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1 Introduction

The analysis of closed forms in terms of important mathematical constants
and special functions for hypergeometric functions is a classical study. It is well
known that this type of research is of interest, not only from a mathematical
point of view (for example, for the study of Diophantine approximations, in order
to prove the irrationality of certain constants) but also in other scientific fields
and, sometimes it provides a possible link between seemingly distant topics;
a very exhaustive illustration of these facts can be found in [8]. In the large
family of hypergeometric functions, those that can be written as a series whose
terms are powers of central binomial coefficients have been widely studied; a
classical example is the work of Ramanujan about the series involving 1/π (for
a survey of this topic see for example [6], and for formulas via hypergeometric
transformations see [17]).

In this paper, we focus on a class of the so called lemniscate-like constants,
introduced by Campbell and Chu in [12]. We recall that the lemniscate constants

L1 :=
Γ2
(

1
4

)
4
√

2π
, L2 :=

√
2π3

Γ2
(

1
4

)
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are important constants in the history of mathematics (see, e.g., [20, 29]). It is
well known that

L1 =

∫ 1

0

1√
1− t4

dt =
∑
n≥0

(
2n

n

)
1

4n
1

4n+ 1
;

L1 =

∫ 1

0

t2√
1− t4

dt =
∑
n≥0

(
2n

n

)
1

4n
1

4n+ 3

and so it is also known the connection with the classical Gauss’ arc lemniscate
sine function

arcsinlem(w):=

∫ w

0

1√
1− t4

dt =
∑
n≥0

(
2n

n

)
1

4n
w4n+1

4n+ 1
(1.1)

(see [4] for more details about the previous function) and its hyperbolic form

arcsinhlem (w) :=

∫ w

0

1√
1 + t4

dt =
∑
n≥0

(
2n

n

)
(−1)n

4n
w4n+1

4n+ 1
. (1.2)

In consideration of the research that has been done over the years regarding
the classical lemniscate constants, were introduced in [12] the lemniscate-like
constants as series of the form

Lfn1 :=
∑
n≥0

(
2n

n

)
1

4n
fn

4n+ 1
, Lfn2 :=

∑
n≥0

(
2n

n

)
1

4n
fn

4n+ 3

where fn : N0 → C are suitable arithmetic functions, that is, sequences that do

not contain 1
4n+1 and 1

4n+3 , respectively, or a factor that cancels

(
2n

n

)
or 1/4n.

In particular, the authors studied the cases fn := On, O2n where

On :=

n∑
k=1

1

2k − 1

is the odd harmonic number of order n. As pointed out in [12], the case fn := Hn,
where Hn is the n-th harmonic number, cannot be treated with the technique
proposed by Campbell and Chu. Furthermore, known methods also appear to
be insufficient in seeking a closed form for these particular series. In this paper,
we show a new way to deal with LHn1 and we prove that this choice of fn is
very interesting since the problem of finding a closed form for this particular
lemniscate-like constant can be interpreted in multiple ways.
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This paper is structured as follows: In Section 2, we introduce the notations,
definitions, and useful properties that we will employ in subsequent sections.
In Section 3, we demonstrate that the challenging evaluation of the proposed
lemniscate-like constant can be accomplished by employing tools from the the-
ory of elliptic functions and certain q−extensions of the Riemann Zeta function
and Polylogarithm functions. In Section 4, we establish that LHn1 can be inter-
preted from different perspectives, and consequently, the closed-form expression
presented in Theorem 2 establishes a compelling connection between various
topics.

2 Definitions, settings and preliminary results

In this section we introduce the notations and the definitions that we will
use in the whole paper. The symbol

K(k) :=

∫ π/2

0

dθ√
1− k2 sin2 (θ)

, 0 < k < 1

will denote the complete elliptic integral of the first kind and K ′ (k) := K (k′),
where k′ :=

√
1− k2. We will always denote the Beta function with the symbol

B(a, b), where

B(a, b) :=

∫ 1

0
xa−1(1− x)b−1dx, Re(a) > 0, Re(b) > 0

(see [27], sections 19.2(ii) and 5.12).
As we anticipated in the introduction, we need to define the q−analog of the

Riemann Zeta function and the q−analog of the polylogarithm function.

