On F-planar mappings of spaces with affine connections

Irena Hinterleitner

Department of Mathematic, FSI, Technical University of Brno hinterleitner.irena@seznam.cz

Josef Mikeši

 $Department\ of\ Algebra\ and\ Geometry,\ Fac.\ Sci.,\ Palacky\ University\ of\ Olomouc\ {\tt mikes@inf.upol.cz}$

Received: 05/06/2006; accepted: 21/06/2006.

Abstract. In this paper we study F-planar mappings of n-dimensional or infinitely dimensional spaces with a torsion-free affine connection. These mappings are certain generalizations of geodesic and holomorphically projective mappings.

Here we make fundamental equations on F-planar mappings for dimensions n > 2 more precise.

Keywords: F-planar mapping, space with affine connections

MSC 2000 classification: primary 53C20, secondary 53C20

Introduction

In many papers geodesic mappings and their generalizations, like quasi-geodesic, holomorphically-projective, F-planar, 4-planar, mappings, were considered. One of the basic tasks was and is the derivation of the fundamental equations of these mappings. They were shown in the most various ways, see [1]-[7].

Unless otherwise specified, all spaces, connections and mappings under consideration are differentiable of a sufficiently high class. The dimension n of the spaces being considered is higher than two, as a rule. This fact is not specially stipulated. All spaces are assumed to be connected.

Here we show a method that simplifies and generalizes many of the results. Our results are valid also for infinite dimensional spaces with Banach bases $(n = \infty)$.

 $^{^{\}rm i}$ This work is supported by grant No. 201/05/2707 of The Czech Science Foundation and by the Council of the Czech Government MSM 6198959214.

1 F-planar curves

We consider an *n*-dimensional (n > 2) or infinite dimensional $(n = \infty)$ space A_n with a torsion-free affine connection ∇ , and an affinor structure F, i.e. a tensor field of type $\binom{1}{1}$.

If $n = \infty$ we assume that A_n is locally homeomorphic to a Banach space E_{∞} . In connection with local studies we assume the existence of a coordinate neighbourhood U in the Euclidean space E_n , resp. $U \subset E_{\infty}$.

1 Definition (J. Mikeš, N.S. Sinyukov [4]). A curve ℓ , which is given by the equations

$$\ell = \ell(t), \quad \lambda(t) = d\ell(t)/dt \ (\neq 0), \quad t \in I$$
 (1)

where t is a parameter, is called F-planar, if its tangent vector $\lambda(t_0)$, for any initial value t_0 of the parameter t, remains, under parallel translation along the curve ℓ , in the distribution generated by the vector functions λ and $F\lambda$ along ℓ .

In particular, if $F = \varrho I$ we obtain the definition of a geodesic parametrized by an arbitrary parameter, see [4]. Here ϱ is a function and I is the identity operator.

In accordance with this definition, ℓ is F-planar if and only if the following condition holds [4]:

$$\nabla_{\lambda(t)} \lambda(t) = \varrho_1(t) \lambda(t) + \varrho_2(t) F \lambda(t), \qquad (2)$$

where ϱ_1 and ϱ_2 are some functions of the parameter t.

2 F-planar mappings between two spaces with affine connection

We suppose two spaces A_n and \bar{A}_n with torsion-free affine connections ∇ and $\bar{\nabla}$, respectively. Affine structures F and \bar{F} are defined on A_n , resp. \bar{A}_n .

2 Definition (J. Mikeš, N.S. Sinyukov [4]). A diffeomorphism $f: A_n \to \bar{A}_n$ between two manifolds with affine connections is called F-planar if any F-planar curve in A_n is mapped onto an \bar{F} -planar curve in \bar{A}_n .

Important convention. Due to the diffeomorphism f we always suppose that ∇ , $\bar{\nabla}$, and the affinors F, \bar{F} are defined on A_n . Moreover, we always identify a given curve $\ell \colon I \to A_n$ and its tangent vector function $\lambda(t)$ with their images $\bar{\ell} = f \circ \ell$ and $\bar{\lambda} = f_*(\lambda(t))$ in \bar{A}_n .

Two principially different cases are possible for the investigation:

a)
$$\bar{F} = aF + bI;$$
 (3)

b)
$$\bar{F} \neq a F + b I$$
, (4)

a, b are some functions.

