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Abstract. In this paper, we use a particular smooth function f : Ω → R on a bounded
domain Ω of a Riemannian manifold M to estimate the lower bound of the first eigenvalue for
quasilinear operator Lf = −∆pf + V |f |p−2f . In this way, we also present a lower bound for
the first eigenvalue of the (p, q)-Laplacian on compact manifolds.
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Introduction

It is well known that studying the eigenvalues and eigenfunctions of the
Laplacian plays an important role in global differential geometry since they
reveal important relations between the geometry of the manifold and analysis.
So far, there has been some progress on the geometric operators as bi-Laplace, p-
Laplace, and (p,q)-Laplace associated with a Riemannian metric g on a compact
Riemannian manifold Mn. For instance, Lichnerowicz-type estimate had been
studied in some research papers for the p-Laplace [10], p-Laplace with integral
curvature condition [11], and recently investigated for the first eigenvalue of
buckling and clamped plate problems in [8]. For more study about eigenvalue
estimate see [2, 3, 7, 12]. In this paper, first we are going to study the first
eigenvalue of the following quasilinear operator which was introduced in [1].
Then we are going to extend some results about the fundamental tone of the
p-Laplacian from [7] to the (p, q)-Laplacian.
Let (Mn, g, dv) be a compact Riemannian manifold with volume element dv,
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the quasilinear operator on M is defined as

Lf = −∆pf + V |f |p−2f. (0.1)

Here V is a nonnegative smooth function on M , and for p ∈ (1,∞) the p-Laplace
operator is defined as

∆pf = div(|∇f |p−2∇f).

Corresponding to the p-Laplacian we have the following eigenvalue equation
known as Dirichlet eigenvalue problem:{

Lf = µ|f |p−2f, on M

f = 0, on ∂M.
(0.2)

The first nontrivial Dirichlet eigenvalue for M is given by

µ1,p(M) = inf
f∈W 1,p

0 (M),f 6=0

∫
M (|∇f |p + V |f |p)dv∫

M |f |pdv
.

The function f satisfies in (0.2) is called the eigenfunction of operator L corre-
sponding to µ on M .

1 Main Results

We consider a bounded domain Ω in a n-dimensional Riemannian manifold
Mn, n ≥ 2. Under some additional assumption for f : Ω→ R, we will obtain a
positive lower bound for µ1,p on bounded domain Ω as follows:

Theorem 1. Let Ω be a bounded domain on a Riemannian manifold M ,
and assume that there is a smooth function f : Ω → R such that |∇f | ≤ a and
∆pf ≥ b for some positive constants a, b, where a > b. Then the first Dirichlet
eigenvalue of the quasilinear operator L satisfies

µ1,p(Ω) ≥ bp

ppap(p−1)
.

Proof. We first note that by density we can use smooth functions in the
variational characterization of µ1,p(Ω). So given u ∈ C∞0 (Ω), based on the fact
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that V is positive function, we have

b

∫
Ω
|u|pdv ≤

∫
Ω
|u|p(∆pf + V )dv

= −
∫

Ω
< ∇|u|p, |∇f |p−2∇f > dv +

∫
Ω
|u|pV dv

= −p
∫

Ω
|u|p−1 < ∇|u|, |∇f |p−2∇f > dv +

∫
Ω
|u|pV dv

≤ p
∫

Ω
|u|p−1|∇u||∇f |p−1dv +

∫
Ω
|u|pV dv

≤ p
∫

Ω
|u|p−1ap−1|∇u|dv +

∫
Ω
|u|pV dv. (1.3)

Now considering a constant c > 0 and using Young inequality, we obtain

|u|p−1ap−1|∇u| ≤ cq|u|q(p−1)

q
+
ap(p−1)|∇u|p

pcp

=
(p− 1)cp/(p−1)|u|p

p
+
ap(p−1)|∇u|p

pcp
.

Therefore

p

∫
Ω
|u|p−1ap−1|∇u|dv +

∫
Ω
|u|pV dv ≤ (p− 1)cp/(p−1)

∫
Ω
|u|pdv (1.4)

+
ap(p−1)

cp

∫
Ω
|∇u|pdv +

∫
Ω
|u|pV dv.

We could choose c so that b− (p−1)cp/(p−1) =
b

p
, that is cp =

bp−1

pp−1
. Hence with

the statement in theorem a > b, we know

pp−1ap(p−1)

bp−1
> 1,

so, (1.3) and (1.4) lead to

b

p

∫
Ω
|u|pdv ≤ pp−1ap(p−1)

bp−1

(∫
Ω
|∇u|pdv +

∫
Ω
|u|pV dv

)
.

Dividing both side to
∫

Ω |u|
p, completes the proof. QED

Let Mn(k) denote the simply connected space form of constant sectional
curvature k. The metric of Mn(k) in polar coordinates is g = dr2 + f2

k (r)dw2,
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where dw2 is the standard metric on Sn−1 and fk(r) defines as follows:

fk(r) =


1√
−k

sinh(
√
−kr), if k < 0,

r, if k = 0,
1√
k
sin(
√
kr), if k > 0.