Definition 1. We define the q − ζ function as

ζq (s) :=
∑
n≥1

1

n1−s
qn

1− qn
, |q| < 1, s ∈ C (2.3)

and the q−Polylogarithm of order s as

Lis (x; q) :=
∑
n≥1

1

n1−s
xnqn

1− qn
, |xq|< 1, |q| 6= 1, s ∈ C. (2.4)

Note that this functions, and their generalizations, are well known and stud-
ied (for the definition of ζq (s) see, for example, [32]; for Lis (x; q) see [31]); some
examples include studies about the irrationality of some special values (see, e.g.,
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[2, 9, 28, 33]), linear independence over suitable fields (see, e.g., [10, 31]), etc.
Also note that the classical definition of (2.3) and (2.4) have been constructed
for values of s that belong to subsets of C (more precisely, taking s as natural
number) but clearly there is no convergence issue if s ∈ C, so we will work
in this setting, even if we are interested only in particular integer values of s.
We recall that there exist different definitions for q−analogs of the classical ζ
function (see [16, 25]), however, it is possible to prove, defining ζq as in (2.3),
that

lim
q→1
|q|<1

(1− q)s ζq (s) = (s− 1)!ζ (s)

for s = 2, 3, . . . (see [28]), then we have a interesting connection with ζ(s).
Now, taking q := e−πK

′(k)/K(k), we recall the main Jacobian elliptic functions

sn(z, k) :=
θ3 (0, q) θ1 (Z , q)

θ2 (0, q) θ4 (Z , q)
;

cn(z, k) :=
θ4 (0, q) θ2 (Z , q)

θ2 (0, q) θ4 (Z , q)

dn(z, k) :=
θ4 (0, q) θ3 (Z , q)

θ3 (0, q) θ4 (Z , q)

(see [27], 22.1), where Z := πz
2K(k) and the theta functions are the Jacobi theta

functions (see [27], 20.2(i)).

3 Evaluation of a lemniscate-like constant

In this section we prove that the lemniscate-like constant LHn1 can be written
in terms of the previous defined q−functions and well known mathematical
constant. Indeed, we have the following theorem:

Theorem 2. Using the notation of the previous section, we have that

∑
n≥0

(
2n

n

)
1

4n
Hn

4n+ 1
=

Γ
(

1
4

)2
(π − 6 log (2))

8
√

2π
−

Γ
(

1
4

)
π3/2

4Γ
(

3
4

)
+ 4
√

2K

[
log

(
2K

π

)
+

2C

π
+ 2ζq4 (0)− 5ζq2 (0)

+ 2ζq (0) +
2i

π

(
Li−1

(
−1; q4

)
− 4Li−1

(
i; q2

))
+
i

π

(
4Li−1 (i; q)− Li−1

(
−1; q2

))]
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where C is the Catalan’s constant, K := K
(

1√
2

)
=

4Γ( 5
4)

2

√
π

, i is the imaginary

unit and q = e−π.

Proof. Following [12] we have

∑
n≥0

(
2n

n

)
1

4n
Hn

4n+ 1
=

Γ
(

1
4

)2
(π − 6 log (2))

8
√

2π
+

∫ 1

0

log (1 + u)

(1− u2)3/4
du

and so using the Taylor series of log(1 + u), exchanging series and integral and
computing the integral in terms of the Euler Beta function, we get

∑
n≥0

(
2n

n

)
1

4n
Hn

4n+ 1
=

Γ
(

1
4

)2
(π − 6 log (2))

8
√

2π
+
∑
n≥1

(−1)n+1

2n

Γ
(
n+1

2

)
Γ
(

1
4

)
Γ
(
n
2 + 3

4

)
(3.5)

and since the series in the right side of (3.5) is absolutely convergent, we obtain

∑
n≥0

(
2n

n

)
1

4n
Hn

4n+ 1
=

Γ
(

1
4

)2
(π − 6 log (2))

8
√

2π
−

Γ
(

1
4

)
4

∑
n≥1

1

n

Γ
(
n+ 1

2

)
Γ
(
n+ 3

4

)
+

1

2

∑
n≥0

1

2n+ 1
B

(
n+ 1,

1

4

)

where B(a, b) is the Beta function. Clearly

∑
n≥1

1

n

Γ
(
n+ 1

2

)
Γ
(
n+ 3

4

) =
π3/2

Γ
(

3
4

)
since it is a known form of hypergeoemtric function 3F2(1) or, similarly, since
it can be written in terms of a simple integral replacing the ratio of Gamma
function as a Beta function. Hence, in the second series, rewriting B

