Construction of a function using its values along C^{1} curves

Oltin Dogaru
Department of Mathematics I, University Politehnica of Bucharest, Spaiul Independentei 313, 060042 Bucharest, Romania
udriste@mathem.pub.ro
oltin.horia@yahoo.com

Received: 4/3/2005; accepted: 28/7/2006.

Abstract

Let $G: D \subset R^{n} \rightarrow R$ be a function. Any parametrized curve α in D determines the composition $g_{\alpha}=G \circ \alpha$. If α belongs to a family of curves, the family $\left\{g_{\alpha}\right\}$ satisfies some conditions. Our goal is to find the conditions in which the families $\{\alpha\},\left\{g_{\alpha}\right\}$ determine the function G.

Section 1 emphasizes the origin of the problem. Section 2 defines and studies the notion of the Γ-function. Section 3 presents the construction of a function using a Γ-function.

Keywords: extension of maps, function spaces, Γ-function, generated functions
MSC 2000 classification: primary 54 C 20 , secondary 54C35

1 The origin of the problem

In the theory of nonholonomic optimization [6] it appears the following types of problems. Let D be an open set of R^{n} and $\omega=\sum_{i=1}^{n} \omega_{i} d x^{i}$ be a C^{0} Pfaff form on D. For every parametrized C^{1} curve $\alpha: I \rightarrow D$, we consider $g_{\alpha}: I \rightarrow R$, $g_{\alpha}(t)=\int_{t_{0}}^{t}\left\langle\omega(\alpha(u)), \alpha^{\prime}(u)\right\rangle d u+c_{\alpha}$ (a primitive of ω along α). In this way we obtain a family of functions $\left\{g_{\alpha}\right\}$, called system of ω-primitives which depends on the family of constants $\left\{c_{\alpha}\right\}$. Question: is it possible to choose the family $\left\{c_{\alpha}\right\}$ such that $g_{\alpha \circ \varphi}=g_{\alpha} \circ \varphi$ for any α and for any diffeomorphism φ ?

If $\omega=d G$, with $G: D \rightarrow R$ a C^{1} function, the answer is positive, because we can consider $g_{\alpha}=G \circ \alpha$. In this way, it appears a more general problem. Let us suppose that for any parametrized curve $\alpha: I \rightarrow D$, a function $g_{\alpha}: I \rightarrow R$ is given. What conditions we must impose to the family $\left\{g_{\alpha}\right\}$ in order to exist a unique function $G: D \rightarrow R$, having certain properties (like continuity, with partial derivatives, class C^{1}) and such that $G \circ \alpha=g_{\alpha}$?

Recall that two C^{k} parametrized curves $\alpha: I \rightarrow D$ and $\beta: J \rightarrow D$ are said to be equivalent, if there exists a C^{k} diffeomorphism $\varphi: J \rightarrow I$ such that $\beta=\alpha \circ \varphi$. We say that φ is a change of parameter on α. An equivalence class $\tilde{\alpha}$ of a given C^{k} parametrized curve α is called curve. Then α is called a representative of $\tilde{\alpha}$.

Let $I=[a, b]$ be a closed interval in R. A continuous mapping $\alpha: I \rightarrow D$ is
said to be a piecewise C^{1} parametrized curve if there exists a division $a=t_{0}<$ $t_{1}<\cdots<t_{p}=b$ of the interval I so that restriction of α to each subinterval $\left[t_{i}, t_{i+1}\right], i=\overline{0, p-1}$ is a C^{1} function. If I is an arbitrary interval, the previous definition is extended in an obvious way.

