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Introduction

We use affine derivations of generalized quadrangles in the present paper.
While affine planes have long been utilized for the investigation (and construc-
tion) of projective planes (i.e. generalized triangles), the interest in affine quad-
rangles seems to be rather new, cf. [8], [10], [9]. Generalized quadrangles may
be considered as polar spaces of rank 2. See [3] and [5] for a discussion of affine
parts of polar spaces of higher rank.

We concentrate on generalized quadrangles with 3 points per line. In fact,
such structures exist with either 15 points, 15 lines, and 45 flags (i.e. incident
point–line pairs), or 27 points, 45 lines, and 135 flags. Other small examples
of generalized quadrangles come with 4 points per line and 4 lines per point,
these have 40 points, 40 lines, and 160 flags. The structures that we treat in
the sequel are those generalized quadrangles that minimize the number of flags
(and the total number of points and lines).
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(a) (b)

Figure 1. The doily (a), and an affine derivation (b).

1 The doily

The smallest generalized quadrangle has 15 points and 15 lines such that 3
points lie on each line and 3 lines pass through each point. It is well known that
this geometry is unique (up to isomorphism), a popular graphic description is
the “doily”, see Fig. 1(a).

A non-experienced reader may explore the doily by checking that it satisfies
the following:

1 Axioms for Generalized Quadrangles.

($) Every line has at least 3 points on it, every point has at least 3 lines
through it, and not all the points are collinear.

(⊥) For each point p and each line ℓ not passing through p there are exactly
one line m through p and exactly one point q on ℓ such that q also lies
on m.

We will denote m by λ(p, ℓ) and q by π(p, ℓ).

It is easy to derive from these axioms:

• Through any two points there is at most one line (“there are no digons”).

• If three points are pairwise collinear then they are collinear (“there are no
triangles”).

• For any two points there is a point that is joined to both.

• For any two lines there is a line that meets both.
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If two points x, y are joined by a line then this (unique) line will be denoted
by xy.

2 Smallest Generalized Quadrangles. For the sake of brevity, every
generalized quadrangle with 3 points per line and 3 lines per point will be called
a smallest generalized quadrangle. Clearly the doily is one example. We want
to show, by elementary means, that every smallest generalized quadrangle is
isomorphic to the doily. (Later on, we will determine all generalized quadrangles
with 3 points per line.)

As a first step, we count the number of points and lines in a generalized
quadrangle Q: start with a line ℓ, count the set Q1(ℓ) of points on ℓ, and then
count the set Q3(ℓ) of points that are joined to points in Q1(ℓ) but do not lie
on ℓ; cf. Fig. 2. The axioms ensure that this procedure takes care of each point,
and that no point is counted twice.

Figure 2. Counting points and lines in a generalized quadrangle.

For any smallest generalized quadrangle we obtain 15 points. Dually (that
is, by interchanging the roles of points and lines) we see that every smallest
generalized quadrangle has 15 lines as well.

Later on, we will also be interested in generalized quadrangles with three
points per line, but m + 1 > 3 lines per point. We note that then there are
3 + 3 ·m · 2 = 3 · (1 + 2m) points.

2 Affine derivations

In any generalized quadrangle Q, we may pick any point p and form the
affine derivation Qp by deleting all lines through p together with all the points
on them. Points and lines in Qp will be termed affine, while the deleted ones
will be called points and lines at infinity.

An example (where p is taken to be the point in the middle of the bottom
line) is shown in Fig. 1(b), a more suggestive picture of that structure is given
in Fig. 3(a). A structure with the same number of points and lines, and also not
containing any triangles, is shown in Fig. 3(b). In fact, one can show that these
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two graphs are the only ones with eight vertices and three edges per vertex that
do not contain triangles, see Prop. 32 in the appendix. This would be one way
to prove the characterization Thm. 11 of smallest generalized quadrangles. We
choose another way that uses more information about affine derivations, and
generalizes to larger generalized quadrangles.

(a) (b)

Figure 3. A familiar picture of the affine quadrangle (a), and another graph on 8
vertices (b).

