Tu X, oV) + g(p(Tour X), ¢V) = n(V)g(Teu€, X)
=20(X)g(U, V) +n(U)g(TepV, X) = n(V)g(TepU, X).
This relation implies (1.18) and applying (1.19), we get

9(Vxp)U,V) = —n(U)g(¢(1eX), V) — g(Te X, oU)n(V).

Hence, we obtain (1.16).
Finally, by (1.23), for any X € x*(M), U € x*(M), we have

(Vo) X) =TyeX — o(Tu X)
=n(U)(TepX — o(TeX)) + w(X)pU + w(pX)p*U

+ %((%xs@)w — o((Lxp)pl))

(U} (TepX — $(TeX)) + w(X)eU +w(pX)2U + S N,(X, o).

Since the horizontal distribution is locally spanned by basic vector fields, this
formula implies (1.17). QED
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As in [6], let N be the horizontal vector field on M locally defined by

N = Z TUiUi,

1<i<2r+1

where {Uy,...,Ur4+1} is a local orthonormal frame of v. We notice that ﬁN

represents the mean curvature vector field of any fibre. Applying Proposition 5,
we relate N to the Lee vector field B as follows.

Corollary 1. Let 7 : M — M’ be a contact-complex Riemannian submer-
sion. Assume that d¢p = —2w A ¢. Then, one has

N = 2rh(B) + T¢€. (1.25)
PROOF. By Proposition 5 for any U,V € x"(M), we have

TV +TeupV = nU)TvE+n(V)Tué —n(U)n(V)Te
+29(U, oV )h(B). (1.26)

Given p € M, we consider an orthonormal basis {uy, ..., u,, pui, ..., pu,, &} of
the vertical space V}, and applying (1.26) we have, at p:

.
N = (Tuui + Tpu,pus) + Te& = 2rh(B) + Tek.
=1

QED

2 The case of zero Lee form

We examine some consequences of the results stated in Section 1, assuming
that the total space is in a suitable subclass of Cy @ Cs ® C7 ® Py <12 Ch-
First, we consider almost cosymplectic manifolds, whose defining condition
is
d¢ =0, dn=0. (2.27)
These manifolds set up the class Cy & Cy, [3].

Theorem 2. Let w : M — M’ be a contact-complex Riemannian submer-
sion and assume that M is an almost cosymplectic manifold. Then, one has:

(a) The horizontal distribution is integrable and totally geodesic.

(b) Any fibre of w is a minimal submanifold of M and inherits from M an
almost cosymplectic structure.
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(c) For any X € x"(M), U € x*(M) one has
1

(d) (M',J,¢") is an almost Kihler manifold.

PROOF. Let X,Y be horizontal vector fields. Then, we have
1
9(AxY, &) = 59([X, Y], §) = —dn(X,Y) = 0.
Then, by Proposition 1-2., one gets
AxY = g(AxY, )6 =0, ¥X,Y € x"(M).

Combining with the well-known properties of A, we obtain A = 0, i.e. H is
integrable. Moreover
VxY = h(VxY) € x"(M),

which proves (1).

Let (F, ¢ = ¢ lrr, € =€ |py 1 =1 |7Fy § = g |TFxTF) be a leaf of .
Then,

dp = do |rp=0, dij=dn|rr=0.
Moreover, we recall that, being M a C3 & Cy-manifold, one has V¢ = 0, so
T = h(Ve€) = 0 and by Corollary 1, the mean curvature vector field of F'
vanishes, so we obtain (2).

Now, we prove that the operator T¢ vanishes. Since dn = 0, for any X €
X"(M), U € x*(M), we have

9Tpé, X) = g(Vu&, X) =g9(Vx&U) = g(Te X, U) = —g(Ty€, X)
= g(Tu¢, X) = g(TeU, X) = 0, VX € X" (M)
= TgUZO,VUEXU(M)éTg:O.