(
n+ 1, 1

4

)
as

an integral, using the change of variables x 7→ 1−x
1+x , making simple manipulations

and exploiting the Taylor series of (1 + x4)−1/2, we obtain

∑
n≥0

(
2n

n

)
1

4n
Hn

4n+ 1
=

Γ
(

1
4

)2
(π − 6 log (2))

8
√

2π
−

Γ
(

1
4

)
π3/2

4Γ
(

3
4

) (3.6)

+ 4
√

2
∑
n≥0

(
1

4

)n(2n

n

)
(−1)n

(4n+ 1)2 .
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So, with this technique, we “removed” the Hn term keeping the “structure” of
hypergeometric series. Hence, the problem boils down to find a closed form for
the last series in (3.6). Now, by (1.2), we have

∑
n≥0

(
1

4

)n(2n

n

)
(−1)n

(4n+ 1)2 = −
∫ 1

0

log (z)√
1 + z4

dz (3.7)

= −
∫ 2Γ( 5

4)
2

√
π

0
log (sinhlem(z)) dz

and since

sinhlem(z) =
1− cn

(
2z; 1√

2

)
sn
(

2z; 1√
2

) =
sn
(
z; 1√

2

)
dn
(
z; 1√

2

)
cn
(
z; 1√

2

) , |z| ≤ K
(

1√
2

)

(for the first equality, see [26], equation (2.10); for the second equality, just
apply the sum of squares and double argument formulas, see, for example, [27],
sections 22.6(i) and 22.6(ii)) and observing that

2Γ
(

5
4

)2
√
π

=
K
(

1√
2

)
2

=:
K

2
,

then we have to understand if the following integrals∫ K
2

0
log

(
sn

(
z;

1√
2

))
dz,

∫ K
2

0
log

(
dn

(
z;

1√
2

))
dz,∫ K

2

0
log

(
cn

(
z;

1√
2

))
dz. (3.8)

admit a closed form.

It is interesting to note that similar integrals have been studied by Glaisher
[21]. However, the identities, relations, and strategies developed in the cited
work cannot be used for our problem. The main issue, in a few words, is that
in our case, we integrate from 0 to K/2, and this fact implies that we lose some
crucial symmetries and properties linked to the periodicity of the Jacobi elliptic
functions.

To deal with these integrals, we recall the following Fourier expansions:

log (sn (z; k)) = log

(
2K

π

)
+log

(
sin
( πz

2K

))
−4
∑
n≥1

1

n

qn

1 + qn
sin2

(nπz
2K

)
(3.9)
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log (cn (z; k)) = log
(

cos
( πz

2K

))
− 4

∑
n≥1

1

n

qn

1 + (−1)n qn
sin2

(nπz
2K

)
(3.10)

log (dn (z; k)) = −8
∑
n≥1

1

2n− 1

q2n−1

1− q4n−2
sin2

(
(2n− 1)πz

2K

)
(3.11)

where q := e−πK
′/K = e−π, since K ′

(
1√
2

)
= K

(√
1− 1

2

)
= K

(
1√
2

)
(see,

e.g., [23], section 8.146, equations 20, 21 and 22). Let us now consider the first
integral of (3.8). From (3.9), we firstly focus on

∫ K
2

0
log
(

sin
( πz

2K

))
dz =

2K

π

∫ π
4

0
log (sin (y)) dy = −K

2π
(2C + π log (2))

where C is the Catalan’s constant. Now, by the absolute convergence of

∑
n≥1

1

n

qn

1 + qn
,

we can consider

−4
∑
n≥1

1

n

qn

1 + qn

∫ K
2

0
sin2

(nπz
2K

)
dz = −K

∑
n≥1

1

n

qn

1 + qn

(
1−

2 sin
(
πn
2

)
πn

)

= −K
∑
n≥1

1

n

qn

1 + qn
+

2K

π

∑
n≥1

1

n2

qn sin
(
πn
2

)
1 + qn

.