3 Definitions. Let Q be a generalized quadrangle, fix a point p in Q, and
consider two lines ℓ,m of Q that do not pass through p. In other words, we
consider lines of the affine derivation Qp. We say that ℓ and m are weakly
parallel if λ(p, ℓ) = λ(p,m). Clearly this is an equivalence relation on the set of
lines of Qp. For every point a in Qp there is exactly one line ℓa through a that
meets λ(p, ℓ): we call ℓa the weak parallel to ℓ through a.

The relation of weak parallelism is used to reconstruct the lines through p.
Aiming at the reconstruction of the points on these, we call lines ℓ, m of Qp

strongly parallel if π(p, ℓ) = π(p,m). Clearly this is another equivalence relation,
its classes correspond to the points on lines through p (but different from p). In
particular, strongly parallel lines are also weakly parallel.

4 Remarks. The notions of weak and strong parallelism are taken from [9].
In [10] these relations appear in the following way: for two lines g, h in an affine
quadrangle the relation g ⋄ h holds if, and only if, the lines have distance 0 or 6
in the incidence graph. This is the relation of strong parallelism. On the set of
equivalence classes (i.e. the points at infinity) a second relation is established,
this corresponds to the coarser equivalence relation of weak parallelism. The
classes of the latter relation describe lines at infinity.

5 Lemma. Let ℓ,m be two lines of Qp that are weakly parallel, and assume
that in Qp there exists a line that meets both. Then we have
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(#) for every affine point a on ℓ the point π(a,m) belongs to Qp.

Conversely, if two affine lines satisfy (#) then they are weakly parallel.

Proof. Let k be the line in Qp that meets both ℓ and m. Non-existence of
triangles then yields that ℓ and m have no point in common. Axiom (⊥) says
that λ(a,m) and π(a,m) exist in Q. It just remains to check that π(a,m) is
an affine point: this follows from the fact that the unique line through π(p, ℓ)
meeting m does not pass through an affine point, but through π(p,m).

Conversely, assume that ℓ and m satisfy (#), and consider the point q :=
π(p,m). If f := π(q, ℓ) were an affine point, the point π(f,m) = q would be
affine, too. Thus f , q and p are pairwise collinear points, and nonexistence of
triangles implies that they lie on a common line. This line is λ(p, ℓ) = λ(p,m),
and the lines ℓ and m are weakly parallel. QED

3 Extending embeddings

6 Definition. Let X and Y be point–line geometries. A full embedding of
X into Y is an injective mapping of points such that for each line ℓ of X the
set of all points of ℓ is mapped onto the set of all points of some line in Y .

7 Theorem. Let Q and R be generalized quadrangles, let a be a point of Q,
and let b be a point of R. Then every full embedding of Qa into Rb extends to a
full embedding of Q into R.

Proof. Two lines of Qa are strongly parallel if, and only if, no line in Qa

meets both. We claim that any full embedding η maps strongly parallel pairs of
lines of Qa to strongly parallel pairs in Rb. Assume, to the contrary, that ℓ andm
are two strongly parallel lines in Qa such that some line meets both the images
under η, and let u on ℓ and v on m be the pre-images of the intersection points
(here we use that η is a full embedding). Pick any line k through u different
from ℓ. Then π(v, k) is different from u, and the images of u, v, and π(v, k) form
a triangle in Rb.

This observation shows that we may extend, without ambiguities, the em-
bedding η to the set of all points of Q by stipulating that a is mapped to b, and
that the image of any other point x at infinity is the point where the images of
any two affine lines through x meet.

It remains to discuss lines at infinity. Using Lemma 5 and the fact that η is
a full embedding we see that images of weakly parallel lines are weakly parallel,
again. Thus we have to map a line at infinity to the line joining the image of
any of its points with b.

It is straightforward to see that this extension of η is a full embedding of Q
into R. QED
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8 Corollary. Every isomorphism between affine derivations of quadrangles
extends to an isomorphism of generalized quadrangles.

The condition that the embedding is full is indispensable in Thm. 7:

9 Example. For every commutative field K the edge graph of the cube
admits an embedding into any affine derivation of the symplectic quadrangle
W(K). However, the doily is embeddable in W(K) only ifK has characteristic 2.

4 Cubes and hypercubes

In order to determine all affine quadrangles with two points per line, we
construct substructures (consisting of a subset S of the point set, together with
all lines that join points of S) that are built up from cubes:

10 Lemma. Let Q be a generalized quadrangle with three points per line,
and let p be a point of Q. Then the affine derivation Qp contains a substructure
isomorphic to the edge graph of the cube. Moreover, every finite part of the point
set of Qp is contained in a disjoint union of point sets of such substructures.

