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Abstract. Let G : D ⊂ Rn → R be a function. Any parametrized curve α in D determines
the composition gα = G ◦ α. If α belongs to a family of curves, the family {gα} satisfies some
conditions. Our goal is to find the conditions in which the families {α}, {gα} determine the
function G.

Section 1 emphasizes the origin of the problem. Section 2 defines and studies the notion
of the Γ-function. Section 3 presents the construction of a function using a Γ-function.
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1 The origin of the problem

In the theory of nonholonomic optimization [6] it appears the following types
of problems. Let D be an open set of Rn and ω =

∑n
i=1 ωidx

i be a C0 Pfaff form
on D. For every parametrized C1 curve α : I → D, we consider gα : I → R,
gα(t) =

∫ t
t0
〈ω(α(u)), α′(u)〉du + cα (a primitive of ω along α). In this way we

obtain a family of functions {gα}, called system of ω-primitives which depends
on the family of constants {cα}. Question: is it possible to choose the family
{cα} such that gα◦ϕ = gα ◦ ϕ for any α and for any diffeomorphism ϕ?.

If ω = dG, with G : D → R a C1 function, the answer is positive, because
we can consider gα = G ◦α. In this way, it appears a more general problem. Let
us suppose that for any parametrized curve α : I → D, a function gα : I → R
is given. What conditions we must impose to the family {gα} in order to exist
a unique function G : D → R, having certain properties (like continuity, with
partial derivatives, class C1) and such that G ◦ α = gα?

Recall that two Ck parametrized curves α : I → D and β : J → D are said to
be equivalent, if there exists a Ck diffeomorphism ϕ : J → I such that β = α◦ϕ.
We say that ϕ is a change of parameter on α. An equivalence class α̃ of a given
Ck parametrized curve α is called curve. Then α is called a representative of α̃.

Let I = [a, b] be a closed interval in R. A continuous mapping α : I → D is
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said to be a piecewise C1 parametrized curve if there exists a division a = t0 <
t1 < · · · < tp = b of the interval I so that restriction of α to each subinterval
[ti, ti+1], i = 0, p− 1 is a C1 function. If I is an arbitrary interval, the previous
definition is extended in an obvious way.

2 Γ-functions

We denote by Γ0(D) the family of all the C0 parametrized curves in D
and by Γ1(D) the family of all the piecewise C1 parametrized curves in D. Let
G : D ⊂ Rn → R be a C1 function. For each α ∈ Γ1(D), we consider the
function gα = G ◦ α, which is an element of Γ1(R). In this way we produce a
family {gα} which has properties of the following type:

(a) For any α ∈ Γ1(D), the functions α, gα have the same domain of definition.
Also, for a parametrized piecewise C1 curve α, the following statements
are true: (1) the function gα is a piecewise C1 function; (2) if α is a C1

function in a neighborhood of a point t0, then gα is a C1 function in the
same neighborhood.

(b) If α and β = α ◦ ϕ are equivalent parametrized curves, then gβ = gα ◦ ϕ.

(c) If α ∈ Γ1(D), α : I → D, and J is a subinterval of I, then gα|J = gα|J .

(d) For any x ∈ Rn and each i = 1, n, we define the parametrized axis αi
x(t) =

x + tei, ∀t ∈ (−εi, εi), where ei = (0, . . . , 1, . . . 0). Obviously, g′
αi

x
(0) =

∂G
∂xi (x). In this way, it follows that the function hi : D → R by hi(x) = g′

αi
x
(0)

is continuous.

In the Section 3, we shall show that previous properties are sufficient to recover
the function G from the family {gα}.

Let us consider g : Γ1(D) → Γk(R), k = 0, 1 an arbitrary mapping. For each
α ∈ Γ1(D) we denote by gα the element g(α) ∈ Γk(R). For this kind of functions
we can consider some axioms.

(A0) If α ∈ Γ1(D), then dom(α) = dom(gα). In addition, if k = 1 and if α is a
C1 function in a neighborhood of a point t0 ∈ dom(α), then gα is also a
C1 function in the same neighborhood.

(A1) The axiom (A0) is satisfied. Moreover, if α ∈ Γ1(D) and ϕ is a change of
parameter on α, then gα◦ϕ = gα ◦ ϕ.