2Γ-functions

We denote by $\Gamma^{0}(D)$ the family of all the C^{0} parametrized curves in D and by $\Gamma^{1}(D)$ the family of all the piecewise C^{1} parametrized curves in D. Let $G: D \subset R^{n} \rightarrow R$ be a C^{1} function. For each $\alpha \in \Gamma^{1}(D)$, we consider the function $g_{\alpha}=G \circ \alpha$, which is an element of $\Gamma^{1}(R)$. In this way we produce a family $\left\{g_{\alpha}\right\}$ which has properties of the following type:
(a) For any $\alpha \in \Gamma^{1}(D)$, the functions α, g_{α} have the same domain of definition. Also, for a parametrized piecewise C^{1} curve α, the following statements are true: (1) the function g_{α} is a piecewise C^{1} function; (2) if α is a C^{1} function in a neighborhood of a point t_{0}, then g_{α} is a C^{1} function in the same neighborhood.
(b) If α and $\beta=\alpha \circ \varphi$ are equivalent parametrized curves, then $g_{\beta}=g_{\alpha} \circ \varphi$.
(c) If $\alpha \in \Gamma^{1}(D), \alpha: I \rightarrow D$, and J is a subinterval of I, then $g_{\alpha \mid J}=g_{\alpha} \mid J$.
(d) For any $x \in R^{n}$ and each $i=\overline{1, n}$, we define the parametrized axis $\alpha_{x}^{i}(t)=$ $x+t e^{i}, \forall t \in\left(-\varepsilon_{i}, \varepsilon_{i}\right)$, where $e^{i}=(0, \ldots, 1, \ldots 0)$. Obviously, $g_{\alpha_{x}^{i}}^{\prime}(0)=$ $\frac{\partial G}{\partial x^{i}}(x)$. In this way, it follows that the function $h^{i}: D \rightarrow R$ by $h^{i}(x)=g_{\alpha_{x}^{i}}^{\prime}(0)$ is continuous.

In the Section 3, we shall show that previous properties are sufficient to recover the function G from the family $\left\{g_{\alpha}\right\}$.

Let us consider $g: \Gamma^{1}(D) \rightarrow \Gamma^{k}(R), k=\overline{0,1}$ an arbitrary mapping. For each $\alpha \in \Gamma^{1}(D)$ we denote by g_{α} the element $g(\alpha) \in \Gamma^{k}(R)$. For this kind of functions we can consider some axioms.
$\left(A_{0}\right)$ If $\alpha \in \Gamma^{1}(D)$, then $\operatorname{dom}(\alpha)=\operatorname{dom}\left(g_{\alpha}\right)$. In addition, if $k=1$ and if α is a C^{1} function in a neighborhood of a point $t_{0} \in \operatorname{dom}(\alpha)$, then g_{α} is also a C^{1} function in the same neighborhood.
$\left(A_{1}\right)$ The axiom $\left(A_{0}\right)$ is satisfied. Moreover, if $\alpha \in \Gamma^{1}(D)$ and φ is a change of parameter on α, then $g_{\alpha \circ \varphi}=g_{\alpha} \circ \varphi$.
$\left(A_{2}\right)$ The axiom $\left(A_{0}\right)$ is satisfied. Moreover, if $\alpha \in \Gamma^{1}(D)$ with $\operatorname{dom}(\alpha)=I$, then $g_{\alpha \mid J}=g_{\alpha} \mid J$ for every subinterval J in I.

In the case $k=1$ we can consider one more axiom, as follows. Let g : $\Gamma^{1}(D) \rightarrow \Gamma^{1}(R)$ be a function which fulfils $\left(A_{2}\right)$. Then, for each $i=\overline{1, n}$ we consider $h^{i}: D \rightarrow R$ by $h^{i}(x)=g_{\alpha_{x}^{i}}^{\prime}(0)$, where $\alpha_{x}^{i}(t)=x+t e^{i}, \forall t \in$ $\left(-\varepsilon_{i}, \varepsilon_{i}\right)$, and $e^{i}=(0, \ldots, 1, \ldots 0)$. Taking into account the axiom $\left(A_{2}\right)$, it results that the function $g_{\alpha_{x}^{i}}$ does not depend on ε_{i} in a neighborhood of 0 , so the number $h^{i}(x)$ is well defined.
$\left(A_{3}\right)$ The axiom $\left(A_{2}\right)$ is satisfied and, in addition, for every $i=\overline{1, n}$ and for every $\alpha \in \Gamma^{1}(D)$, it results that $h^{i} \circ \alpha \in \Gamma^{0}(R)$.