Proof. Pick an affine point a and three different lines through a. The
(unique) affine points on these lines apart from a will be denoted by b, c, and
d, respectively. We draw the line through b that is weakly parallel to ac, and
denote its second affine point by c′. Analogously, we define d′ as the second
affine point on the line through b that is weakly parallel to ad. According to
Lemma 5, there is a line through c that meets bc′ in an affine point: this point
has to be c′. In the same way, we see that d and d′ are collinear. Now draw weak
parallels to ad through c and c′, and note that the second affine points x and
x′ on these lines are collinear with d and d′, respectively. A final application of
Lemma 5 shows that these last two points are collinear as well.

We remark that parallel edges in the graph correspond to weakly parallel
lines in the affine derivation, cf. Lemma 5. Thus we obtain the same cube if we
start from any of its points, and draw weak parallels to the three lines that we
have chosen. Moreover, opposite points in such a cube are not collinear: to fix
notation, assume that c and d′ belong to a line m, then m is weakly parallel
to ad by Lemma 5. Now cx and m are different weak parallels to ad through c,
contradicting Def. 3.

Now assume that there exists an affine point w outside { a, b, c, d, c′, d′, x, x′ }.
We construct the cube containing w, using weak parallels to the edges of the
previous one. Then the cubes have no points in common. Repeating this proce-
dure for any point not covered by the cubes that have been constructed so far,
we obtain the last assertion of the lemma. QED

Affine derivations of smallest generalized quadrangles have just eight points,
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and Lemma 10 yields:

11 Theorem. Every affine derivation of a smallest generalized quadrangle
is isomorphic to the graph of the cube.

12 Example. For the smallest examples, we describe the reconstruction
procedure (Cor. 8) explicitly. Let Q be a smallest generalized quadrangle, and
let p be one of its points. The affine derivationQp is isomorphic to the edge graph
of the cube, see Thm. 11. We can see the missing points and lines inside Qp, as
follows:

a. Points outside Qp but different from p: through each of these points there are
two lines that do not pass through p, and leave a trace in Qp. There cannot
be a line in Qp that meets both of the traces because there are no triangles
in Q. This means that the two traces in the cube form a set of two diagonally
opposed parallel edges. Conversely, every such set stems from a point outside
Qp but different from p.

b. Lines outside Qp: these are the lines through p. Each of these lines has (apart
from p) two points corresponding to sets of diagonally opposed parallel edges.
Nonexistence of triangles implies that the two sets are parallel as well. Thus
the three lines outside Qp correspond to the three classes of parallel edges in
the cube.

c. The point p is just the single point that belongs to each of the three lines
reconstructed above, but to no other line.

The reconstruction process that we have just described may remind the reader
of the general process of “projective completion” for affine planes. In fact, it is
possible to describe affine derivations of arbitrary generalized quadrangles (not
only smallest ones) axiomatically, and to generalize the indicated construction,
see [10]. We are mainly interested in extensions of embeddings, cf. Thm. 7.

What we have achieved here, in an elementary way, is the following:

13 Theorem. Let Q be a smallest generalized quadrangle, and let p be a
point of Q. Then Qp is isomorphic to the edge graph of the cube, and Q is
isomorphic to the following structure:

• Points are the vertices of the cube, plus the “points at infinity” obtained
as sets of diagonally opposed parallel edges, plus one extra point.

• Lines are the edges (each augmented by the point at infinity that it belongs
to) plus the three classes of parallel edges (each augmented by the extra
point).

In particular, every smallest generalized quadrangle is isomorphic to the doily.
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The dual of a generalized quadrangle is obtained by interchanging the roles
of points and lines. Since the axioms treat points and lines in a symmetric
way, the dual is a generalized quadrangle, again. Only in very special cases,
however, a generalized quadrangle is self-dual, i.e., isomorphic to its own dual.
See [11] for a discussion (involving affine quadrangles as well) of dualities in a
class of generalized quadrangles that includes the smallest ones (they occur as
symplectic quadrangle W(2), cf. Construction 25 below).