(A2) The axiom (A0) is satisfied. Moreover, if α ∈ Γ1(D) with dom(α) = I,
then gα|J = gα|J for every subinterval J in I.
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In the case k = 1 we can consider one more axiom, as follows. Let g :
Γ1(D) → Γ1(R) be a function which fulfils (A2). Then, for each i = 1, n
we consider hi : D → R by hi(x) = g′

αi
x
(0), where αi

x(t) = x + tei, ∀t ∈
(−εi, εi), and ei = (0, . . . , 1, . . . 0). Taking into account the axiom (A2), it
results that the function gαi

x
does not depend on εi in a neighborhood of

0, so the number hi(x) is well defined.

(A3) The axiom (A2) is satisfied and, in addition, for every i = 1, n and for
every α ∈ Γ1(D), it results that hi ◦ α ∈ Γ0(R).

1 Example. For each α ∈ Γ1(D) we choose x0 ∈ Imα and t0 ∈ dom(α)
such as α(t0) = x0. We can easily see that the mapping g : Γ1(D) → Γ1(R)
defined by gα(t) =

∫ t
t0
||α′(u)||du satisfies (A0), but does not satisfy (A1) and

(A2).

2 Example. Let G : D → R be a Ck function, where k = 0, 1. Now we
consider g : Γ1(D) → Γk(R) defined by gα = G ◦ α. It is obvious that g fulfills
(A1) and (A2).

3 Example. Let us consider g : Γ1(D) → Γ1(R) defined by gα(t) = t,
t ∈ dom(α). Obviously, g satisfies (A2) and (A3), but does not satisfy (A1).

4 Example. Let us consider g : Γ1(D) → Γk(R), k = 0, 1 a function defined
as follows gα(t) = 0 ∀t ∈ dom(α), if Imα is included in straight line and
gα(t) = 1, ∀t ∈ dom(α), otherwise. Obviously, g satisfies (A1), but does not
satisfy (A2).

From the previous examples it follows that (A1) and (A2) are independent
axioms and no one is equivalent to (A0). Also, in the example of Section 3, we
shall prove that (A3) is independent with respect to (A1) and (A2).

5 Definition. A mapping g : Γ1(D) → Γk(R), k = 0, 1 which satisfies the
axiom (A0) is called Γ-function.

6 Remark. Let g : Γ1(D) → Γk(R), k = 0, 1 be a Γ- function which satisfies
the axiom (A1). If α and β = α ◦ ϕ are two equivalent parametrized curves of
Γ1(D) and t0 = ϕ(u0), then gα(t0) = gβ(u0).

7 Proposition. Let g : Γ1(D) → Γk(R), k = 0, 1 be a Γ-function which
satisfies the axiom (A1) and (A2). Let α1 : I1 → D and α2 : I2 → D be
two parametrized curves of Γ1(D) such there exist t1 ∈ I1 and t2 ∈ I2 with
α1(t1) = α2(t2). Then gα1(t1) = gα2(t2).

Proof. Let us consider β1 = α1◦ϕ1 : J1 → D and β2 = α2◦ϕ2 : J2 → D two
parametrized curves of Γ1(D) which are equivalent to α1, α2 respectively, such as
there exist the real numbers a < b < c satisfying the following conditions: K1 =
[a, b] ⊂ J1, K2 = [b, c] ⊂ J2, ϕ1(b) = t1 and ϕ2(b) = t2. By the previous remark
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it follows gα1(t1) = gβ1(b) and gα2(t2) = gβ2(b). Consider now γ : K1 ∪K2 → D
defined by γ|K1 = β1|K1 and γ|K2 = β2|K2. By using the axiom (A2), we
obtain: gγ |K1 = gγ|K1

= gβ1|K1
= gβ1 |K1 and gγ |K2 = gγ|K2

= gβ2|K2
= gβ2 |K2.

Consequently, we have gγ(b) = gβ1(b) = gβ2(b), i.e., gα1(t1) = gα2(t2). QED

8 Corollary. Let g : Γ1(D) → Γk(R), k = 0, 1, be a Γ-function which
satisfies the axioms (A1) and (A2). Then for any α ∈ Γ1(D) and t1, t2 ∈ dom(α)
with α(t1) = α(t2) we have gα(t1) = gα(t2).