Hence, by Proposition 4 and Proposition 5, we obtain (3).
Property 4. is trivial since

dé =0 = dQ =0,

so (M',J,¢') is an almost Kahler manifold. QED

Example 1. Let (M, J, ¢’) be an almost Hermitian manifold, with dim M’ =
2n, (F,¢,€,7,9) an almost contact metric manifold, dim F' = 2r 4+ 1. On the
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product manifold M = M’x F' one considers the almost contact metric structure
(p,&,m,g) such that, for any X, Y € x(M'), U,V € x(F)

T n—+r,

), &= § (2.28)

n+r T

‘P(X7U):(']X7¢7U)7 77(X7U)=

9(X.U).(V.V) =g (X.¥) + (=) (U.V). (2:29)

The canonical projection 7 : M — M’ is a contact-complex Riemannian sub-
mersion and, for any x € M’, the fibre 77! (x) = {x} x F is identified with F.
So, the vertical and horizontal distributions are identified with TF and T M’,
respectively.

By a direct calculation, one has

dp(X.Y,Z) = dQX,Y,Z), dy(X,Y) =0, X,Y,Z € x(M')
dp(X,Y,U) = do(X,U,V)=0, dy(X,U) =0, X,Y € x(M"),U,V € x(F)

2
dop(U,V,W) = <n+r> do(U,V,W), U,V,W € x(F)
an(U,V) = <nir>dﬁ(U, V).

It follows that (M, p,&,n,g) is almost cosymplectic if and only if (M’,J,¢') is
almost Kahler and (F, §, &, g) is almost cosymplectic.

Hence, considering (M, J, ¢') in the Gray-Hervella class W5 and (F, ¢, én, J)
in Cy @ Cy, the projection m : M — M’ is a contact-complex Riemannian
submersion such that both the vertical and horizontal distributions are totally
geodesic (i.e. T'=0, A =0).

We also remark that the Cy-component of V¢ is determined by the tensor
field V¢ and for any X € x(M), U € x(F') one has

Vx§=0, h(Vu)=0, v(%&)—(”jr)%é

It follows that M is a C;-manifold if and only if F' is a C;-manifold. Moreover,
as stated in [14], M is a Co-manifold if and only if M’ is Kahler and F falls in
Cy.

Now we consider the class Cg @ C7, which consists of the quasi-Sasakian
manifolds. The defining condition is

dp =0, N,+2dn®E=0. (2.30)

It is known that any ACM-manifold (M, p,&,n,g) such that dimM > 5 is
quasi-Sasakian if and only if

(Vx@)(Y, Z) = n(Y)(Voxn)Z +n(Z)(Vyn) X, (2.31)
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for any X,Y, Z € x(M), [4].

Theorem 3. Let w : M — M’ be a contact-complex Riemannian submer-
ston. If M is quasi-Sasakian, then the following properties hold

(a) (M',J,q") is a Kahler manifold.

(b) Ifr > 1, any fibre is a minimal submanifold of M and inherits from M a
quasi-Sasakian structure.

(c) The invariant A satisfies

ApxU = p(AxU) = n(U)Apx€, X € X" (M), U € x"(M).

(d) The invariant T satisfies
Teop=pol;
TypV — o(TyV) = —n(V)Te(eU)
(e) For any X € x"(M), U € x*(M), one has

(Vo)X = g(TepU, X )€,
(Vxo)U = —n(U) <90(Axf LX) — g(TeX), U)S)-

PrOOF. Considering X' Y’ Z" € x(M'), let X,Y, Z be their horizontal lifts.
By (2.31), we have

(Vi )Y, Z")or = (Vxo)(Y, Z) = 0.

Then, (M’, J,¢') is a Kdhler manifold.

Let (F,([J,é, 7,g) be a fibre (dim F = 2r + 1 > 3). It is obvious to prove
that F' is normal and has closed fundamental form. By Corollary 1, since T¢{ =
h(Ve€) = 0, we obtain that (F, §) is a minimal submanifold of M.

Given X € x"(M), U € x*(M), for any Y € x(M), we have

9(AxpU — p(AxU),Y) = (Vx¢)(Y,U) = n(U)(Vyn)pX = —n(U)g(A,x¢&,Y)
It follows
AxeU — p(AxU) = —n(U)Apx¢. (2.32)

In particular, one has

Pp(AxE) = Apx €. (2.33)



92 M. Falcitelli, C. Sayar

So, by Proposition 1, one gets
ApxU = p(AxU) = n(U) Apx €.
Applying again (2.31) for any V € x”(M), we have
9(Vxo)U,V) = =n(U)g(Vex&, V) = n(V)g(Tug, o X). (2.34)
Putting in (2.34) V = &, we have
9(Vx& oU) = g(TeU, o X).
This relation also implies
9(Vex€,U) = g(TepU, X)
and by (2.34), we get
9(Vxp)U,V) = =n(U)g(TepV, X) +n(V)g(p(TeU), X).