Because the dual of a smallest generalized quadrangle is another smallest
generalized quadrangle, we have:

14 Theorem. Every smallest generalized quadrangle is self-dual.

Figure 4. The hypercube, with added diagonals.

15 Theorem. Let Q be a generalized quadrangle with three points per line
and more than three lines per point. Then every affine derivation is isomorphic
to the edge graph of a hypercube of dimension 4, with eight extra edges joining
pairs of opposite vertices, see Fig. 4.

Proof. We know from Lemma 10 that every finite subset of the point set
of the affine derivation is contained in a disjoint union of cubes. It remains to
show that there are at most two cubes, and to determine the lines that join the
cubes.

We resume the notation introduced in the proof of Lemma 10 for a first
cube. Starting with any affine point w /∈ { a, b, c, d, c′, d′, x, x′ }, we construct a
second cube. By our construction, the edges of the second cube are induced by
weak parallels to the lines ℓ := ab, ac, and ad. Four parallel edges of any of
our cubes are induced by lines belonging to a single weak parallel class, and
thus to at most two strong parallel classes because the corresponding points at
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infinity are collinear. On the other hand, parallel edges on the same side of a
cube cannot be strongly parallel because there are no triangles. Thus the four
parallel edges form two strong parallel classes, consisting of diagonally opposed
edges. (cf. the situation described in Example 12.)

a

b

c

d

x

c′

d′

x′

â

b̂

ĉ

d̂

x̂

ĉ′
d̂′

x̂′

Figure 5. Labeling of the hypercube.

Now choose an edge ℓ̂ of the second cube that is weakly but not strongly
parallel to ℓ. From Lemma 5 we know that â := π(a, ℓ̂) and b̂ := π(b, ℓ̂) are
affine points. Using Lemma 5 again, we see that the two cubes together with
the weak parallels to λ(a, ℓ̂) through the vertices form a hypercube. We label the
vertices of the second cube with the elements of { â, b̂, ĉ, d̂, ĉ′, d̂′, x̂, x̂′ } in such
a way that uû and λ(a, ℓ̂) are weakly parallel, see Fig. 5. Now x̂x̂′ is weakly,
but not strongly parallel to xx′ and to ℓ, and a is joined to one of the points
x̂, x̂′. Because ac and âĉ are weakly but not strongly parallel, the lines ac and
d̂x̂ are strongly parallel. This implies π(a, x̂x̂′) = x̂′. Thus λ(a, x̂x̂′) is one of
the diagonals of the hypercube. The weak parallels to λ(a, x̂x̂′) form the eight
diagonals of the hypercube.

Finally, we note that the edges through opposite vertices in any one of the
cubes form three strongly parallel pairs, while the weak parallel classes are those
represented by ab, ac, and ad, respectively. There are 23 = 8 choices of three
strong parallel classes such that the corresponding weak parallel classes are those
that occur with the edges of our two cubes. Four of these choices are needed for
pairs of opposite vertices of the first cube. Avoiding triangles, we have to use
the remaining four choices in the second cube. This shows that a third cube is
impossible: all the possible choices are ruled out by the first two cubes. QED

We obtain a new proof for a known result (cf. [2, Thm. 5.3]):
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16 Corollary. Every generalized quadrangle with three points per line either
has three or five lines per point. In particular, there are no infinite generalized
quadrangles with three points per line.

In the light of Thm. 15 and Cor. 8 we obtain:

17 Theorem. Any two generalized quadrangles with three points per line
and five lines per point are isomorphic.

5 Automorphisms of the doily

An automorphism of the doily is a permutation of the set of points such that
lines are mapped to lines. The collection A of all automorphisms forms a group
(with respect to composition) called the automorphism group of the doily.

Some of the automorphisms are easy to see: for instance a rotation by 72
degrees maps Fig. 1(a) onto itself. We also see five reflections. However, there
are more automorphisms of the doily than those that stem from symmetries
of the pentagon. In fact, affine derivations at different points of the doily are
isomorphic to each other by Thm. 11, and Cor. 8 yields:

18 Corollary. The group A acts transitively on the set of points of the doily,
that is: for any two points p, q there is at least one automorphism mapping p
to q.

Using the fact (Thm. 14) that the doily is isomorphic to its dual, we see:

19 Corollary. The group A acts transitively on the set of lines of the doily.

The following arguments require some background from elementary group
theory. We write Symn for the group of all permutations of a set with n elements.

