On F-planar mappings of spaces with affine connections

Irena Hinterleitner

Department of Mathematic, FSI, Technical University of Brno
hinterleitner.irena@seznam.cz

Josef Mikeši

Department of Algebra and Geometry, Fac. Sci., Palacky University of Olomouc
mikes@inf.upol.cz

Received: 05/06/2006; accepted: 21/06/2006.

Abstract

In this paper we study F-planar mappings of n-dimensional or infinitely dimensional spaces with a torsion-free affine connection. These mappings are certain generalizations of geodesic and holomorphically projective mappings. Here we make fundamental equations on F-planar mappings for dimensions $n>2$ more precise.

Keywords: F-planar mapping, space with affine connections
MSC 2000 classification: primary 53 C 20 , secondary 53 C 20

Introduction

In many papers geodesic mappings and their generalizations, like quasigeodesic, holomorphically-projective, F-planar, 4 -planar, mappings, were considered. One of the basic tasks was and is the derivation of the fundamental equations of these mappings. They were shown in the most various ways, see [1][7].

Unless otherwise specified, all spaces, connections and mappings under consideration are differentiable of a sufficiently high class. The dimension n of the spaces being considered is higher than two, as a rule. This fact is not specially stipulated. All spaces are assumed to be connected.

Here we show a method that simplifies and generalizes many of the results. Our results are valid also for infinite dimensional spaces with Banach bases ($n=\infty$).

[^0]
1 F-planar curves

We consider an n-dimensional $(n>2)$ or infinite dimensional $(n=\infty)$ space A_{n} with a torsion-free affine connection ∇, and an affinor structure F, i.e. a tensor field of type $\binom{1}{1}$.

If $n=\infty$ we assume that A_{n} is locally homeomorphic to a Banach space E_{∞}. In connection with local studies we assume the existence of a coordinate neighbourhood U in the Euclidean space E_{n}, resp. $U \subset E_{\infty}$.

1 Definition (J. Mikeš, N.S. Sinyukov [4]). A curve ℓ, which is given by the equations

$$
\begin{equation*}
\ell=\ell(t), \quad \lambda(t)=d \ell(t) / d t(\neq 0), \quad t \in I \tag{1}
\end{equation*}
$$

where t is a parameter, is called F-planar, if its tangent vector $\lambda\left(t_{0}\right)$, for any initial value t_{0} of the parameter t, remains, under parallel translation along the curve ℓ, in the distribution generated by the vector functions λ and $F \lambda$ along ℓ.

In particular, if $F=\varrho I$ we obtain the definition of a geodesic parametrized by an arbitrary parameter, see [4]. Here ϱ is a function and I is the identity operator.

In accordance with this definition, ℓ is F-planar if and only if the following condition holds [4]:

$$
\begin{equation*}
\nabla_{\lambda(t)} \lambda(t)=\varrho_{1}(t) \lambda(t)+\varrho_{2}(t) F \lambda(t) \tag{2}
\end{equation*}
$$

where ϱ_{1} and ϱ_{2} are some functions of the parameter t.

2 F-planar mappings between two spaces with affine connection

We suppose two spaces A_{n} and \bar{A}_{n} with torsion-free affine connections ∇ and $\bar{\nabla}$, respectively. Affine structures F and \bar{F} are defined on A_{n}, resp. \bar{A}_{n}.

2 Definition (J. Mikeš, N.S. Sinyukov [4]). A diffeomorphism $f: A_{n} \rightarrow \bar{A}_{n}$ between two manifolds with affine connections is called F-planar if any F-planar curve in A_{n} is mapped onto an \bar{F}-planar curve in \bar{A}_{n}.

Important convention. Due to the diffeomorphism f we always suppose that $\nabla, \bar{\nabla}$, and the affinors F, \bar{F} are defined on A_{n}. Moreover, we always identify a given curve $\ell: I \rightarrow A_{n}$ and its tangent vector function $\lambda(t)$ with their images $\bar{\ell}=f \circ \ell$ and $\bar{\lambda}=f_{*}(\lambda(t))$ in \bar{A}_{n}.

Two principially different cases are possible for the investigation:
a) $\bar{F}=a F+b I ;$

$$
\begin{equation*}
\text { b) } \bar{F} \neq a F+b I, \tag{4}
\end{equation*}
$$ a, b are some functions.

Naturally, case a) characterizes F-planar mappings which preserve F-structures. In case b) the structures of F and \bar{F} are essentially distinct. The following holds.