Naturally, case a) characterizes F-planar mappings which preserve F-structures. In case b) the structures of F and \bar{F} are essentially distinct. The following holds.

3 Theorem. An F-planar mapping f from A_n onto \bar{A}_n preserve F-structures and is characterized by the following condition

$$P(X,Y) = \psi(X)Y + \psi(Y)X + \varphi(X)FY + \varphi(Y)FX$$
 (5)

for any vector fields X, Y, where $P \stackrel{def}{=} \bar{\nabla} - \nabla$ is the deformation tensor field of f, ψ, φ are some linear forms.

Let us recall that on each tangent space T_xA_n , P(X,Y) is a symmetric bilinear mapping $T_xA_n \times T_xA_n \to T_xA_n$ and a tensor field of type $\binom{1}{2}$.

Theorem 3 was proved by J. Mikeš and N. S. Sinyukov [4] for finite dimension n > 3. Here we can show a more rational proof of this Theorem for n > 3 and also a proof for n = 3. We show a counter example for n = 2.

3 F-planar mappings which preserve F-structures

First we prove the following proposition

4 Theorem. An F-planar mapping f from A_n onto \bar{A}_n which preserves F-structures is characterized by condition (5).

In the sequel we shall need the following lemma:

5 Lemma. Let V be an n-dimensional vector space, $Q: V \times V \to V$ be a symmetric bilinear mapping and $F: V \to V$ a linear mapping. If, for each vector $\lambda \in V$

$$Q(\lambda, \lambda) = \rho_1(\lambda) \lambda + \rho_2(\lambda) F(\lambda)$$
(6)

holds, where $\varrho_1(\lambda)$, $\varrho_2(\lambda)$ are functions on V, then there are linear forms ψ and φ such that the condition

$$Q(X,Y) = \psi(X)Y + \psi(Y)X + \varphi(X)F(Y) + \varphi(Y)F(X) \tag{7}$$

holds for any $X, Y \in V$.

PROOF. Formula (6) has the following coordinate expression

$$Q_{\alpha\beta}^{h} \lambda^{\alpha} \lambda^{\beta} = \varrho_{1}(\lambda) \lambda^{h} + \varrho_{2}(\lambda) F_{\alpha}^{h} \lambda^{\alpha}, \tag{8}$$

where $\lambda^i, F_i^h, Q_{ij}^h$ are the components of λ, F, Q .

By multiplying (8) with $\lambda^i F_{\alpha}^j \lambda^{\alpha}$ and antisymmetrizing the indices h, i and j we obtain

$$\left\{ Q_{\alpha\beta}^{[h} \delta_{\gamma}^{i} F_{\delta}^{j]} \right\} \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma} \lambda^{\delta} = 0, \tag{9}$$

where square brackets denote the alternation of indices. The term in curly brackets does not depend on λ and (9) holds for any vector $\lambda \in V$, therefore

$$Q^{[h}_{(\alpha\beta}\delta^i_{\gamma}F^{j]}_{\delta)} = 0 \tag{10}$$

holds, where the round brackets denote symmetrization of indices.

It is natural to assume that $F_i^h \neq a \, \delta_i^h$ with a = const. By virtue of this there exist some vectors ξ^h such that $\xi^\alpha F_\alpha^h \neq b \, \xi^h$, b = const. Introducing $P_i^h \stackrel{\text{def}}{=} P_{i\alpha}^h \xi^\alpha$, $P^h \stackrel{\text{def}}{=} P_\alpha^h \xi^\alpha$ and $F^h \stackrel{\text{def}}{=} F_\alpha^h \xi^\alpha$, we contract (10) with $\xi^\alpha \xi^\beta \xi^\gamma \xi^\delta$. Since $F^h \neq b \, \xi^h$, we obtain $P^h = 2a \, \xi^h + 2b \, F^h$, where a, b are certain constants. Contracting (10) with $\xi^\beta \xi^\gamma \xi^\delta$, and taking into account the precending, we have $P_i^h = a \, \delta_i^h + b \, F_i^h + a_i \, \xi^h + b_i \, F^h$, where a_i, b_i are some components of linear forms. Analogously, contracting (10) with $\xi^\gamma \xi^\delta$, we have

$$Q_{ij}^h = \psi_i \delta_j^h + \psi_j \delta_i^h + \varphi_i F_j^h + \varphi_j F_i^h + \xi^h a_{ij} + F^h b_{ij}, \tag{11}$$

where ψ_i , φ_i are components of a 1-form ψ, φ defined on V, and a_{ij} , b_{ij} are components of a symmetric 2-form defined on V.