It follows
v((Vxp)U) = —n(U)e(TeX) + g(o(TeU), X)E. (2.35)

Applying Proposition 5 - (1.16) one has
P(TeU) = TepU, U € X" (M).
Then, using well-known properties of T, one gets
poly="Tcop.

Furthermore, for any X € x"(M), U,V € x*(M), applying (2.31), we have

9(TueV —p(TuV), X) = g(Vup)V, X)
= _n(v)g(v<pU€7 X) = _U(V)Q(T§90U7X)’

It follows TV — o(TyV) = —n(V)TepU and (4) is proved.
To prove (5), by Proposition 5 and the normality of M, one has

(Vop)X = o((Vop)X) = SN,(X, oU) = ~dn(X, oU)¢

_ _% (9(TeU, 9 X) — g(TepU, X))€ = g(TewU, X ).

The last formula follows by Proposition 4 and (2.35). QED
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Remark 3. Properties (1), (2), and (3) in Theorem 3 were firstly obtained
by Tshikuna-Matamba (Proposition 2.6, 2.7, 2.8, [13]).

Example 2. Let (M, .J’, ¢') be a Kéhler manifold, dim M’ = 2n, (F, ¢, £,1),§)
a quasi-Sasakian manifold, dim F = 2r + 1. It is easy to prove that the ACM-
structure on the product manifold M’ x F defined in Example 1 is quasi-
Sasakian. Therefore, the canonical projection 7 : M — M’ is a contact-complex
Riemannian submersion whose total space is a quasi-Sasakian manifold.

We also note that the Cg-components of Vo, V¢ are determined by d¢(&),
&ZA)(E ), respectively. Being A = 0, one checks the equality

[

5(€) = 06(8).

r

It follows that, if F' is a C7-manifold, then also M falls in the class C7, so
7w : M — M’ provides an example of contact-complex Riemannian submersion
whose domain is a C7-manifold.

Now, we state the main properties of those submersions whose total space
is a Cg-manifold.
The defining condition of class Cg is expressed as:

(Vxp)Y = a(g(eX,Y)§ —n(Y)X), (2.36)

where o = 55—55) is a smooth function. If o # 0 is constant, then the manifold
is called a-Sasakian, Sasakian if & = 1. In [9] the author proves that, if m > 2,
any connected Cg-manifold M?™+! either is a-Sasakian or it is cosymplectic.

The main example of contact-complex submersion from a Sasakian manifold
is the Hopf fibration 7 : $?™+1 — B, (C), [18], [6].

Theorem 4. Let w: M — M’ be a contact-complex Riemannian submer-
ston and assume that M is a a-Sasakian. Then, the following properties hold

1. M’ is a Kdhler manifold.

2. Ifr > 1, any fibre of m is a minimal submanifold of M and inherits from
M an a-Sasakian structure.

8. The invariant A acts as

AxY = —a(X,Y)E, XY e \"(M).

4. The invariant T satisfies

Tyop=poTy, Uex"(M).
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PRrROOF. Property 1. and the minimality of the fibres follow by Theorem 3.
Applying (2.36), for any U,V € x”(M) one has

(Voe)V =v((Vup)V) = a(g(U,V)E—n(V)U),
TueV —e(TuV) = M(Vue)V)=0.

It follows that the structure induced on any fibre is a-Sasakian and the invariant
T satisfies

(Tv o)y =(poTy)y, Uex"(M).
Being each operator Ty skew-symmetric, we obtain 4.

By (2.36), for any X € x(M) one has Vx{ = —apX. By Proposition 1,
being B = 0, for any X,Y € x"(M) we obtain

QED

We end this section considering submersions whose total space falls in the
class C1s. First, we recall the defining condition of any Cjs-manifold, namely

(Vx@)Y = —n(X)((Ven)eY £+ n(Y)e(Ve€)). (2.37)

By (2.37) we see that C'1o—manifolds are just the ACM-manifold for which Vi
only depends on V¢{. The class Cig is strictly related to the one of Kahler
manifolds. More precisely, given a Kahler manifold (M’,J,¢') and a smooth
positive function f : I x M’ — R, I being an open interval, on the product
manifold I x M’ one considers the ACM-structure (¢, &,n, gf) acting as:

0 0
SO(GE’X) - (07 ‘]X)a 77(@57)0 - afa
1.0 2 & .y
52?(570)7 gf:f Wl(dt®dt)+7'(2g,

foranya e FUx M), X € x(M'), 7 : IXxM' — 1,79 :Ix M — M’ denoting
the canonical projections.