1 Example. For each $\alpha \in \Gamma^{1}(D)$ we choose $x_{0} \in \operatorname{Im} \alpha$ and $t_{0} \in \operatorname{dom}(\alpha)$ such as $\alpha\left(t_{0}\right)=x_{0}$. We can easily see that the mapping $g: \Gamma^{1}(D) \rightarrow \Gamma^{1}(R)$ defined by $g_{\alpha}(t)=\int_{t_{0}}^{t}\left\|\alpha^{\prime}(u)\right\| d u$ satisfies $\left(A_{0}\right)$, but does not satisfy $\left(A_{1}\right)$ and $\left(A_{2}\right)$.

2 Example. Let $G: D \rightarrow R$ be a C^{k} function, where $k=\overline{0,1}$. Now we consider $g: \Gamma^{1}(D) \rightarrow \Gamma^{k}(R)$ defined by $g_{\alpha}=G \circ \alpha$. It is obvious that g fulfills $\left(A_{1}\right)$ and $\left(A_{2}\right)$.

3 Example. Let us consider $g: \Gamma^{1}(D) \rightarrow \Gamma^{1}(R)$ defined by $g_{\alpha}(t)=t$, $t \in \operatorname{dom}(\alpha)$. Obviously, g satisfies $\left(A_{2}\right)$ and $\left(A_{3}\right)$, but does not satisfy $\left(A_{1}\right)$.

4 Example. Let us consider $g: \Gamma^{1}(D) \rightarrow \Gamma^{k}(R), k=\overline{0,1}$ a function defined as follows $g_{\alpha}(t)=0 \forall t \in \operatorname{dom}(\alpha)$, if $\operatorname{Im} \alpha$ is included in straight line and $g_{\alpha}(t)=1, \forall t \in \operatorname{dom}(\alpha)$, otherwise. Obviously, g satisfies $\left(A_{1}\right)$, but does not satisfy $\left(A_{2}\right)$.

From the previous examples it follows that $\left(A_{1}\right)$ and $\left(A_{2}\right)$ are independent axioms and no one is equivalent to $\left(A_{0}\right)$. Also, in the example of Section 3, we shall prove that $\left(A_{3}\right)$ is independent with respect to $\left(A_{1}\right)$ and $\left(A_{2}\right)$.

5 Definition. A mapping $g: \Gamma^{1}(D) \rightarrow \Gamma^{k}(R), k=\overline{0,1}$ which satisfies the axiom $\left(A_{0}\right)$ is called Γ-function.

6 Remark. Let $g: \Gamma^{1}(D) \rightarrow \Gamma^{k}(R), k=\overline{0,1}$ be a Γ - function which satisfies the axiom $\left(A_{1}\right)$. If α and $\beta=\alpha \circ \varphi$ are two equivalent parametrized curves of $\Gamma^{1}(D)$ and $t_{0}=\varphi\left(u_{0}\right)$, then $g_{\alpha}\left(t_{0}\right)=g_{\beta}\left(u_{0}\right)$.

7 Proposition. Let $g: \Gamma^{1}(D) \rightarrow \Gamma^{k}(R), k=\overline{0,1}$ be a Γ-function which satisfies the axiom $\left(A_{1}\right)$ and $\left(A_{2}\right)$. Let $\alpha_{1}: I_{1} \rightarrow D$ and $\alpha_{2}: I_{2} \rightarrow D$ be two parametrized curves of $\Gamma^{1}(D)$ such there exist $t_{1} \in I_{1}$ and $t_{2} \in I_{2}$ with $\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$. Then $g_{\alpha_{1}}\left(t_{1}\right)=g_{\alpha_{2}}\left(t_{2}\right)$.