In case that $a_{ij} = b_{ij} = 0$, evidently from (11) we obtain formula (7).

Now we will suppose that either $a_{ij} \neq 0$, or $b_{ij} \neq 0$. Since ξ^h and F^h are noncollinear, it is evident that

$$\xi^h a_{ij} + F^h b_{ij} \neq 0. (12)$$

Formula (10) by virtue of (11) has the form

$$\Omega^{[hi}_{(\alpha\beta\gamma}F^{j]}_{\delta)} = 0, \tag{13}$$

where $\Omega_{\alpha\beta\gamma}^{hi} \stackrel{\text{def}}{=} (\xi^h a_{\alpha\beta} + F^h b_{\alpha\beta}) \delta_{\gamma}^i - (\xi^i a_{\alpha\beta} + F^i b_{\alpha\beta}) \delta_{\gamma}^h$. It is possible to show that there exists some vector ε^h for which $\Omega_{\alpha\beta\gamma}^{hi} \varepsilon^{\alpha} \varepsilon^{\beta} \varepsilon^{\gamma} \neq 0$, otherwise (12) would be violated.

Contracting (13) with $\varepsilon^{\alpha}\varepsilon^{\beta}\varepsilon^{\gamma}\varepsilon^{\delta}$, we have $F_{\alpha}^{h}\varepsilon^{\alpha}=a\xi^{h}+bF^{h}+c\varepsilon^{h}$, with a,b,c being constants. Analogously, contracting (13) with $\varepsilon^{\beta}\varepsilon^{\gamma}\varepsilon^{\delta}$, we obtain that F_{i}^{h} is represented in the following manner:

$$F_i^h = a \, \delta_i^h + a_i \, \xi^h + b_i \, F^h + c_i \, \varepsilon^h, \tag{14}$$

where a_i , b_i , c_i are components of 1-forms.

Formula (13) by virtue of (14) has the form

$$\omega_{(\alpha\beta\gamma}^{[hi}\delta_{\delta)}^{j]} = 0, \tag{15}$$

where

$$\omega_{\alpha\beta\gamma}^{hi} \stackrel{\text{def}}{=} \xi^{[h}F^{i]}(a_{(\alpha\beta}b_{\gamma)} - b_{(\alpha\beta}a_{\gamma)}) + \xi^{[h}\varepsilon^{i]}a_{(\alpha\beta}c_{\gamma)} + F^{[h}\varepsilon^{i]}b_{(\alpha\beta}c_{\gamma)}.$$

a) If n > 3 then $\omega_{\alpha\beta\gamma}^{hi} = 0$ follows from (13), and because ξ^h , F^h and ε^h are linear independent, we obtain $a_{(\alpha\beta}c_{\gamma)} = 0$ and $b_{(\alpha\beta}c_{\gamma)} = 0$. Therefore $c_i = 0$ and

$$F_i^h = a \, \delta_i^h + a_i \, \xi^h + b_i \, F^h. \tag{16}$$

b) If n=3 the matrix F_i^h has always the previous form (16) while ξ^h , F^h and ε^h are not linear dependent.

Then formula (13) becomes (15), whereas $\omega_{\alpha\beta\gamma}^{hi} \stackrel{\text{def}}{=} \xi^{[h} F^{i]} (a_{(\alpha\beta}b_{\gamma)} - b_{(\alpha\beta}a_{\gamma)})$. For n > 2 it follows $\omega_{\alpha\beta\gamma}^{hi} = 0$ and consequently

$$a_{(\alpha\beta}b_{\gamma)} = b_{(\alpha\beta}a_{\gamma)}. (17)$$

If a_{α} and b_{α} are linear indepedent, then from (17) we obtain

$$a_{ij} = a_{(i}\omega_{j)}$$
 and $b_{ij} = b_{(i}\omega_{j)}$,

where ω_i are components of a 1-form. Afterwards it is possible to show that on the basis of (16) formula (11) assumes the following form

$$Q_{ij}^{h} = (\psi_i - a\omega_i)\delta_j^h + (\psi_j - a\omega_j)\delta_i^h + (\varphi_i + a\omega_i)F_j^h + (\varphi_j + a\omega_j)F_i^h,$$

i.e. formula (7) also holds.