20 Theorem. The automorphism group of the edge graph of the cube has
2 · 4! = 24 · 3 = 48 elements. In fact, this group is isomorphic to a direct product
of Sym4 with a (cyclic) group of order 2.

Proof. Let W denote the automorphism group in question. The four diag-
onals are characterized in the edge graph by the fact that they join vertices at
distance 3. The action of W on the four diagonals yields a homomorphism from
W to Sym4. The group R of rotations of the cube induces a subgroup of W that
acts faithfully on the set of diagonals, and transitively on the set of faces. The
stabilizer of a face in R is generated by a rotation of order 4. Thus R has 24
elements, and is mapped bijectively onto Sym4.

It remains to determine the kernel K of the action on the set of diagonals.
Clearly, the reflection ρ at the barycenter of the cube belongs to this kernel. If
an element of K fixes a vertex, it is easy to see that it fixes all the vertices.
Thus K consists of ρ and the identity.
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Now that we know thatW = RK consists of euclidian symmetries, we obtain
that R is a normal subgroup, and W is the direct product of the two normal
subgroups R and K. QED

The order formula is well known for the group of euclidian symmetries of
the cube, cf. [4, §3.5] for a collection of proofs for the fact that the group of
rotations has order 24 (this is the factor isomorphic to Sym4, as one sees from
the action on the 4 diagonals). See also [1, 12.5.4.2].

21 Proposition. The automorphism group of the doily has order 6! = 24 ·
32 · 5 = 720.

Proof. Let p be a point of the doily, and let Ap be its stabilizer (that is,
the set of all elements of A that fix p). Clearly, every element of Ap induces an
automorphism of the affine derivation at p, and thus an automorphism of the
edge graph of the cube, cf. Thm. 11. Conversely, every automorphism of the
affine derivation extends to a unique automorphism of the doily, see Thm. 13.
This means that Ap is isomorphic to the automorphism group of the cube, and
has 2 · 4! elements by Thm. 20. Now transitivity of A on the set of 15 points
shows that A has 15 · 2 · 4! = 6! elements. QED

6 Ovoids, and the automorphism group of the doily

Inspired by the observation that Sym6 and A have the same number of
elements, we search for a set of 6 geometrically defined objects in the doily.
This will imply that there is an isomorphism from A onto Sym6. The next
section is devoted to a proof of this fact. A different approach will be briefly
described in Construction 27.

22 Definition. An ovoid in the doily is a set of 5 points such that no two
of them are joined by a line.

See Fig. 6 for two examples of ovoids in the doily, marked by the dark points.
Applying automorphisms (namely, rotations of the pentagon), we obtain five
different ovoids from the one shown in Fig. 6(b), while the ovoid in Fig. 6(a) is
invariant under these automorphisms (it is, however, moved by automorphisms
that move any of its points to a point outside the ovoid).

We want to show that the six ovoids that we have found are in fact all the
ovoids in the doily: this will be the set of six objects that we search for. We use
affine derivations again:

Let O be an ovoid in the doily, and let p be a point of O. By the definition
of ovoids, every point of O r { p } belongs to the affine derivation Qp. This
derivation is (isomorphic to) the edge graph of a cube, and we search for 4
vertices that are pairwise not joined by edges. Picking any vertex of the cube,
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(a) (b)

Figure 6. Two ovoids in the doily.

we have to avoid the three neighboring vertices. The opposite vertex may not
be chosen because it would prohibit any other vertex. Thus O is (the vertex
set of) one of the two tetrahedra inscribed in the cube in such a way that the
edges are diagonals on the faces of the cube. As the automorphism group A acts
transitively on the points of the doily, we have thus proved:

23 Theorem. Through every point of the doily there are exactly two ovoids.

A simple counting argument shows that we have a total of 15·2
5 = 6 ovoids.

In particular, the ovoids in Fig. 6 together with the four images of Fig. 6(b)
under rotation cover all cases, and the ovoid from Fig. 6(a) may be moved to
the one from Fig. 6(b). Thus the group A acts transitively on the set of ovoids.