Proof. Let us consider $\beta_{1}=\alpha_{1} \circ \varphi_{1}: J_{1} \rightarrow D$ and $\beta_{2}=\alpha_{2} \circ \varphi_{2}: J_{2} \rightarrow D$ two parametrized curves of $\Gamma^{1}(D)$ which are equivalent to α_{1}, α_{2} respectively, such as there exist the real numbers $a<b<c$ satisfying the following conditions: $K_{1}=$ $[a, b] \subset J_{1}, K_{2}=[b, c] \subset J_{2}, \varphi_{1}(b)=t_{1}$ and $\varphi_{2}(b)=t_{2}$. By the previous remark
it follows $g_{\alpha_{1}}\left(t_{1}\right)=g_{\beta_{1}}(b)$ and $g_{\alpha_{2}}\left(t_{2}\right)=g_{\beta_{2}}(b)$. Consider now $\gamma: K_{1} \cup K_{2} \rightarrow D$ defined by $\gamma\left|K_{1}=\beta_{1}\right| K_{1}$ and $\gamma\left|K_{2}=\beta_{2}\right| K_{2}$. By using the axiom $\left(A_{2}\right)$, we obtain: $g_{\gamma}\left|K_{1}=g_{\gamma \mid K_{1}}=g_{\beta_{1} \mid K_{1}}=g_{\beta_{1}}\right| K_{1}$ and $g_{\gamma}\left|K_{2}=g_{\gamma \mid K_{2}}=g_{\beta_{2} \mid K_{2}}=g_{\beta_{2}}\right| K_{2}$. Consequently, we have $g_{\gamma}(b)=g_{\beta_{1}}(b)=g_{\beta_{2}}(b)$, i.e., $g_{\alpha_{1}}\left(t_{1}\right)=g_{\alpha_{2}}\left(t_{2}\right)$. \quad QED

8 Corollary. Let $g: \Gamma^{1}(D) \rightarrow \Gamma^{k}(R), k=\overline{0,1}$, be a Γ-function which satisfies the axioms $\left(A_{1}\right)$ and $\left(A_{2}\right)$. Then for any $\alpha \in \Gamma^{1}(D)$ and $t_{1}, t_{2} \in \operatorname{dom}(\alpha)$ with $\alpha\left(t_{1}\right)=\alpha\left(t_{2}\right)$ we have $g_{\alpha}\left(t_{1}\right)=g_{\alpha}\left(t_{2}\right)$.

3 Construction of a function using a Γ-function

In what follows we shall use the next result ([1], [2], [5]):
9 Theorem. Let $\left(x_{n}\right)$ be a sequence of distinct points of R^{p} which converges to the limit $a \in R^{p}$. Then, there exist a subsequence $\left(x_{n_{k}}\right)$, a simple C^{1} parametrized curve α, regular at the point a, and a sequence of real numbers $t_{k} \rightarrow 0$ such that $\alpha\left(t_{k}\right)=x_{n_{k}}$ and $\alpha\left(t_{0}\right)=a$.

10 Lemma. Let $G: D \rightarrow R$ be a function.
(a) Let us suppose that for every simple parametrized curve α of $\Gamma^{1}(D)$ the function $G \circ \alpha$ is continuous. Then, G is a continuous function.
(b) Let us suppose that for every simple C^{1} parametrized curve $\alpha \in \Gamma^{1}(D)$ the function $G \circ \alpha$ is a C^{1} function. Then G is a continuous function that has first order partial derivatives.

Proof. (a) Let $\left(x_{n}\right)$ be a sequence of D such that $x_{n} \rightarrow a \in D$. By absurdum, we suppose that $G\left(x_{n}\right) \nrightarrow G(a)$, i.e., there exists a subsequence (y_{n}) of $\left(x_{n}\right)$ such as $G\left(y_{n}\right) \rightarrow l$ with $l \neq G(a)$. Applying the previous Theorem we obtain a subsequence $\left(z_{n}\right)$ of $\left(y_{n}\right)$, a simple parametrized curve $\alpha \in \Gamma^{1}(D)$ and a sequence $\left(t_{n}\right)$ of R such that, $z_{n} \rightarrow a, \alpha\left(t_{n}\right)=z_{n}, \alpha(0)=a$ and $t_{n} \rightarrow 0$. Due to continuity of the function $G \circ \alpha$ we obtain the contradiction $G\left(z_{n}\right) \rightarrow G(a)$.
(b) Taking as α the natural parametrizations of each coordinate axis, it follows that G has first order partial derivatives.