Now there remains the case that a_{α} and b_{α} are linear depedent. For example, $b_{\alpha} = \alpha a_{\alpha}$, $\alpha \neq 0$. Then from (17) follows $b_{\alpha\beta} = \alpha a_{\alpha\beta}$. We denote $\Lambda^h = \xi^h + \alpha F^h$, $\omega_i = \psi_i + \alpha \varphi_i$, $\omega_{ij} = a_{ij} + a_{(i}\varphi_{j)}$, from (11) and (16) we obtain that Q_{ij}^h and F_i^h are represented by

$$Q_{ij}^{h} = \psi_i \delta_i^h + \psi_j \delta_i^h + \Lambda^h \omega_{ij} \quad \text{and} \quad F_i^h = a \delta_i^h + \Lambda^h a_i.$$
 (18)

Then formula (8) appears in the following way

$$\Lambda^{h} \left(\omega_{\alpha\beta} \lambda^{\alpha} \lambda^{\beta} - \varrho_{2}(\lambda) \, a_{\alpha} \lambda^{\alpha} \right) = \lambda^{h} \left(\varrho_{1}(\lambda) + a \, \varrho_{2}(\lambda) - 2\psi_{\alpha} \lambda^{\alpha} \right).$$

From this it follows that

$$\omega_{\alpha\beta}\lambda^{\alpha}\lambda^{\beta} = \varrho_2(\lambda) a_{\alpha}\lambda^{\alpha}, \quad \forall \lambda^h \neq \alpha \Lambda^h.$$

By simple analysis we obtain that $\omega_{ij} = a_{(i}\sigma_{j)}$, where σ_i are components of a 1-form.

Then due to (18) we have $Q_{ij}^h = (\psi_i - a\sigma_i)\delta_j^h + (\psi_j - a\sigma_j)\delta_i^h + \sigma_i F_j^h + \sigma_j F_i^h$. Evidently Lemma 5 is proved.

PROOF OF THEOREM 4. It is obvious that geodesics are a special case of F-planar curves. Let a geodesic in A_n , which satisfies the equations (1) and $\nabla_{\lambda}\lambda = 0$, be mapped onto an F-planar curve in \bar{A}_n , which satisfies equations (1) and

$$\bar{\nabla}_{\lambda}\lambda = \bar{\varrho}_1(t)\,\lambda + \bar{\varrho}_2(t)F\lambda.$$

Here $\bar{\varrho}_1, \bar{\varrho}_2$ are functions of the parameter t.

Because the deformation tensor satisfies $P(\lambda, \lambda) = \bar{\nabla}_{\lambda} \lambda - \nabla_{\lambda} \lambda$, we have

$$P(\lambda(t), \lambda(t)) = \bar{\varrho}_1(t) \lambda + \bar{\varrho}_2(t) F \lambda.$$

It follows from the previous formula that in each point $x \in A_n$

$$P(\lambda, \lambda) = \varrho_1(\lambda) \lambda + \varrho_2(\lambda) F \lambda.$$

for each tangent vector $\lambda \in T_x$; $\varrho_1(\lambda), \varrho_2(\lambda)$ are functions dependent on λ .

Based on Lemma 5 it follows that there exist linear forms ψ and φ , for which formula (5) holds.

4 F-planar mappings which do not preserve F-structures

We now assume that the structures F and \bar{F} are essentially distinct, i.e.

$$\bar{F}_i^h \neq a\delta_i^h + b\,F_i^h$$
.

a) It is obvious, that geodesics are a special case of F-planar curves. Let a geodesic in A_n , which satisfies the equations (1) and $\nabla_{\lambda}\lambda = 0$, be mapped onto an \bar{F} -planar curve in \bar{A}_n , which satisfies the equations (1) and

$$\bar{\nabla}_{\lambda}\lambda = \bar{\rho}_1(t)\,\lambda + \bar{\rho}_2(t)\bar{F}\lambda.$$

Here $\bar{\varrho}_1, \bar{\varrho}_2$ are functions of the parameter t.

For the deformation tensor we have $P(\lambda(t), \lambda(t)) = \bar{\varrho}_1(t) \lambda + \bar{\varrho}_2(t) \bar{F} \lambda$. It follows from the previous formula that in each point $x \in A_n$

$$P(\lambda, \lambda) = \rho_1(\lambda) \lambda + \rho_2(\lambda) \bar{F} \lambda.$$

for each tangent vector $\lambda \in T_x$; $\varrho_1(\lambda), \varrho_2(\lambda)$ are functions dependent on λ .