3 Construction of a function using a Γ-function

In what follows we shall use the next result ( [1], [2], [5]):

9 Theorem. Let (xn) be a sequence of distinct points of Rp which con-
verges to the limit a ∈ Rp. Then, there exist a subsequence (xnk

), a simple C1

parametrized curve α, regular at the point a, and a sequence of real numbers
tk → 0 such that α(tk) = xnk

and α(t0) = a.

10 Lemma. Let G : D → R be a function.

(a) Let us suppose that for every simple parametrized curve α of Γ1(D) the
function G ◦ α is continuous. Then, G is a continuous function.

(b) Let us suppose that for every simple C1 parametrized curve α ∈ Γ1(D) the
function G ◦ α is a C1 function. Then G is a continuous function that has
first order partial derivatives.

Proof. (a) Let (xn) be a sequence of D such that xn → a ∈ D. By ab-
surdum, we suppose that G(xn) 9 G(a), i.e., there exists a subsequence (yn)
of (xn) such as G(yn) → l with l 6= G(a). Applying the previous Theorem we
obtain a subsequence (zn) of (yn), a simple parametrized curve α ∈ Γ1(D) and
a sequence (tn) of R such that, zn → a, α(tn) = zn, α(0) = a and tn → 0. Due
to continuity of the function G ◦ α we obtain the contradiction G(zn) → G(a).

(b) Taking as α the natural parametrizations of each coordinate axis, it
follows that G has first order partial derivatives. QED

11 Theorem. (1) Let us assume that the Γ-function g : Γ1(D) → Γ0(R)
satisfies the axioms (A1) and (A2). Then, there exists a unique continuous func-
tion G : D → R such that for every α ∈ Γ1(D) we have G ◦ α = gα.

(2) Conversely, for any continuous function G : D → R there exists a unique
Γ-function g : Γ1(D) → Γ0(R) which satisfies the axioms (A1) and (A2) and
such that G ◦ α = gα for any α ∈ Γ1(D).

Proof. Let g : Γ1(D) → Γ0(R) be a Γ-function which fulfills the axioms
(A1) and (A2). We define a function G : D → R as follows: if x ∈ D and
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α ∈ Γ1(D) with α(t) = x, then G(x) = gα(t). By using the Proposition 7
and the Corollary 8, it follows that G is well defined and unique. It is clear that
G◦α = gα for any α ∈ Γ1(D). Applying the statement (a) from previous Lemma,
it follows that G is a continuous function. The converse is obvious. QED

12 Remark. The proof works also in case that the functions gα are not
continuous. Obviously, in this case, the function G does not result as a continu-
ous function. Hence, the conditions (A1) and (A2) with gα arbitrary functions,
are necessary and sufficient conditions for the existence and uniqueness of a
function G : D → R with G ◦ α = gα for any α ∈ Γ1(D).

13 Theorem. (1) Let g : Γ1(D) → Γ1(R) be a Γ-function which satisfies
the axioms (A1) and (A2). Then, there exits a unique continuous function G :
D → R, having first order partial derivatives such that G ◦ α = gα for any
α ∈ Γ1(D).

(2) Let G : D → R be a function such that for any simple C1 parametrized
curve α ∈ Γ1(D) it results that G ◦ α is a C1 function. Then, there exists a
unique Γ-function g : Γ1(D) → Γ1(R) which satisfies the axioms (A1) and (A2)
and such that gα = G ◦ α for any α ∈ Γ1(D).

The proof is similar with the previous, excepting that we use the statement
(b) in Lemma 10.

14 Theorem. (1) Let g : Γ1(D) → Γ1(R) a Γ-function which satisfies the
axioms (A1) and (A3) (hence also (A2)). Then, there exists a unique C1 function
G : D → R such that G ◦ α = gα for any α ∈ Γ1.

(2) Conversely, for any C1 function G : D → R there exists a unique Γ-
function g : Γ1(D) → Γ1(R) which satisfies the axioms (A1) and (A3) and such
that gα = G ◦ α for any α ∈ Γ1(D).