(1.5)

So if we denote the distance function to the center of geodesic ball BR of radius
R, by rk, then we know that |∇rk| = 1, and ∆prk = div(|∇rk|p−2∇rk) = ∆rk =

(n− 1)
f
′
k

fk
. In particular, we have

∆prk ≥


(n− 1)

√
−kcoth(

√
−kR), if k < 0,

(n− 1)

R
, if k = 0,

(n− 1)
√
kcot(

√
kR), if k > 0.

Consequently, as a first application of Theorem 1, for the especial distance
function on a geodesic ball BR, we obtain:

Corollary 1. Consider a bounded domain Ω ∈Mn(k). If Ω is contained in
a geodesic ball BR, then

µ1,p(Ω) ≥ (n− 1)p(
√
−k)p

pp
cothp(

√
−kR), if k < 0,

µ1,p(Ω) ≥ (n− 1)p

ppRp
, if k = 0,

µ1,p(Ω) ≥ (n− 1)p(
√
k)p

pp
cotp(

√
kR), if k > 0.

We consider a warped product Riemannian manifold Mn = R × N , where
(N, g0) is an arbitrary Riemannian manifold, with corresponding warped metric
ds2 = dt2 + e2ρ(t)g0. Given Busemann function associated to the geodesic ray
F : M −→ R, F (s, x) = s, a direct computation shows |∇F | = 1, and ∆pF =
∆F = (n − 1)ρ

′
(t). Subsequently, assuming ρ

′
(t) ≥ κ > 0, we could state the

following corollary.

Corollary 2. Let Mn = R×N be a warped product Riemannian manifold
endowed with the warped metric ds2 = dt2 + e2ρ(t)g0, such that the warped
function satisfies ρ

′
(t) ≥ κ > 0, for some constant κ. Then the first Dirichlet

eigenvalue of (0.1), satisfies the following:

µ1,p(M) ≥ (n− 1)p

pp
κp.
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Based on the studies in [5], this kind of estimate that we mentioned for
warped product can be lifted for Riemannian manifolds which admit a Rieman-
nian submersion over hyperbolic space.
Let π : Mn −→ Bk, be a surjective Riemannian submersion between two Rie-
mannian manifolds M,B. It is obvious that dπx : TxM → Tπ(x)B is surjective
for all x ∈ M . Hence for each b ∈ B, π−1(b) is a submanifold of M of dimen-
sion dimM − dimB. In particular, the submanifolds π−1(b) = Fb are called
fibers, and a vector field on M is vertical if it is always tangent to fibers, and
it is horizontal, whenever it is orthogonal to fibers. On the other hand, Rie-
mannian metric on M gives the decomposition of a vector field X ∈ TM as
X = XV +XH, where XV and XH are the vertical and horizontal components
respectively. Based on this notations, the second fundamental form of the fibers
is a symmetric tensor αF : TF × TF → T⊥F defined by

αF (v, w) = (∇̃vW )H,

where W is a vertical extension of w and ∇̃ denotes the Levi-Civita connection
on M . The mean curvature vector of the fiber is the horizontal vector field HF

defined by HF = trαF . Considering a local orthonormal frame {e1, · · · , en−k}
for a fiber Fb, we have

HF (x) = Σn−k
i=1 α

F (ei, ei) = Σn−k
i=1 (∇̃eiei)H.

Now, given a smooth function g on B we set g̃ : M → R, so that g̃(x) = g ◦π(x)
be the lift of g to M . See [6] for more details about Riemannain submersions.
We may need the following Lemma from [5] for our main result:

Lemma 1. Let g : B → R be a smooth function and set g̃ = g ◦ π. Then
∀b ∈ B, and ∀x ∈ Fx, we have

∆̃g̃(x) = ∆g(x)+ < ∇̃g̃(x), HF (x) > .

We just need to assume the function g : B → R such that |∇g| = 1 and
∆g ≥ κ > 0. In this way, we also know that ∆pg > κ. Finally, we note that
the gradient of g̃ is horizontal lifting of the gradient of g, and |∇̃g̃| = 1, and
∆̃pg̃ = ∆̃g̃. Here is our main result:

Theorem 2. Let M̃m be a complete Riemannian manifold that admits a
Riemannian submersion π : M̃m −→Mn = R×N , where π is a surjective map.
If the mean curvature of the fibers satisfy |HF | ≤ α, for some α < (n− 1)κ1/p,
then for the first Dirichlet eigenvalue of (0.1), we have

µ1,p(M) ≥ ((n− 1)pκ− α)p

pp
.
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Proof. From Lemma 1, we obtain