Based on Lemma 5 it follows, that there exist linear forms ψ and φ , for which formula

$$P(X,Y) = \psi(X)Y + \psi(Y)X + \varphi(X)\bar{F}Y + \varphi(Y)\bar{F}X \tag{19}$$

holds.

b) Let a special F-planar curve in A_n , which satisfies the equations (1) and $\nabla_{\lambda}\lambda = F\lambda$, be mapped onto an \bar{F} -planar curve in \bar{A}_n , which satisfies the equations (1) and

$$\bar{\nabla}_{\lambda}\lambda = \bar{\varrho}_1(t)\,\lambda + \bar{\varrho}_2(t)\bar{F}\lambda.$$

Here $\bar{\varrho}_1, \bar{\varrho}_2$ are functions of the parameter t.

For the deformation tensor we have $P(\lambda(t), \lambda(t)) = F\lambda + \bar{\varrho}_1(t) \lambda + \bar{\varrho}_2(t) \bar{F}\lambda$. It follows from the previous formula that in each point $x \in A_n$

$$P(\lambda, \lambda) = F\lambda + \varrho_1(\lambda)\lambda + \varrho_2(\lambda)\bar{F}\lambda.$$

for each tangent vector $\lambda \in T_x$; $\varrho_1(\lambda)$, $\varrho_2(\lambda)$ are functions dependent on λ . Applying (19) we obtain

$$F\lambda = \tilde{\varrho}_1(\lambda)\,\lambda + \tilde{\varrho}_2(\lambda)\bar{F}\lambda.$$

Analyzing this expression like in Lemma 5 we convince ourselves that formula (3) holds. In this way we prove

6 Theorem. Any F-planar mapping of a space with affine connection A_n onto \bar{A}_n preserves F-structures.

5 F-planar mappings for dimension n = 2

It is easy to see that for n=2 Theorems 3 and 4 do not hold. If they would hold, the functions ϱ_1 and ϱ_2 , appearing in (6), would be linear in λ .

In the case

$$F_i^h = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

for example, these functions have the forms

$$\varrho_1(\lambda) = \frac{\lambda^1 P_{\alpha\beta}^1 \lambda^{\alpha} \lambda^{\beta} + \lambda^2 P_{\alpha\beta}^2 \lambda^{\alpha} \lambda^{\beta}}{(\lambda^1)^2 + (\lambda^2)^2} \quad \text{and} \quad \varrho_2(\lambda) = \frac{\lambda^1 P_{\alpha\beta}^2 \lambda^{\alpha} \lambda^{\beta} - \lambda^2 P_{\alpha\beta}^1 \lambda^{\alpha} \lambda^{\beta}}{(\lambda^1)^2 + (\lambda^2)^2},$$

which are not linear in general.

On the other hand an arbitrary diffeomorphism from A_2 onto A_2 is an F-planar mapping with (6) being valid for the above functions ϱ_1 and ϱ_2 .

References

[1] D.V. Beklemishev: Differential geometry of spaces with almost complex structure, Itogi Nauki. Geometriya, M. VINITI AN SSSR. 10, pp. 165–212, (1963).

- [2] V.E. FOMIN: On the projective correspondence of two Riemannian spaces of infinite dimension, Tr. Geom. Semin. 10, pp. 86–96, (1978).
- [3] J. Mikeš: Holomorphically projective mappings and their generalizations, J. Math. Sci., 89, 3, pp. 1334–1353, (1998).
- [4] J. MIKEŠ, N.S. SINYUKOV: On quasiplanar mappings of spaces of affine connection, Izv. Vyssh. Uchebn. Zaved., Mat., 1(248), pp. 55–61, 1983; Sov. Math., 27, 1, pp. 63–70, (1983).
- [5] A.Z. Petrov: *Modeling physical fields*, Gravitation and the Theory of Relativity, Kazan, 4–5, 7–21, (1968).
- [6] N.S. Sinyukov: Geodesic mappings of Riemannian spaces, Nauka, Moscow, 1979.
- [7] K. Yano: Differential geometry on complex and almost complex spaces, Oxford-London-New York-Paris-Frankfurt: Pergamon Press. XII, 323p., 1965.