11 Theorem. (1) Let us assume that the Γ-function $g: \Gamma^{1}(D) \rightarrow \Gamma^{0}(R)$ satisfies the axioms $\left(A_{1}\right)$ and $\left(A_{2}\right)$. Then, there exists a unique continuous function $G: D \rightarrow R$ such that for every $\alpha \in \Gamma^{1}(D)$ we have $G \circ \alpha=g_{\alpha}$.
(2) Conversely, for any continuous function $G: D \rightarrow R$ there exists a unique Γ-function $g: \Gamma^{1}(D) \rightarrow \Gamma^{0}(R)$ which satisfies the axioms $\left(A_{1}\right)$ and $\left(A_{2}\right)$ and such that $G \circ \alpha=g_{\alpha}$ for any $\alpha \in \Gamma^{1}(D)$.

Proof. Let $g: \Gamma^{1}(D) \rightarrow \Gamma^{0}(R)$ be a Γ-function which fulfills the axioms $\left(A_{1}\right)$ and $\left(A_{2}\right)$. We define a function $G: D \rightarrow R$ as follows: if $x \in D$ and
$\alpha \in \Gamma^{1}(D)$ with $\alpha(t)=x$, then $G(x)=g_{\alpha}(t)$. By using the Proposition 7 and the Corollary 8 , it follows that G is well defined and unique. It is clear that $G \circ \alpha=g_{\alpha}$ for any $\alpha \in \Gamma^{1}(D)$. Applying the statement (a) from previous Lemma, it follows that G is a continuous function. The converse is obvious.

12 Remark. The proof works also in case that the functions g_{α} are not continuous. Obviously, in this case, the function G does not result as a continuous function. Hence, the conditions $\left(A_{1}\right)$ and $\left(A_{2}\right)$ with g_{α} arbitrary functions, are necessary and sufficient conditions for the existence and uniqueness of a function $G: D \rightarrow R$ with $G \circ \alpha=g_{\alpha}$ for any $\alpha \in \Gamma^{1}(D)$.

13 Theorem. (1) Let $g: \Gamma^{1}(D) \rightarrow \Gamma^{1}(R)$ be a Γ-function which satisfies the axioms $\left(A_{1}\right)$ and $\left(A_{2}\right)$. Then, there exits a unique continuous function G : $D \rightarrow R$, having first order partial derivatives such that $G \circ \alpha=g_{\alpha}$ for any $\alpha \in \Gamma^{1}(D)$.
(2) Let $G: D \rightarrow R$ be a function such that for any simple C^{1} parametrized curve $\alpha \in \Gamma^{1}(D)$ it results that $G \circ \alpha$ is a C^{1} function. Then, there exists a unique Γ-function $g: \Gamma^{1}(D) \rightarrow \Gamma^{1}(R)$ which satisfies the axioms $\left(A_{1}\right)$ and $\left(A_{2}\right)$ and such that $g_{\alpha}=G \circ \alpha$ for any $\alpha \in \Gamma^{1}(D)$.

The proof is similar with the previous, excepting that we use the statement (b) in Lemma 10 .

14 Theorem. (1) Let $g: \Gamma^{1}(D) \rightarrow \Gamma^{1}(R)$ a Γ-function which satisfies the axioms $\left(A_{1}\right)$ and $\left(A_{3}\right)$ (hence also $\left(A_{2}\right)$). Then, there exists a unique C^{1} function $G: D \rightarrow R$ such that $G \circ \alpha=g_{\alpha}$ for any $\alpha \in \Gamma^{1}$.
(2) Conversely, for any C^{1} function $G: D \rightarrow R$ there exists a unique Γ function $g: \Gamma^{1}(D) \rightarrow \Gamma^{1}(R)$ which satisfies the axioms $\left(A_{1}\right)$ and $\left(A_{3}\right)$ and such that $g_{\alpha}=G \circ \alpha$ for any $\alpha \in \Gamma^{1}(D)$.

Proof. Let $g: \Gamma^{1}(D) \rightarrow \Gamma^{1}(R)$ be a mapping which satisfies the axioms $\left(A_{1}\right)$ and $\left(A_{3}\right)$. From the previous Theorem it follows the existence of a continuous function $G: D \rightarrow R$, having first order partial derivatives such that $G \circ \alpha=g_{\alpha}$ for any $\alpha \in \Gamma^{1}(D)$. It follows that $\frac{\partial G}{\partial x^{i}}=h^{i}, i=\overline{1, n}$, where h^{i} are the functions defined in the axiom $\left(A_{3}\right)$. By using this axiom, it results that $h^{i} \circ \alpha \in \Gamma^{0}(R)$ for any $\alpha \in \Gamma^{1}(D)$. From the statement (a) in Lemma 10 we obtain that h^{i} is a continuous function for any $i=\overline{1, n}$, namely G is a C^{1} function. The converse is obvious.