3 Theorem. An F-planar mapping from A_{n} onto \bar{A}_{n} preserve F-structures and is characterized by the following condition

$$
\begin{equation*}
P(X, Y)=\psi(X) Y+\psi(Y) X+\varphi(X) F Y+\varphi(Y) F X \tag{5}
\end{equation*}
$$

for any vector fields X, Y, where $P \stackrel{\text { def }}{=} \bar{\nabla}-\nabla$ is the deformation tensor field of f, ψ, φ are some linear forms.

Let us recall that on each tangent space $T_{x} A_{n}, P(X, Y)$ is a symmetric bilinear mapping $T_{x} A_{n} \times T_{x} A_{n} \rightarrow T_{x} A_{n}$ and a tensor field of type $\binom{1}{2}$.

Theorem 3 was proved by J. Mikeš and N. S. Sinyukov [4] for finite dimension $n>3$. Here we can show a more rational proof of this Theorem for $n>3$ and also a proof for $n=3$. We show a counter example for $n=2$.

3 F-planar mappings which preserve F-structures

First we prove the following proposition
4 Theorem. An F-planar mapping from A_{n} onto \bar{A}_{n} which preserves F-structures is characterized by condition (5).

In the sequel we shall need the following lemma:
5 Lemma. Let V be an n-dimensional vector space, $Q: V \times V \rightarrow V$ be a symmetric bilinear mapping and $F: V \rightarrow V$ a linear mapping. If, for each vector $\lambda \in V$

$$
\begin{equation*}
Q(\lambda, \lambda)=\varrho_{1}(\lambda) \lambda+\varrho_{2}(\lambda) F(\lambda) \tag{6}
\end{equation*}
$$

holds, where $\varrho_{1}(\lambda), \varrho_{2}(\lambda)$ are functions on V, then there are linear forms ψ and φ such that the condition

$$
\begin{equation*}
Q(X, Y)=\psi(X) Y+\psi(Y) X+\varphi(X) F(Y)+\varphi(Y) F(X) \tag{7}
\end{equation*}
$$

holds for any $X, Y \in V$.
Proof. Formula (6) has the following coordinate expression

$$
\begin{equation*}
Q_{\alpha \beta}^{h} \lambda^{\alpha} \lambda^{\beta}=\varrho_{1}(\lambda) \lambda^{h}+\varrho_{2}(\lambda) F_{\alpha}^{h} \lambda^{\alpha} \tag{8}
\end{equation*}
$$

where $\lambda^{i}, F_{i}^{h}, Q_{i j}^{h}$ are the components of λ, F, Q.

By multiplying (8) with $\lambda^{i} F_{\alpha}^{j} \lambda^{\alpha}$ and antisymmetrizing the indices h, i and j we obtain

$$
\begin{equation*}
\left\{Q_{\alpha \beta}^{[h} \delta_{\gamma}^{i} F_{\delta}^{j]}\right\} \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma} \lambda^{\delta}=0 \tag{9}
\end{equation*}
$$

where square brackets denote the alternation of indices. The term in curly brackets does not depend on λ and (9) holds for any vector $\lambda \in V$, therefore

$$
\begin{equation*}
Q_{(\alpha \beta}^{[h} \delta_{\gamma}^{i} F_{\delta)}^{j]}=0 \tag{10}
\end{equation*}
$$

holds, where the round brackets denote symmetrization of indices.
It is natural to assume that $F_{i}^{h} \neq a \delta_{i}^{h}$ with $a=$ const. By virtue of this there exist some vectors ξ^{h} such that $\xi^{\alpha} F_{\alpha}^{h} \neq b \xi^{h}, b=$ const. Introducing $P_{i}^{h} \stackrel{\text { def }}{=} P_{i \alpha}^{h} \xi^{\alpha}, P^{h} \stackrel{\text { def }}{=} P_{\alpha}^{h} \xi^{\alpha}$ and $F^{h} \stackrel{\text { def }}{=} F_{\alpha}^{h} \xi^{\alpha}$, we contract (10) with $\xi^{\alpha} \xi^{\beta} \xi^{\gamma} \xi^{\delta}$. Since $F^{h} \neq b \xi^{h}$, we obtain $P^{h}=2 a \xi^{h}+2 b F^{h}$, where a, b are certain constants. Contracting (10) with $\xi^{\beta} \xi^{\gamma} \xi^{\delta}$, and taking into account the precending, we have $P_{i}^{h}=a \delta_{i}^{h}+b F_{i}^{h}+a_{i} \xi^{h}+b_{i} F^{h}$, where a_{i}, b_{i} are some components of linear forms. Analogously, contracting (10) with $\xi^{\gamma} \xi^{\delta}$, we have

$$
\begin{equation*}
Q_{i j}^{h}=\psi_{i} \delta_{j}^{h}+\psi_{j} \delta_{i}^{h}+\varphi_{i} F_{j}^{h}+\varphi_{j} F_{i}^{h}+\xi^{h} a_{i j}+F^{h} b_{i j} \tag{11}
\end{equation*}
$$

where ψ_{i}, φ_{i} are components of a 1-form ψ, φ defined on V, and $a_{i j}, b_{i j}$ are components of a symmetric 2-form defined on V.