Now we recall al classical properties of the Lambert series, that is, if f(n) is an
arithmetical function, then

∑
n≥1

f (n) qn

1 + qn
=
∑
n≥1

f (n) qn

1− qn
− 2

∑
n≥1

f (n) q2n

1− q2n
(3.12)

which can be proved with simple manipulations. Then, we get

∑
n≥1

1

n

qn

1 + qn
= ζq (0)− 2ζq2 (0)
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and ∑
n≥1

1

n2

qn sin
(
πn
2

)
1 + qn

=
∑
n≥1

1

(2n− 1)2

q2n−1 (−1)n+1

1 + q2n−1

= −i
∑
n≥1

1

(2n− 1)2

q2n−1i2n−1

1 + q2n−1

= −i
∑
n≥1

1

n2

qnin

1 + qn
+ i
∑
n≥1

1

(2n)2

q2n (−1)n

1 + q2n

= −i
(
Li−1 (i; q)− 2Li−1

(
i; q2

)
−1

4
Li−1

(
−1; q2

)
+

1

2
Li−1

(
−1; q4

))
.

Note that
∑

n≥1
1
n

qn

1+qn can be written in also in terms of the Euler Φ(q) function

Φ(q) :=
∏
n≥1

(1− qn)

or in terms of the q−pochhammer symbol

(a; q)∞ :=
∏
n≥0

(1− aqn)

(see [27], 17.2.4) since

log (Φ(q)) = log ((q; q)∞) = −
∑
n≥1

1

n

qn

1− qn
= −ζq (0)

(see [3], section 14, for further details and the connections between Φ(q) and
the partition function p(n)). Hence we can finally write∫ K

2

0
log

(
sn

(
z;

1√
2

))
dz =

K

2
log

(
2K

π

)
− K

2π
(2C + π log (2))

−K
(
ζq (0)− 2ζq2 (0)

)
− 2K

π
i
(
Li−1 (i; q)− 2Li−1

(
i; q2

)
−1

4
Li−1

(
−1; q2

)
+

1

2
Li−1

(
−1; q4

))
.

Now we have to deal with (3.10) and so, arguing similarly to the previous part,
the problem boils down to the evaluation of∫ K

2

0
log
(

cos
( πz

2K

))
dz =

2K

π

∫ π
4

0
log (cos (y)) dy =

K

π

(
C − π

2
log (2)

)
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and

−4
∑
n≥1

1

n

qn

1 + (−1)n qn

∫ K
2

0
sin2

(nπz
2K

)
dz

= −K
∑
n≥1

1

n

qn

1 + (−1)n qn

(
1−

2 sin
(
πn
2

)
πn

)
.

We observe, using (3.12) and the absolute convergence of the series, that

∑
n≥1

1

n

qn

1 + (−1)n qn
=
∑
n≥1

1

2n

q2n

1 + q2n
+
∑
n≥1

1

2n− 1

q2n−1

1− q2n−1

=
∑
n≥1

1

2n

q2n

1− q2n
−
∑
n≥1

1

n

q4n

1− q4n
+
∑
n≥1

1

2n− 1

q2n−1

1− q2n−1

=
∑
n≥1

1

n

qn

1− qn
−
∑
n≥1

1

n

q4n

1− q4n
= ζq (0)− ζq4 (0)

and ∑
n≥1

1

n2

qn sin
(
πn
2

)
1 + (−1)n qn

=
∑
n≥1

1

(2n− 1)2

q2n−1 (−1)n+1

1− q2n−1

= −i
∑
n≥1

1

(2n− 1)2

q2n−1i2n−1

1− q2n−1

= −i

∑
n≥1

1

n2

qnin

1− qn
− 1

4

∑
n≥1

1

n2

q2ni2n

1− q2n


= −i

(
Li−1 (i; q)− 1

4
Li−1

(
−1; q2

))
hence∫ K

2

0
log

(
cn

(
z;

1√
2

))
dz =

K

π

(
C − π

2
log (2)

)
−K

(
ζq (0)− ζq4 (0)

)
− 2K

π
i

(
Li−1 (i; q)− 1

4
Li−1

(
−1; q2

))
.

Finally, we have to consider (3.11) and so

−
∑
n≥1

8q2n−1

(2n− 1) (1− q4n−2)

∫ K
2

0
sin2

(
(2n− 1)πz

2K

)
dz



10

= −2K
∑
n≥1

1

2n− 1

q2n−1

1− q4n−2
− 4K

π

∑
n≥1

1

(2n− 1)2

q2n−1 (−1)n

1− q4n−2

= −2K

(
ζq (0)− 1

2
ζq2 (0)

)
+ 2K

(
ζq2 (0)− 1

2
ζq4 (0)

)
−4K

π
i

(
Li−1 (i; q)− 1

4
Li−1

(
−1; q2

))
+

4K

π
i

(
Li−1

(
i; q2

)
− 1

4
Li−1

(
−1; q4

))
then ∫ K

2

0
log

(
dn

(
z;

1√
2

))
dz = −2K

(
ζq (0)− 3

2
ζq2 (0) +

1

2
ζq4 (0)

)
−4K

π
i

(
Li−1 (i; q)− 1

4
Li−1

(
−1; q2

)
− Li

(
i; q2

)
+

1

4
Li−1

(
−1; q4

))
.