∆̃pg̃ ≥ κ− α,

so with the same way of Theorem 1, we reach our purpose. QED

1.1 Eigenvalue estimate of some (p, q)-Laplacian

Let Ω be a compact domain in a complete, simply connected Riemannian
manifold (M, g) of constant sectional curvature k. We are going to study a class
of (p, q)-Laplacian for ∀u ∈W = W 1,p

0 (Ω)∩W 1,q
0 (Ω) introduced in [4], as follows:

∆pu+ ∆qu = div((|∇u|p−2 + |∇u|q−2)∇u), (1.6)

where 1 < q < p < ∞, and W is the completion of C∞0 (Ω) with respect to the
norm ||u|| = ||u||1,p + ||u||1,q. Since W is without the boundary, the boundary
condition is not needed. Here λ1,p,q ∈ R is called an eigenvalue of (1.6) if there
is a nontrivial solution for the following inequality:

−∆pu−∆qu = λ1,p,q|u|p−2u, (1.7)

or equivalently for any v ∈W 1,p(Ω) ∩W 1,q(Ω), we have∫
Ω
|∇u|p−2∇u.∇vdv +

∫
Ω
|∇u|q−2∇u.∇vdv = λ1,p,q

∫
Ω
|u|p−2uvdv. (1.8)

Therefore the first positive eigenvalue λ1,p,q(Ω) of (1.6) defines as

λ1,p,q(Ω) = inf

{∫
Ω
|∇u|pdv +

∫
Ω
|∇u|qdv : u ∈W,u 6= 0,

∫
Ω
|u|pdv = 1

}
.

(1.9)
Consider u > 0 as one of the eigenfunctions corresponding to λ1,p,q, and a
smooth function f : Ω → R such that |∇f | ≤ a,∆pf ≥ b, and ∆qf ≥ b

′
for

some constants a, b, b
′
> 0, where a > b, a > b

′
. From the proof of Theorem 1,

we have

b

∫
Ω
|u|pdv ≤

∫
Ω
|u|p(∆pf)dv

= −
∫

Ω
< ∇|u|p, |∇f |p−2∇f > dv

= −p
∫

Ω
|u|p−1 < ∇|u|, |∇f |p−2∇f > dv

≤ p
∫

Ω
|u|p−1|∇u||∇f |p−1dv

≤ p
∫

Ω
|u|p−1ap−1|∇u|dv.
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So ∫
Ω
|∇u|pdv ≥

(
b

pap−1

)p ∫
Ω
|u|p =

(
b

pap−1

)p
,

and ∫
Ω
|∇u|qdv ≥

(
b
′

qaq−1

)q ∫
Ω
|u|q =

(
b′

qaq−1

)q
,

so we achieve our next result as follows:

Theorem 3. Let Ω be a compact domain with smooth boundary in a com-
plete Riemannian manifold. Then for the first eigenvalue of (1.6), we obtain

λ1,p,q(Ω) ≥
(

b

pap−1

)p
+

(
b
′

qaq−1

)q
.

Particularly, for distance function (1.5), we conclude

Corollary 3. Consider a bounded domain Ω ∈Mn(k) so that it is contained
in a geodesic ball BR, then we obtain

λ1,p,q(Ω) ≥ (n− 1)p(
√
−k)p

pp
cothp(

√
−kR) +

(n− 1)q(
√
−k)q

qq
cothq(

√
−kR),

if k < 0,

λ1,p,q(Ω) ≥ (n− 1)p

ppRp
+

(n− 1)q

qqRq
, if k = 0,

λ1,p,q(Ω) ≥ (n− 1)p(
√
k)p

pp
cotp(

√
kR) +

(n− 1)q(
√
k)q

qq
cotq(

√
kR), if k > 0.

Now we present the estimate for the first eigenvalue of (1.6) for a class of
warped product metrics.

Corollary 4. Consider a warped product Riemannian manifold Mn = R×
N with the warped metric ds2 = dt2 +e2ρ(t)g0, such that ρ

′
(t) ≥ κ > 0, for some

constant κ. Then the following estimate holds for the first eigenvalue of (1.6):

λ1,p,q(M) ≥ (n− 1)p

pp
κp +

(n− 1)q

qq
κq.

Let M̃m and Mn be Riemannian manifolds with m > n and π : M̃ →M as
a surjective submersion on M̃ , then with the same way that mentioned for the
quasilinear operator (0.1), we can state the next result.

Theorem 4. Let M̃m be a complete Riemannian manifold that admits a
Riemannian submersion π : M̃m −→Mn = R×N , where π is a surjective map.
If the mean curvature of the fibers satisfy |HF | ≤ α, for some α < (n− 1)κ1/p,
then we have

λ1,p,q(M) ≥ ((n− 1)pκ− α)p

pp
+

((n− 1)qκ− α)q

qq
.
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The proof of this theorem is just like Theorem 2. Note that in the last two
results there is no difference between ∆p and ∆q.
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