Fig. 6 shows that there are two ovoids that share a single point. Transitivity
of A on the set of points now yields that every point of the doily is the inter-
section of two suitable ovoids. These arguments show that the group A acts
faithfully on the set of ovoids: if an automorphism fixes each ovoid, it fixes each
point of the doily, and is trivial. The faithful action on a set of size 6 yields
an injective group homomorphism from A to Sym6. Because A and Sym6 have
equal size (see Prop. 21), this homomorphism is an isomorphism, and we have
proved:

24 Theorem. The automorphism group of the doily is isomorphic to Sym6.

7 Constructions

We indicate some constructions of smallest generalized quadrangles. Recall
from Thm. 13 that all these quadrangles are mutually isomorphic.

25 Construction (Symplectic quadrangles over GF(2)). Let V be a vector
space of dimension 4 over the field GF(2) with 2 elements, and let 〈·|·〉 be a
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Figure 7. W(2) in PG(3, 2) (left), and an affine derivation (right).

non-degenerate alternating bilinear form on V (such a form is, up to a change
of basis, unique). We write tn for the set of n-dimensional subspaces of V on
which the form vanishes. Using t1 as set of points and t2 as set of lines (and the
natural relation of incidence) we obtain a generalized quadrangle, known as the
symplectic quadrangle W(2) over GF(2). See [13, 2.3.17].

This construction embeds the smallest quadrangle in the 3-dimensional pro-
jective space PG(3, 2) over GF(2). Fig. 7 is inspired by [6, p. 44 f].

26 Construction (Orthogonal quadrangles over GF(2)). We proceed as
before but start with a non-degenerate quadratic form on a vector space of
dimension 5 over GF(2). The sets of totally isotropic subspaces of dimensions 1
and 2 form the orthogonal quadrangle Q(4, 2) which is a smallest generalized
quadrangle. See [13, 2.3.12].

An explicit example1 of such a quadratic form is f(x0, x1, x2, x3, x4) = x0x4+
x1x3 + x2

2, cf. [13, 2.3.4]. A second example is given by g(x0, x1, x2, x3, x4) =
x2

0 + x0x1 + x2
1 + x2x3 + x2

4, a third one by h(x0, x1, x2, x3, x4) = x2
0 + x0x1 +

x2
1 +x2x3 +x4x0 +x4x1 +x4x2 +x4x3 +x2

4. The latter two forms are restrictions
of q(x0, x1, x2, x3, x4, x5) = x2

0 + x0x1 + x2
1 + x2x3 + x4x5 to the hyperplanes

defined by the conditions x4 = x5 and x0 + x1 + x2 + x3 + x4 = x5.

This gives rise to two embeddings of the doily into the orthogonal quadrangle
Q(5, 2) such that the two subquadrangles share the point GF(2)(1, 1, 1, 1, 0, 0).
The traces of the two doilies in the affine derivation form a pair of cubes, as in
Lemma 10.

27 Construction (Involutions in the symmetric group). Let J be the set of
all transpositions in Sym6, and let F be the set of involutions in Sym6 without
fixed points (that is, products of three disjoint transpositions). Elements of J

1Note that the form d(x0, x1, x2, x3, x4) = x2
0 + x2

1 + x2
2 + x2

3 + x2
4 is a degenerate one over

GF(2): the associated bilinear form vanishes.
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are called points, elements of F are called lines, and we say that a point and
a line are incident if they commute in the group Sym6. This gives a smallest
generalized quadrangle (J, F ). It is quite obvious that Sym6 acts (via conjuga-
tion) by automorphisms on (J, F ). This model is particularly interesting since
it exhibits an automorphism of Sym6 that is not inner: the automorphism is
induced by a duality (cf. Thm. 14) of the quadrangle, acting via conjugation on
the full automorphism group Sym6, cf. Thm. 24. See [13, 1.4.2].

More constructions of smallest generalized quadrangles (and related struc-
tures) may be found in [7]. See also [12] where the doily is treated as a geometry
for the group Alt5.

A graphical description of the generalized quadrangle with 3 points per line
and 5 lines per point is given in [6, 4.4].

8 Automorphisms of hypercubes and quadrangles

Let Q be a generalized quadrangle with 3 points per line and 5 lines per
point. Then each affine derivation is isomorphic to a hypercube, with added
diagonals, see Thm. 15. Applying Cor. 8, we obtain:

28 Theorem. The automorphism group Aut (Q) of Q acts transitively on
the points of Q, and the stabilizer of any point is isomorphic to the automor-
phism group of the hypercube with added diagonals.