The manifold (I x M" = (I x M’',¢,§,n,g5) falls in the class Cia, the
projection my :y I x M’ — M’ is a contact-complex Riemannian submersion
with 1-dimensional fibres. The action of the invariant 1" is determined by

Te§ = h(Ve€) = grad(log f) — &(log f)E,

the gradient being evaluated with respect to g;.
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It follows that m has totally geodesic fibres if and only if the function f =
f(t,p) only depends on t.

Conversely, applying the theory developed in [12], [5], one proves that any
C12-manifold is, locally, realized as the ACM-manifold f] —¢,e[xF, e > 0, F
being a Kdhler manifold and f :] — e,e[xF — R a smooth positive function.
It follows that a contact-complex Riemannian submersion from a Cjs-manifold
with 1-dimensional fibres acts locally as the canonical projection onto a Kahler
manifold.

Explicit examples of submersions from a Cio-manifold onto a Kdhler one
with fibres of dimension 2r + 1 > 3 are known ([14]).

Now, we state the main properties of these submersions.

Theorem 5. Let m: M — M’ be a contact-complex Riemannian submer-
sion. Assume that M is a Cio-manifold. The following properties hold:

(a) M’ is a Kahler manifold.
(b) The horizontal distribution is totally geodesic.
(c) Any fibre F inherits from M a Cia-structure, provided that dim F' > 3.
(d) The invariant T satisfies
TyeV = ¢(TuV) = n(U)n(V)e(Tek), (2.38)
ToV +ToueV =nU)n(V)TE U,V € xU(M). (2.39)
(e) For any U € x*(M) , X € x"(M) one has
(Vo)X = —n(U)g(Te€, X )&, (2.40)
(Vxp)U = 0. (2.41)

PROOF. Properties (1) and (3) are known ([14]).
To state (2), remark that, being M a Cj2-manifold, one has

Vx€=n(X)Ve&, X € x(M).
So, considering U € x¥(M), X € x"(M), by Proposition 1, one has
AxU =n(U)Ax§ =n(U)h(VxE) = 0.

It follows that all the operators Ay, X € x"(M), vanish and then A = 0. This
implies that the horizontal distribution is totally geodesic.
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Let U,V be vertical vector fields. Applying (2.37), we have
TupV —o(TuV) = M((Vup)V) = —n(U)n(V)e(T:S).
Therefore, we also obtain

TyeV =TV, Tu&=nU)T:E,

TyV + ToueV = —Tue®V +n(V)Tué + ToueV = n(U)n(V)TEE.

Moreover, applying well-known properties of T', for any X € Xh(M ) we have
TeX = n(T:X)&. By Proposition 4, 5 one gets (2.41).
Formula (2.40) follows by (2.37). QED

Corollary 2. Let m : M — M’ be a contact-complex Riemannian submer-
sion. Assume that M is a Cia-manifold and any fibre (F?"*1,§) is a totally
umbilical submanifold of M, r > 1. Then the invariant T vanishes and 7 is a
totally geodesic map.

PROOF. Let (F,g) be any fibre of 7. Applying Corollary 1, the mean cur-
vature vector field of F' is

1
T,
o1 lesle
and using the hypothesis, we have
5V U V)T, UV €TFE. (2.42)

Tt

Considering U € TF, U # 0, U L £ by Theorem 5, we obtain

g(U,UTeE = —g(U, " UNTeE = —(2r + )Ty U
= —(2r+ p(TyeU) = 0.

It follows that T¢{ = 0 and by (2.42) we get that (F, §) is totally geodesic. This
implies 7' = 0 and being A = 0, 7 is a totally geodesic map (Proposition 1.9,
6)).

Combining Corollary 2 with a theorem of Vilms [17] one obtains.