QED
15 Example. We shall show that there exists a Γ-function $g: \Gamma^{1}(D) \rightarrow$ $\Gamma^{1}(R)$ which satisfies the axioms $\left(A_{1}\right)$ and $\left(A_{2}\right)$ but does not satisfy $\left(A_{3}\right)$.

For that, we consider the function $G: R^{2} \rightarrow R$,

$$
G(x, y)=\left\{\begin{array}{rrl}
\frac{x^{2} y}{x^{2}+y^{2}}, & \text { for } & (x, y) \neq(0,0) \\
0, & \text { for } & (x, y)=(0,0)
\end{array}\right.
$$

Let us show that G fulfills the conditions in Theorem 13. To this aim, we consider a simple parametrized curve $\alpha \in \Gamma^{1}(D)$ such that $\alpha(0)=(0,0)$. We must prove that $G \circ \alpha$ is a C^{1} function. Since α is a simple curve it follows that

$$
(G \circ \alpha)^{\prime}(t)=\frac{x^{2}\left(x^{2}-y^{2}\right) y^{\prime}+2 x y^{3} x^{\prime}}{\left(x^{2}+y^{2}\right)^{2}}(t)
$$

for any $t \neq 0$.
First, let us assume that $x^{\prime}(0) \neq 0$. Since

$$
(G \circ \alpha)^{\prime}(t)=\frac{\left(1-(y / x)^{2}\right) y^{\prime}+2(y / x)^{3} x^{\prime}}{\left[1+(y / x)^{2}\right]^{2}}(t)
$$

for $t \neq 0$, we can apply L'Hospital rule for $\frac{y(t)}{x(t)}$, obtaining the existence and finiteness of the $\lim _{t \rightarrow 0} G(\alpha(t))^{\prime}$. Assume now that $x^{\prime}(0)=y^{\prime}(0)=0$. Since

$$
\left|(G \circ \alpha)^{\prime}(t)\right| \leq\left(\left|y^{\prime}\right|+2\left|x^{\prime}\right|\right)(t)
$$

for $t \neq 0$, it t follows that $\lim _{t \rightarrow 0}(G \circ \alpha)^{\prime}(t)=0$. Finally, we can easily see that the first order partial derivatives of G are not continuous. Thus, by the Theorem 13, the Γ-function $g: \Gamma^{1}(D) \rightarrow \Gamma^{1}(R), g_{\alpha}=G \circ \alpha$, will satisfy the axioms $\left(A_{1}\right)$ and $\left(A_{2}\right)$. But g does not satisfy $\left(A_{3}\right)$. Indeed, if g satisfied $\left(A_{3}\right)$, then the Theorem 14 would show that G is a C^{1} function, which is a contradiction.

Let $\Gamma_{s}^{1}(D)$ the family of all the simple parametrized curves $\alpha \in \Gamma^{1}(D)$. It is obvious that the Theorems 11, 13 and 14 are also true in the case when we replaced $\Gamma^{1}(D)$ by $\Gamma_{s}^{1}(D)$.

Let $\omega=\sum_{i=1}^{n} \omega_{i}(x) d x^{i}$ be a C^{0} Pfaff from on D. For each curve $\tilde{\alpha}$ with $\alpha \in \Gamma_{s}^{1}(D)$ we choose a point $x_{0} \in \operatorname{Im} \tilde{\alpha}$ and for each $\beta \in \tilde{\alpha}, \beta\left(t_{0}\right)=x_{0}$, we consider $g_{\beta}(t)=\int_{t_{0}}^{t}\left\langle\omega(\beta(u)), \beta^{\prime}(u)\right\rangle d u$. In this way, we obtain a Γ-function $g: \Gamma_{s}^{1}(D) \rightarrow \Gamma^{1}(R)$ which satisfies the axiom $\left(A_{1}\right)$.

16 Theorem. The continuous Pfaff form ω is exact if and only if the Γ function g defined above fulfils the axiom $\left(A_{2}\right)$.