So, making the necessary simplifications, we can conclude that

∑
n≥0

(
1

4

)n(2n

n

)
(−1)n

(4n+ 1)2 = −
∫ K

2

0
log

sn
(
z; 1√

2

)
dn
(
z; 1√

2

)
cn
(
z; 1√

2

)
 dz

= −K
2

log

(
2K

π

)
+

2CK

π

+ 2Kζq4 (0)− 5Kζq2 (0) + 2Kζq (0)

+
2K

π
i
(
Li−1

(
−1; q4

)
− 4Li−1

(
i; q2

))
+
K

π
i
(
4Li−1 (i; q)− Li−1

(
−1; q2

))
and this identity completes the proof. QED

Remark 3. It is natural to wonder if the same approach works with LHn2 . The
answer is that it is not clear if we can use our technique for the evaluation of
this series. Indeed, following the previous argument, we find the integral

−4
√

2

∫ 1

0

z2 log (z)

(1 + z4)3/2
dz = −4

√
2

9

∫ 1

0

log (v)(
1 + v4/3

)3/2dv (3.13)

and so it is not obvious how to treat (3.13). However, we do not exclude the
possibility that there exists some transformation that allows us to reformulate
the problem in terms of approachable definite integrals of Jacobian elliptic func-
tions. In particular, we believe that some p, q generalizations of the Jacobian
elliptic functions, for suitable p, q, could solve the problem. This approach would
require extending some known properties to the case p, q. This idea will be the
subject of future research.
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4 Equivalent reformulations of the problem

In this section we will show that the particular choice fn = Hn is very
interesting, as the main series LHn1 can be interpreted in several ways. These
observations could bring interesting new links between apparently distant topics.

4.1 Fourier-Legendre expansions

In a recent series of papers it has been shown that the Fourier-Legendre
(FL) expansions are a very useful tool for finding the closed form for series whose
coefficient are powers of the central binomial coefficients (see [11, 13, 14, 15, 24]).
Even if the technique of FL expansions does not seem to provide a solution in
our case, it is still interesting to note how it reformulates the problem. Indeed,
from the power series representation

∑
n≥0

(
2n

n

)
Hnx

n =
2 log

(
1+
√

1−4x
2
√

1−4x

)
√

1− 4x
, |x| < 1

4

(see [7]) we have

∑
n≥0

(
1

4

)n(2n

n

)
Hn

4n+ 1
= 2

∫ 1

0

log
(

1+
√

1−4x4

2
√

1−4x4

)
√

1− 4x4
dx

so, combining the previous identity with the FL expansion

1

2
√
x

log

(
1 +
√
x

4
√
x

)
=
∑
n≥0

(−1)nHnPn (2x− 1)

where x ∈ (0, 1) and where Pn(x) is the Legendre polynomial of order n (see
[15], formula (18)) and the evaluation∫ 1

0
x2µ−1Pn

(
1− 2x2

)
dx =

(−1)n Γ (µ)2

2Γ (µ+ n+ 1) Γ (µ− n)
, Re (µ) > 0,

(see [23], equation 7.233) we get∑
n≥0

(
1

4

)n(2n

n

)
Hn

4n+ 1
=

√
π log (2) Γ

(
5
4

)
Γ
(

3
4

) +
1

4

∑
n≥0

Hn

∫ 1

0
x−3/4Pn (2x− 1) dx

=

√
π log (2) Γ

(
5
4

)
Γ
(

3
4

) +
Γ
(

1
4

)
4Γ
(

3
4

) ∑
n≥0

(−1)nHn
Γ
(
n+ 3

4

)
Γ
(
n+ 5

4

)
=

√
π log (2) Γ

(
5
4

)
Γ
(

3
4

) +
Γ
(

1
4

)
4Γ
(

5
4

) 2F
(0,1,0,0)
1

(
3

4
, 1;

5

4
;−1

)
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hence Theorem 2 provides a also a closed form for 2F
(0,1,0,0)
1

(
3
4 , 1; 5

4 ;−1
)
.