If m is a contact-complex Riemannian submersion with totally umbilical fibres
and the total space M is a complete, simply connected Cio-manifold, then M
is a Riemannian product and m acts as the canonical projection on one of the
factors.
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3 The case of non-zero Lee form

The aim of this section is the study of contact-complex submersions in the
case that the total space M belongs to a suitable subclass of Cy & Cy @ Cg B
C7 ® Pg< <12 Cn and the Lee form w, a priori, does not vanish. More precisely,
we consider the following cases;

A) M is locally conformal (l.c.) almost cosymplectic,
B) M is l.c. cosymplectic,
C) M is normal and d¢ = —2w A ¢.

Firstly, we recall that an ACM manifold (M, ¢,&,n,g) is said to be l.c.
almost cosymplectic (l.c. cosymplectic) if there exist an open covering {U; }ier
of M and, for any ¢, a smooth function p; : U; — R such that the local a.c.m.
structure

©i = ¢ vy, & =exp(—=pi)€ lu,, m =exp(pi)n lu,, 9i =exp(2pi)g |lu, (3.43)

is almost cosymplectic (cosymplectic).
The Lee form w is related to the conformal change (3.43) by w |y,= dp; and,
if dim M = 2m + 1 > 5, the following equivalences hold

I) M is l.c. almost cosymplectic < dp = —2w A ¢, dp =nAw
& Misa Cy® Cy @ Cs5 @ Cg ® Cro-manifold and w = Ven + 25—7:7177,

IT) M is l.c. cosymplectic < for any X,Y,Z € x(M) one has

(Vxo)(V,Z2) = w(Y)o(X,Z) —w(Z2)o(X,Y)
+w(@Y)g(X, Z) — w(pZ)g(X,Y) (3.44)
& Misa(Cy®Cs @ Cr2 — manifold and w = Ven + %n.

By Proposition 1, we obtain that if 7 : M — M’ is a contact-complex Rieman-
nian submersion and M is l.c. almost cosymplectic (l.c. cosymplectic), then M
falls in the class Co @ Cy @ Cy @ C12 (C4 ® C12) and w = V¢, so that the Lee
vector field is B = V¢&, h(B) = T¢.

We state the following results, dealing with the case A).

Theorem 6. Let w : M — M’ be a contact-complex Riemannian submer-
sion. Assume that dim M =2m+1>5, dim M’ = 2n > 4 and (M, ¢,&,n, g) is
l.c. almost cosymplectic. Then, one has

1) (M',J,q") is a locally conformal almost Kdhler manifold.
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1) The invariant A acts as AxY = ¢(X,Y)v(pB).

4i) If r = m —n > 2, any fibre inherits from M an l.c. almost cosymplectic
structure. If r = 1, then the fibres are Cg & Co-manifolds.

w) The vector field h(B) = T¢£ represents the mean curvature of the fibres.

PRrROOF. By Proposition 3, (M’, J,¢') is a W5 @ Wy-manifold. Moreover, the
Lee form 8 of M’ is closed, w being closed. It follows that (M’,J, ¢') is L.c. to a
Ws-manifold, namely it is l.c. almost Kahler [15].

Let X,Y be horizontal vector fields. Then, we have

MAXY) = 29([X,Y],€) = ~dn(X,¥) = (1 Aw)(X.¥) = 0.

By Proposition 1, we have AxY = ¢(X,Y)v(pB).

Now, assume r = m — n > 2 and consider a fibre (F,cﬁ,é,ﬁ,g) of m. By
Proposition 2, @ = w |7p is the Lee form of F, dp = —2& /\dA) and, being
dn =n A w, we have di) = A @. It follows that F'is l.c. almost cosymplectic.

We recall that, in dimension 3, the class of a.c.m. manifolds reduces to
Cs ® Cs ® Cy @ Cia. Hence, if r = 1, any fibre (F,$,€,7,§) is in the class
Cs®CydCho and the Cg-component of V¢ is determined by (5(2)(5 ). We consider a
local orthonormal frame { X1, ..., Xo,, U1, Us, £} defined in an open set W C M,
such that Uy, Uy are tangent to F. In W, by ii) we have

2n 2
03(&) = Y g(Vx0)Xi, &) + > 9((Vu,)Us, §)
=1 =1
2n
= ) 9(Ax,0Xi,6) +6(8) = 66(8).
i=1

So, since the Cg-component of V¢ vanishes, we have (5(5(5) = 0¢(£) = 0 and iii)
is proved.
Property iv) follows by (1.25), since in this case h(B) = T¢£. QED

Corollary 3. Let 7 : M — M’ be a contact-complex Riemannian submer-
ston as in Theorem 6. Then, we have;

©) The horizontal distribution is totally geodesic if and only if V& is hori-
zontal.