In case that $a_{i j}=b_{i j}=0$, evidently from (11) we obtain formula (7).
Now we will suppose that either $a_{i j} \neq 0$, or $b_{i j} \neq 0$. Since ξ^{h} and F^{h} are noncollinear, it is evident that

$$
\begin{equation*}
\xi^{h} a_{i j}+F^{h} b_{i j} \neq 0 \tag{12}
\end{equation*}
$$

Formula (10) by virtue of (11) has the form

$$
\begin{equation*}
\Omega_{(\alpha \beta \gamma}^{[h i} F_{\delta)}^{j]}=0 \tag{13}
\end{equation*}
$$

where $\Omega_{\alpha \beta \gamma}^{h i} \stackrel{\text { def }}{=}\left(\xi^{h} a_{\alpha \beta}+F^{h} b_{\alpha \beta}\right) \delta_{\gamma}^{i}-\left(\xi^{i} a_{\alpha \beta}+F^{i} b_{\alpha \beta}\right) \delta_{\gamma}^{h}$. It is possible to show that there exists some vector ε^{h} for which $\Omega_{\alpha \beta \gamma}^{h i} \varepsilon^{\alpha} \varepsilon^{\beta} \varepsilon^{\gamma} \neq 0$, otherwise (12) would be violated.

Contracting (13) with $\varepsilon^{\alpha} \varepsilon^{\beta} \varepsilon^{\gamma} \varepsilon^{\delta}$, we have $F_{\alpha}^{h} \varepsilon^{\alpha}=a \xi^{h}+b F^{h}+c \varepsilon^{h}$, with a, b, c being constants. Analogously, contracting (13) with $\varepsilon^{\beta} \varepsilon^{\gamma} \varepsilon^{\delta}$, we obtain that F_{i}^{h} is represented in the following manner:

$$
\begin{equation*}
F_{i}^{h}=a \delta_{i}^{h}+a_{i} \xi^{h}+b_{i} F^{h}+c_{i} \varepsilon^{h} \tag{14}
\end{equation*}
$$

where a_{i}, b_{i}, c_{i} are components of 1-forms.

Formula (13) by virtue of (14) has the form

$$
\begin{equation*}
\omega_{(\alpha \beta \gamma}^{[h i} \delta_{\delta)}^{j]}=0 \tag{15}
\end{equation*}
$$

where

$$
\omega_{\alpha \beta \gamma}^{h i} \stackrel{\text { def }}{=} \xi^{[h} F^{i]}\left(a_{(\alpha \beta} b_{\gamma)}-b_{(\alpha \beta} a_{\gamma)}\right)+\xi^{[h} \varepsilon^{i]} a_{(\alpha \beta} c_{\gamma)}+F^{[h} \varepsilon^{i]} b_{(\alpha \beta} c_{\gamma)} .
$$

a) If $n>3$ then $\omega_{\alpha \beta \gamma}^{h i}=0$ follows from (13), and because ξ^{h}, F^{h} and ε^{h} are linear independent, we obtain $a_{(\alpha \beta} c_{\gamma)}=0$ and $b_{(\alpha \beta} c_{\gamma)}=0$. Therefore $c_{i}=0$ and

$$
\begin{equation*}
F_{i}^{h}=a \delta_{i}^{h}+a_{i} \xi^{h}+b_{i} F^{h} \tag{16}
\end{equation*}
$$

b) If $n=3$ the matrix F_{i}^{h} has always the previous form (16) while ξ^{h}, F^{h} and ε^{h} are not linear dependent.