4.2 Hypergeometric function

We start from the relation (3.6). It is not difficult to prove that

∑
n≥0

(
1

4

)n(2n

n

)
(−1)n

(4n+ 1)2 = 3F2

(
1

2
,
1

4
,
1

4
;
5

4
,
5

4
;−1

)
(4.14)

and, as far as we know, a closed form expression for this function is unknown.
Note that this 3F2 is quite interesting; indeed, it is a special case of a classical
classical result of Whipple

3F2 (a, b, c; 1 + a− b, 1 + a− c;−1) =
Γ (1 + a− b) Γ (1 + a− c)
Γ (1 + a) Γ (1 + a− b− c)

× 3F2

(
1

2
, b, c; 1 +

a

2
,
1

2
+
a

2
; 1

)
(see [30], equation 9.3) but, unfortunately, even this new 3F2 seems to not
possess a known closed form in terms of well known special functions or math-
ematical constants.

4.3 Generalized Lerch trascendent

We start again from (3.6). Recalling the Lerch trascendent function

Φ (z, s, a) :=
∑
n≥0

zn

(n+ a)s

with a ∈ C \ Z−0 , s ∈ C if |z| < 1 and Re(s) > 1 if |z| = 1 (see [27], section
25.14(i)) and the fractional derivative of a function

Dµz [f (z)] :=


1

Γ(−µ)

∫ z
0 (z − t)−µ−1 f (t) dt, Re(µ) < 0

dm

dzm

(
Dµ−mz [f (z)]

)
m− 1 ≤ Re(µ) < m, m ∈ N

(see, e.g., [18], p. 181 et seq.) we define the generalized Lerch trascendent func-
tion Φ∗µ (z, s, a) as

Φ∗µ (z, s, a) :=
1

Γ (µ)
Dµ−1
z

[
zµ−1Φ (z, s, a)

]
=
∑
n≥0

(µ)n
n!

zn

(n+ a)s
.
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This function was introduced in [22] and studied in a series of papers. Hence,
we can see that∑

n≥0

(
1

4

)n(2n

n

)
(−1)n

(4n+ 1)2 =
∑
n≥0

(
1
2

)
n

n!

(−1)n

(4n+ 1)2 =
1

16
Φ∗1

2

(
−1, 2,

1

4

)
so we can write∑

n≥0

(
2n

n

)
1

4n
Hn

4n+ 1
=

Γ
(

1
4

)2
(π − 6 log (2))

8
√

2π
−

Γ
(

1
4

)
π3/2

4Γ
(

3
4

)
+

√
2

4
Φ∗1

2

(
−1, 2,

1

4

)
.

4.4 Definite integrals of elliptic functions

We have seen that

∑
n≥0

(
1

4

)n(2n

n

)
(−1)n

(4n+ 1)2 = −
∫ K

2

0
log

sn
(
z; 1√

2

)
dn
(
z; 1√

2

)
cn
(
z; 1√

2

)
 dz.

Now, from the functional relation

sn (z; k)2 dn (z; k)2

cn (z; k)2 =
1− cn (2z; k)

1 + cn (2z; k)

(see [23], section 8.155, equation 2) then∑
n≥0

(
1

4

)n(2n

n

)
(−1)n

(4n+ 1)2

= −1

4

∫ K

0

[
log

(
1− cn

(
z;

1√
2

))
− log

(
1 + cn

(
z;

1√
2

))]
dz

and this is one of the “left open case” in [21]. Indeed, Glaisher explicitly states
that, with his method, we can only evaluate∫ K

0
[log (1− cn (z; k)) + log (1 + cn (z; k))] dz. (4.15)

Furthermore, combining Glaisher ’s results for (4.15) with Theorem 2, we also
have a closed form for∫ K

0
log (1− cn (z; k)) dz,

∫ K

0
log (1 + cn (z; k)) dz.
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4.5 Lambert series

For the definition of ζq(s) and Lis(x; q) we used Lambert series. Therefore,
it is natural to ask if these series have interesting links or properties. In fact, it
is well known that ζq(s) belongs to a class of well-known Lambert series of the
form:

Lq (s, x) :=
∑
n≥1

nsqnx

1− qn
, s ∈ C, 0 ≤ q < 1, x > 0

which have some interesting representations like

Lq (−s, x) =
∑
n≥0

Lis
(
qn+x

)
where

Lis (x) :=
∑
n≥1

xn

ns

is the Polylogarithm function and

Lq (s, 1) =
∑
n≥1

σs(n)qn

where σs(n) :=
∑

d|n d
s (see [1, 5]). Now, since we work with also Lis (q;x), we

define the following class of Lambert series

Lq (y, s, x) :=
∑
n≥1

nsynqnx

1− qn
, s ∈ C, 0 ≤ q < 1, |y| ≤ 1, x > 0

and so, clearly,
Lq (s, x) = Lq (1, s, x) .

Our aim is to mimic the proof of Lemma 2.1 of [5] for the series Lq (y, s, x) and
so giving an explicit relation with Lis (x). Indeed, if we define the operator

D :=
d

dx

and we consider
D

eD − 1
:=
∑
n≥0

Bn
n!
Dn

where Bn are the Bernoulli numbers, it is straightforward to see, following the
proof of Lemma 2.1 of [5], that

Lq (y, s, x) =
D

eD − 1

Lis (yqx)

log (1/q)
.

Furthermore, it is not difficult to see that also an analogous of the Theorem 2.2
of [5] can be proved.



15

Acknowledgements. The author is a member of the Gruppo Nazionale
per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of
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[18] A. Erdélyi, W. Magnus, , F. Oberhettinger, F. G. Tricomi: Tables of Integral
Transforms, Vol. II, McGraw-Hill Book Company: NewYork, Toronto and London, 1954.

[19] P. Erdös: On arithmetical properties of Lambert series, J. Indiana Math. Soc., 12, 63–66,
1948.

[20] S. R. Finch, Mathematical constants, Cambridge University Press, Cambridge, 2003.

[21] J. W. L. Glaisher: On definite integrals involving elliptic functions, J. Proceedings of
the Royal Society of London (1854- 1905), 29, 331–351, 1879.

[22] S. P. Goyal, R. K. Laddha: On the generalized Riemann Zeta functions and the gen-
eralized Lambert transform, Ganita Sandesh 11, 99–108, 1997.

[23] I.S. Gradshteyn, I.M. Ryzhik: Table of Integrals, Series, and Products, Seventh edition,
Academic Press, San Diego, California, 2007.

[24] P. Levrie: Using Fourier-Legendre expansions to derive series for 1
π

and 1
π2 , Ramanujan

Jour., 22, 221–230, 2010.

[25] T. Kim: q-Riemann zeta function, International Journal of Mathematics and Mathemat-
ical Sciences 2004, 12, 599–605, 2004.

[26] E. Neuman: On lemniscate functions, Integral Transforms and Special Functions, 24, n.
3, 164–171, 2013.

[27] F.W.J. Olver et al.: NIST handbook of mathematical functions, U.S. Department of
Commerce, National Institute of Standards and Technology, Washington DC, Cambridge:
Cambridge University Press, 2010.

[28] K. Postelmans, W. Van Assche: Irrationality of ζq(1) and ζq(2), Journal of Number
Theory, 126, n. 1, 119–154, 2007.

[29] J. Todd: The lemniscate constants, Comm. ACM, 18, 14–19, 1975; corrigendum, ibid.
18, n. 8, 1975.

[30] F. J. W. Whipple: On Well-Poised Series, Generalized Hypergeometric Series having
Parameters in Pairs, each Pair with the Same Sum, Proceedings of the London Math.
Soc., 2, n. 1, 247–263, 1926.

[31] W. Zudilin: Approximations to q-logarithms and q-dilogarithms, with applications to q-
zeta values, Zap. Nauchn. Sem POMI, 322, 107–124, 2005 (in Russian); J. Math. Sei.
(N.Y.) 137, n. 2, 4673-4683, 2006.

[32] W. Zudilin: Diophantine problems for q-zeta values Mat. Zametki, 72, n. 6, 936–940,
2002 (in Russian); translation in Mat. Notes, 72, n. 5–6, 936–940, 2002.

[33] W. Zudilin: On the irrationality measure of the q-analogue of ζ(2), Math. Sb., 193, n.
8, 49–70, 2002 (in Russian); translation in Sb. Math., 193, n. 7–8, 1151–1172, 2002.