1) Fach fibre of 7 is a minimal submanifold of M if and only if V& is vertical
if and only if Te& = 0.
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An invariant submanifold N of an a.c.m. manifold (M, p,&,1,g) is said to
be superminimal if Vo = 0, for any U € x(N). Obviously, a superminimal
submanifold is minimal.

Let m : M — M’ be a contact-complex Riemannian submersion. We say
that 7 has superminimal fibres if each fibre of 7 is a superminimal submanifold
of M, namely if and only if Vi = 0, for any U € x*(M).

Proposition 6. Let 7 : M — M’ be a contact-complex Riemannian submer-
sion as in Theorem 6 and assume that r = m—mn > 1. The following conditions
are equivalent

i) ™ has superminimal fibres,

i) each fibre inherits from M a cosymplectic structure ant the invariant T
satisfies:
TueV = o(TyV), U,V € x*(M).

PRrROOF. For any U,V € x"(M), one has
M(Vup)V) =ToeV = (TuV),

v(Vop)V) = (Vue)V,
and V represents the Levi-Civita connection of the fibers. So, if 7 has super-
minimal fibers, ii) holds.

Conversely, assuming ii), we have for any U,V € x"(M) (Vyy)V = 0. Let
X be horizontal. Then, by (1.14) and Theorem 6, we have

M(Vue)X) =nU)(Apx§ — ¢(AxE)) =0, U € x"(M).

On the other hand, we have v((Vyp)X) =0, U € x*(M), since g((Vyp) X, V) =
—g((Vup)V,X) =0,V € x¥(M). It follows Vyp =0, U € x"(M), and 7 has
superminimal fibres. QED

In case B), we state the next results dealing with the structure of the fibres
and the behaviour of their second fundamental form.

Theorem 7. Let m : M — M’ be a contact-complex Riemannian submer-
sion, dimM = 2m +1 > 5, dimM' = 2n+ 1 > 4. If (M, ¢,&,n,9) is Lc.
cosymplectic, then (M', J,g') is l.c. Kahler, the invariant T satisfies

TU = n(U)TeE, TeX = —w(X)E U € X (M), X € x"(M). (3.45)

Moreover, if r = m —n > 2, any fibre of w is l.c. cosymplectic, if r = 1, then
the fibres are Cia-manifolds.
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PROOF. Assume that (M’,J,¢') is lLec. cosymplectic, so (3.44) holds. By
direct calculation, applying (3.44) and Proposition 3, the action of the covariant
derivative V'Q, Q being the fundamental form of M’, is given by

(Vi)Y' Z)or = {BY)UX',Z") - B(Z)AUX"Y) + B(JY")g' (X', Z')
—B(JZ)g (X" Y')}om, XY, Z" € x(M).
Note that the Lee form 3 of M’ is closed, w being closed. It follows that

(M',J,g") is an l.c. Kéhler manifold.
Let U be a vertical vector fields. By (3.44), for any Y € x"(M) we have

9(Tv&, ¢Y) = g(Vu&, ¢Y) = (Vuo) (Y, €) = w(eY )n(U) = nU)g(Te&, oY).

It follows TeU = Tyé = n(U)T€. Thus, applying well-known properties of the
operator T, we also obtain the second relation is (3.45).

Let (F, @,é,f],g) be a fibre of 7. If dim F' > 5, by (3.44) and Proposition 1,
for any U, V,W € x(F), we have

(Vud)(V, W) = &(V)$(U, W) —&(W)p(U, V) +&(pV)§(U, W) —a(eW)g(U, V).

It follows that F' is l.c. cosymplectic.

Assume that dim F' = 3. By Theorem 6 we know that F is a Cg & Cia-
manifold. Given a point p € F', we consider an orthonormal frame {U;,Us =
pUy,Us = é } defined in an open neighbourhood W of p. Since the Lee form of
Fisw= @éﬁ = w/rF, by (3.44) we easily obtain

(909005 00) = 06) ( (V) 90 1U0) ~ A0;) (V) 501
for any 4, j,k € {1,2,3}. Hence, one has
(T 90 = ~i0) (HUHT) + (VeideUs€). s € 1.2.3).