Proof. Let g : Γ1(D) → Γ1(R) be a mapping which satisfies the axioms
(A1) and (A3). From the previous Theorem it follows the existence of a con-
tinuous function G : D → R, having first order partial derivatives such that
G ◦ α = gα for any α ∈ Γ1(D). It follows that ∂G

∂xi = hi, i = 1, n, where hi are
the functions defined in the axiom (A3). By using this axiom, it results that
hi ◦α ∈ Γ0(R) for any α ∈ Γ1(D). From the statement (a) in Lemma 10 we ob-
tain that hi is a continuous function for any i = 1, n, namely G is a C1 function.
The converse is obvious. QED

15 Example. We shall show that there exists a Γ-function g : Γ1(D) →
Γ1(R) which satisfies the axioms (A1) and (A2) but does not satisfy (A3).

For that, we consider the function G : R2 → R,

G(x, y) =





x2y

x2 + y2
, for (x, y) 6= (0, 0)

0, for (x, y) = (0, 0)
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Let us show thatG fulfills the conditions in Theorem 13. To this aim, we consider
a simple parametrized curve α ∈ Γ1(D) such that α(0) = (0, 0). We must prove
that G ◦ α is a C1 function. Since α is a simple curve it follows that

(G ◦ α)′(t) =
x2(x2 − y2)y′ + 2xy3x′

(x2 + y2)2
(t)

for any t 6= 0.

First, let us assume that x′(0) 6= 0. Since

(G ◦ α)′(t) =
(1 − (y/x)2)y′ + 2(y/x)3x′

[1 + (y/x)2]2
(t)

for t 6= 0, we can apply L’Hospital rule for y(t)
x(t) , obtaining the existence and

finiteness of the limt→0G(α(t))′. Assume now that x′(0) = y′(0) = 0. Since

| (G ◦ α)′ (t) | ≤
(
|y′| + 2|x′|

)
(t),

for t 6= 0, it t follows that limt→0(G◦α)′(t) = 0. Finally, we can easily see that the
first order partial derivatives of G are not continuous. Thus, by the Theorem 13,
the Γ-function g : Γ1(D) → Γ1(R), gα = G ◦α, will satisfy the axioms (A1) and
(A2). But g does not satisfy (A3). Indeed, if g satisfied (A3), then the Theorem 14
would show that G is a C1 function, which is a contradiction.

Let Γ1
s(D) the family of all the simple parametrized curves α ∈ Γ1(D). It

is obvious that the Theorems 11, 13 and 14 are also true in the case when we
replaced Γ1(D) by Γ1

s(D).

Let ω =
∑n

i=1 ωi(x)dx
i be a C0 Pfaff from on D. For each curve α̃ with

α ∈ Γ1
s(D) we choose a point x0 ∈ Im α̃ and for each β ∈ α̃, β(t0) = x0,

we consider gβ(t) =
∫ t
t0
〈ω(β(u)), β′(u)〉du. In this way, we obtain a Γ-function

g : Γ1
s(D) → Γ1(R) which satisfies the axiom (A1).

16 Theorem. The continuous Pfaff form ω is exact if and only if the Γ-
function g defined above fulfils the axiom (A2).

Proof. Let us suppose that g fulfils (A2). Applying the Theorem 13 it
follows that there exists a continuous function G : D → R having the first order
partial derivatives such that G ◦ α = gα for any α ∈ Γ1

s(D). It results ∂G
∂xi = ωi,

i = 1, n; thus G is a C1 function and dG = ω. The converse is obvious. QED

17 Corollary. The Γ-function g defined above satisfies (A2) if and only if
g satisfies (A3).
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Final remark

We consider now the following sets:

G◦(D) = { g : Γ1(D) → Γ0(R)|g satisfies (A1) and (A2) },
G1/2(D) = { g : Γ1(D) → Γ1(R)|g satisfies (A1) and (A2) },
G1(D) = { g : Γ1(D) → Γ1(R)|g satisfies (A1) and (A3) },

C1/2(D) = {G : D → R|G ◦ α is a C1 function for any simple

parametrized curve α ∈ Γ1(D) }.

Obviously, all these sets are real vector spaces. From the statement (b) in
Lemma 10 it follows that C1/2(D) ⊂ C0(D).

To each continuous function G : D → R we can attache the Γ-function g
defined by gα = G ◦ α, ∀α ∈ Γ1(D). In this way the Theorems 11, 13 and 14
can be reformulated as

18 Theorem. The correspondence G→ g above induces the following vector
space isomorphisms: C0(D) ≈ G0(D), C1/2(D) ≈ G1/2(D) and C1(D) ≈ G1(D).
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