In the proof of Lemma 10 we started with an arbitrary affine point a, and
any choice of three lines through a. The hypercube in the proof of Thm. 15 was
constructed from the resulting pair of cubes (with strongly parallel lines). This
shows that the group of automorphisms of the affine derivation acts transitively
on the set of affine points, and the stabilizer of the point a acts at least threefold
transitively on the set of lines through a. On the other hand, a suitable euclidian
reflection shows that the stabilizer of a contains an element that induces a
transposition on the line pencil. Therefore, the stabilizer of a induces on the
pencil a subgroup of Sym5 with order at least 5 · 4 · 3 = 60, and not contained
in the alternating group: this has to be Sym5 itself. If an automorphism of the
affine quadrangle fixes a point and each line through that point it fixes all the
other points as well.

A representation of the hypercube in the affine space over the field with 2
elements shows that there is a sharply transitive, elementary abelian group of
automorphisms of the affine derivation of Q.

We have thus proved:

29 Theorem. The stabilizer of an affine point in the automorphism group
of any affine derivation of Q is isomorphic to Sym5. The full group of automor-
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phisms of such a derivation is a semidirect product of Sym5 with an elementary
abelian group of order 16.

30 Corollary. Aut (Q) has order 27 · 120 · 16 = 27 · 34 · 5.
31 Remarks. See [13, 4.6.3] for the determination of the group of auto-

morphisms of Q(5, 2) (in fact, the automorphism group for the dual H(3, 22)
of Q(5, 2) is determined there). The group Aut (Q(5, 2)) contains a simple nor-
mal subgroup (isomorphic to PSU(4, 2) ∼= PΩ−(6, 2) ∼= PΩ(5, 3)) of order 26 ·
34 · 5.

The group of euclidian isometries of a hypercube has order 27 · 3: it is a
semidirect product of Sym4 with a (normal) elementary abelian subgroup of
order 24, cf. [1, 12.5.4.2]. This group occurs as the stabilizer of a weak parallel
class (namely, the set of diagonals of the hypercube) in the affine derivation.

Appendix: Graphs

For any smallest generalized quadrangle (with 3 points per line and 3 lines
per point) each affine derivation has 2 points per line and 3 lines per point. Thus
we may consider the derivation as a graph, where every vertex belongs to three
edges. Because we have deleted 1 + 3 · 2 = 7 of the 15 points, there remain 8
vertices in the graph. Moreover, our graph does not contain triangles (because
the generalized quadrangle does not contain quadrangles).

We give a more general, purely graph-theoretic characterization of the affine
derivation of the doily (namely, the graph of the cube):

(a) (b) (c) (d)

Figure 8. Constructing a graph: the wrong way (b), and the right way (d).

32 Proposition. Let Γ be a graph with eight vertices such that every vertex
belongs to exactly three edges. If Γ does not contain triangles then Γ is isomor-
phic to one of the graphs shown in Fig. 3.

Proof. Assume first that there is a vertex q such that every other vertex has
distance at most 2 from q in the graph Γ. We have drawn a first approximation
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of this situation in Fig. 8(a). However, there are too many vertices: we have
to identify some of them. Avoiding triangles, we may only identify some of the
endpoints of Γ. If three vertices should be identified, these three would lie on
three different branches starting from q, and we obtain Fig. 8(b): every vertex
apart from the endpoints already has three edges, and introducing the missing
edges for the endpoints we create a triangle. Therefore, we have to identify
two pairs of endpoints, obtaining Fig. 8(c). Avoiding triangles, the only way of
introducing the missing edges leads to Fig. 8(d): this is a graph isomorphic to
Fig. 3(b).

Now assume that there are vertices a and z at distance 3 in Γ. We build our
graph from Fig. 9(a) where the points at distance 1 from a or z are drawn. Every
vertex v at distance 1 from a is joined to two vertices at distance 1 from z (we
have to avoid triangles!), and there is exactly one vertex v′ at distance 1 from z
such that { v, v′ } is not an edge. We may arrange the vertices at distance 1
from z in such a way that Fig. 9(b) is obtained: this is the graph of the cube,
Fig. 3(a). QED

(a) (b)

Figure 9. Constructing the graph of the cube.
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