It follows that @gﬁ satisfies (2.37), so (F, @,é, 7, g) is a Ci2-manifold. QED

Proposition 7. Let 7 : M — M’ be a contact-complexr Riemannian sub-
mersion as in Theorem 7. If M is l.c. cosymplectic and r = m —n > 1, the
following conditions are equivalent:

i) ™ has superminimal fibers,

i) each fibre of w is a minimal submanifold of M and inherits from M a
cosymplectic structure.
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PROOF. By (3.44), for any U,V € x¥(M), X € x"(M), we have

9(Vup)V, X) = w(X)o(U,V) +w(eX)g(U,V)
= g(Tg{,X)cb(U,V)—g(gp(Tgﬁ),X)g(U, V)

So, we obtain:

TueV —p(TyV) = h((Vup)V)
= o(U,V)Te§ — g(U,V)p(T¢E).

Then, the statement follows by Proposition 6 and Corollary 3. QED

In case C), let (M?™+1 . € n,9), m > 2 be the total space of a contact-

complex Riemannian submersion. Applying the theory developed in [3], [4] one
has:

M is normal and d¢ = —2w A ¢ if and only if M is a Cy @ Cg ® Cr-manifold
if and only if V¢ acts as

(Vx9)(V,Z) = w(Y)o(X,Z) —w(Z)(X,Y) +w(pY)g(pX, ¢Z)
—w(pZ2)g(¢X,pY) +n(Y)(Vexn)Z +n(Z)(Vyn)dX46)

for any XY, Z € x(M).

Theorem 8. Let w: M — M’ be a contact-complex Riemannian submer-
sion, dimM = 2m + 1 > 5, dim M’ = 2n. Assume that M is a Cy ® Cg ® Cy-
manifold. Then, the following properties hold

i) M’ is a Wy-manifold.
1) The invariant A satisfies

ApxU = p(AxU), AxY = Ay,xeY, X,Y € X"(M), U € X*(M).

i1) The invariant T satisfies

Teop=polg.

w) Ifr =m—n > 2, then any fibre is a Cy ® Cs & Cr-manifold, if r =1, the
fibres fall in the class Cg.

PROOF. We remark that, if n = 1, then M’ is a Kahler manifold, so i) holds.
If n > 2, by Proposition 3, (M, J,¢') is a Wy & Wy-manifold. We are going to
prove that the almost complex structure J is integrable.
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Given X')Y" € x(M), let X,Y be their horizontal lifts. By direct computa-
tion we have

Ny (X', Y") = m(Np(X,Y) + 2dn(X,Y)€) = 0.

It follows N; = 0, namely J is integrable and M’ falls in the Gray-Hervella class
Wy.
For any X,Y € x(M), by (3.46) we get

9(Vx&Y) = (Vx9)(§ pY) = (Vox n)eY = g(Vex&, YY)
and then we obtain
©(Vx&) = Vex§, X € x(M). (3.47)
In particular, considering X,Y € x"(M), one gets:

Aox€ = h(Vyx€) = p(AxE)
NAxY — AyoxpY) = —g(AxE,Y) + g(Apx &, 0Y) =0

Therefore, ii) follows by Proposition 1.
Moreover, by (3.47) for any U € x"(M), we have

o(TeU) = h(p(Vué)) = h(Vu§) = TepU.

It follows (p o T¢) y = (T¢ 0 ) jy and being T¢ a skew-symmetric operator, we
obtain iii).

If r > 2 statement iv) is a consequence of (3.46), recalling that the Lee form
of any fibre F' is w = w |7p.

Now, we assume r = 1, and consider a fibre (F, g&,é,ﬁ,g). Let {Uy,Us =
pUy,Us = é} be a local orthonormal frame defined in an open subset W C F.
Being (537 =0, one has

(Vo UL + (Vd)Us = 0.