Proof. Let us suppose that g fulfils $\left(A_{2}\right)$. Applying the Theorem 13 it follows that there exists a continuous function $G: D \rightarrow R$ having the first order partial derivatives such that $G \circ \alpha=g_{\alpha}$ for any $\alpha \in \Gamma_{s}^{1}(D)$. It results $\frac{\partial G}{\partial x^{i}}=\omega^{i}$, $i=\overline{1, n}$; thus G is a C^{1} function and $d G=\omega$. The converse is obvious.

17 Corollary. The Γ-function g defined above satisfies $\left(A_{2}\right)$ if and only if g satisfies $\left(A_{3}\right)$.

Final remark

We consider now the following sets:

$$
\begin{aligned}
& \mathcal{G}^{\circ}(D)=\left\{g: \Gamma^{1}(D) \rightarrow \Gamma^{0}(R) \mid g \text { satisfies }\left(A_{1}\right) \text { and }\left(A_{2}\right)\right\}, \\
& \mathcal{G}^{1 / 2}(D)=\left\{g: \Gamma^{1}(D) \rightarrow \Gamma^{1}(R) \mid g \text { satisfies }\left(A_{1}\right) \text { and }\left(A_{2}\right)\right\}, \\
& \mathcal{G}^{1}(D)=\left\{g: \Gamma^{1}(D) \rightarrow \Gamma^{1}(R) \mid g \text { satisfies }\left(A_{1}\right) \text { and }\left(A_{3}\right)\right\}, \\
& C^{1 / 2}(D)=\left\{G: D \rightarrow R \mid G \circ \alpha \text { is a } C^{1}\right. \text { function for any simple } \\
&\text { parametrized curve } \left.\alpha \in \Gamma^{1}(D)\right\} .
\end{aligned}
$$

Obviously, all these sets are real vector spaces. From the statement (b) in Lemma 10 it follows that $C^{1 / 2}(D) \subset C^{0}(D)$.

To each continuous function $G: D \rightarrow R$ we can attache the Γ-function g defined by $g_{\alpha}=G \circ \alpha, \forall \alpha \in \Gamma^{1}(D)$. In this way the Theorems 11, 13 and 14 can be reformulated as

18 Theorem. The correspondence $G \rightarrow g$ above induces the following vector space isomorphisms: $C^{0}(D) \approx \mathcal{G}^{0}(D), C^{1 / 2}(D) \approx \mathcal{G}^{1 / 2}(D)$ and $C^{1}(D) \approx \mathcal{G}^{1}(D)$.

Acknowledgements. We thank the Editorial Board and Prof. Dr. Constantin Udrişte for some suggestions and interesting comments regarding the contents of this paper.

References

[1] O. Dogaru, I. Tevy, C. Udrişte: Extrema Constrained by a Family of Curves and Local Extrema, JOTA, 97, n. 3 (1998), 605-621.
[2] O. Dogaru, I. Ţevy: Extrema Constrained by a Family of Curves, Proceedings of Workshop on Global Analysis, Differential Geometry and Lie Algebras, 1996, Ed. Gr. Tsagas, Geometry Balkan Press, 1999, 185-195.
[3] O. Dogaru, V. Dogaru: Extrema Constrained by C^{k} Curves, Balkan Journal of Geometry and Its Applications, 4, n. 1 (1999), 45-52.
[4] C. Udrişte, O. Dogaru, I. Ţevy: Extrema with Nonholonomic Constraints, Monographs and Textbooks 4, Geometry Balkan Press, 2002.
[5] C. Udrişte, O. Dogaru, M. Ferrara, I. Ţevy: Pfaff Inequalities and Semi-curves in Optimum Problems, Recent Advances in Optimization, pp. 191-202, Proceedings of the Workshop held in Varese, Italy, June 13/14th 2002, Ed. G. P. Crespi, A. Guerragio, E. Miglierina, M. Rocca, Datanova 2003.
[6] C. Udrişte, O. Dogaru, M. Ferrara, I. Ţevy: Extrema with Constraints on Points and/or Velocities, Balkan Journal of Geometry and Its Applications, 8, n. 1 (2003), 115123.