Moreover, (3.47) entails

A~

(Vo t)Us = §(Vorr &, 0U1) = §(Vir &, Un) = (Vo) Ur.
It follows R
(Vu,m)Ur = (Vy,n)Usz = 0. (3.48)
By (3.47) we also obtain

~

066 = H(Ve,&)U1.6) + 4(Vi, @)U, €) (3.49)
= _2g(vU1€7 U2> = 2Q(VU2€, Ul)
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Thus, by direct computation, (3.48) and (3.49), one proves that the only non-
vanishing values for (Vy,¢)(U;, Uy), i, j, k € {1,2,3}, are

(@Uﬁg)(Ul’ U3) = _(ﬁUl(Z))(U37 Ul) = (?U2¢§)(U27U3)
= —(Vi,d)(Us, ) = —5&15(5)-

It follows that @gfg satisfies

(Fudv.w) = 248 (g wyav) - s vyam)),

hence F' is a Cg-manifold. QED

Proposition 8. Let 7 : M — M’ be a contact-complex Riemannian sub-
mersion as in Theorem 8 and assume that r = m —n > 1. If the fibers of «
are totally umbilical submanifolds of M, then they are totally geodesic, the Lee
vector field B is vertical and (M',J',¢") is a Kdhler manifold.

PROOF. Being T¢§ = 0, the Lee vector field H = inlh(B) represents the

mean curvature vector field of the fibers. So, assuming that 7 has totally um-
bilical fibres, for any U,V € x”(M) we have

_ 2r
Cr+1

TV g(U,V)h(B).
Therefore, being T:{ = 0, we obtain h(B) = 0. It follows that 7' = 0 and B is
vertical.

Finally, if dim M’ = 2, then M’ is a Kéahler manifold. If dim M’ > 4, we
know that M’ falls in the class Wy and, applying (1.11), we also have 8 = 0. It
follows that M’ is a Kahler manifold. QED

Example 3. Let (F, @, &, g) be an almost cosymplectic manifold, dim F' =
2r+1 >3, and (M’, J, ¢') an almost Hermitian manifold. Assume that dim M’ =
2, so the structure (J,¢') is Kéhler. Let f : M" — R be a non-constant smooth
function such that f > 0 everywhere. We define an almost contact metric struc-
ture on M’ x F putting

P(X,U) = (JX,@U), n(X,U)—fﬁ(U),é—ché,

g5 = mg + [*m4, (3.50)

for any X € x(M"), U € x(F), 7 : M' x F — M', my : M’ x F — F denoting
the canonical projections.
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Since gy is the warped product metric of ¢/, § by f, the projection
m (M x F,gf) = (M',¢’) is a Riemanninan submersion with fibres isometric
to (F, g) and integrable horizontal distribution. The O’Neill invariant T" acts as

TyV = —g¢(U,V)gradlog f, U,V € x(F).

We denote by M’ x ¢F the almost contact metric manifold (M’ x ¢ F, ¢,&, 1, g¢).

Firstly, we observe that the fundamental forms ¢,2, ¢ of M’ x fF, M| F
are related by

S((X,U),(Y,V)) = QUX,Y) + f*6(U, V).
Being both Q,(ﬁ closed, one has

d¢ = 2d(log f) A ¢.

So, putting w = —d(log f), the fundamental form ¢ satisfies (1.6). Then, w is
the Lee form of M’ x F', and the Lee vector field B = —gradlog f is horizontal.
Moreover, since 1) is closed, we have

dn = df A= —n Ad(log f).

We evaluate the vector field V¢&, when V is the Levi-Civita connection of
M’ x ¢ F. We recall that, being F' almost cosymplectic, one has @éé =0, so

1 .

Then, w = V¢n is exact, dp = —2w A ¢, dn = n Aw. It follows that M’ x; F,
which falls in the class Co @ Cy @ Cg @ C1o, is conformal to an almost cosym-
plectic manifold. More precisely, according to (3.43), the structure (¢, &,n,g) is
conformal to the almost cosymplectic structure

V&

¢ = ¢, E=exp(log )€ = ¢, i = exp(—log f)n =,

_ «f 1 .
g = exp(—2logp)gf=771<fzg’)+7r29- (3.51)

So, m : M’ x5 F — M’ is an example of the submersions considered in A).
Moreover, it is easy to prove that the structure defined by (3.51) is cosym-

plectic, if (F, g&,é ,7,§) is a cosymplectic manifold. In this case, the manifold

M’ x ¢ F'is conformal to a cosymplectic manifold and falls in the class Cy @® C12,

so the projection 71 : M’ x ¢ F — M’ is an example of the submersions consid-
ered in B).
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