Then formula (13) becomes (15), whereas $\omega_{\alpha \beta \gamma}^{h i} \stackrel{\text { def }}{=} \xi^{[h} F^{i]}\left(a_{(\alpha \beta} b_{\gamma)}-b_{(\alpha \beta} a_{\gamma)}\right)$. For $n>2$ it follows $\omega_{\alpha \beta \gamma}^{h i}=0$ and consequently

$$
\begin{equation*}
a_{(\alpha \beta} b_{\gamma)}=b_{(\alpha \beta} a_{\gamma)} \tag{17}
\end{equation*}
$$

If a_{α} and b_{α} are linear indepedent, then from (17) we obtain

$$
a_{i j}=a_{(i} \omega_{j)} \quad \text { and } \quad b_{i j}=b_{(i} \omega_{j)}
$$

where ω_{i} are components of a 1-form. Afterwards it is possible to show that on the basis of (16) formula (11) assumes the following form

$$
Q_{i j}^{h}=\left(\psi_{i}-a \omega_{i}\right) \delta_{j}^{h}+\left(\psi_{j}-a \omega_{j}\right) \delta_{i}^{h}+\left(\varphi_{i}+a \omega_{i}\right) F_{j}^{h}+\left(\varphi_{j}+a \omega_{j}\right) F_{i}^{h}
$$

i.e. formula (7) also holds.

Now there remains the case that a_{α} and b_{α} are linear depedent. For example, $b_{\alpha}=\alpha a_{\alpha}, \alpha \neq 0$. Then from (17) follows $b_{\alpha \beta}=\alpha a_{\alpha \beta}$. We denote $\Lambda^{h}=$ $\xi^{h}+\alpha F^{h}, \omega_{i}=\psi_{i}+\alpha \varphi_{i}, \omega_{i j}=a_{i j}+a_{(i} \varphi_{j)}$, from (11) and (16) we obtain that $Q_{i j}^{h}$ and F_{i}^{h} are represented by

$$
\begin{equation*}
Q_{i j}^{h}=\psi_{i} \delta_{j}^{h}+\psi_{j} \delta_{i}^{h}+\Lambda^{h} \omega_{i j} \quad \text { and } \quad F_{i}^{h}=a \delta_{i}^{h}+\Lambda^{h} a_{i} \tag{18}
\end{equation*}
$$

Then formula (8) appears in the following way

$$
\Lambda^{h}\left(\omega_{\alpha \beta} \lambda^{\alpha} \lambda^{\beta}-\varrho_{2}(\lambda) a_{\alpha} \lambda^{\alpha}\right)=\lambda^{h}\left(\varrho_{1}(\lambda)+a \varrho_{2}(\lambda)-2 \psi_{\alpha} \lambda^{\alpha}\right)
$$

From this it follows that

$$
\omega_{\alpha \beta} \lambda^{\alpha} \lambda^{\beta}=\varrho_{2}(\lambda) a_{\alpha} \lambda^{\alpha}, \quad \forall \lambda^{h} \neq \alpha \Lambda^{h}
$$

By simple analysis we obtain that $\omega_{i j}=a_{(i} \sigma_{j)}$, where σ_{i} are components of a 1-form.

Then due to (18) we have $Q_{i j}^{h}=\left(\psi_{i}-a \sigma_{i}\right) \delta_{j}^{h}+\left(\psi_{j}-a \sigma_{j}\right) \delta_{i}^{h}+\sigma_{i} F_{j}^{h}+\sigma_{j} F_{i}^{h}$.
idently Lemma 5 is proved. Evidently Lemma 5 is proved.

Proof of Theorem 4. It is obvious that geodesics are a special case of F-planar curves. Let a geodesic in A_{n}, which satisfies the equations (1) and $\nabla_{\lambda} \lambda=0$, be mapped onto an F-planar curve in \bar{A}_{n}, which satisfies equations (1) and

$$
\bar{\nabla}_{\lambda} \lambda=\bar{\varrho}_{1}(t) \lambda+\bar{\varrho}_{2}(t) F \lambda .
$$

Here $\bar{\varrho}_{1}, \bar{\varrho}_{2}$ are functions of the parameter t.
Because the deformation tensor satisfies $P(\lambda, \lambda)=\bar{\nabla}_{\lambda} \lambda-\nabla_{\lambda} \lambda$, we have

$$
P(\lambda(t), \lambda(t))=\bar{\varrho}_{1}(t) \lambda+\bar{\varrho}_{2}(t) F \lambda .
$$

It follows from the previous formula that in each point $x \in A_{n}$

$$
P(\lambda, \lambda)=\varrho_{1}(\lambda) \lambda+\varrho_{2}(\lambda) F \lambda .
$$

for each tangent vector $\lambda \in T_{x} ; \varrho_{1}(\lambda), \varrho_{2}(\lambda)$ are functions dependent on λ.
Based on Lemma 5 it follows that there exist linear forms ψ and φ, for which formula (5) holds.

4 F-planar mappings which do not preserve F-structures

We now assume that the structures F and \bar{F} are essentially distinct, i.e.

$$
\bar{F}_{i}^{h} \neq a \delta_{i}^{h}+b F_{i}^{h} .
$$

a) It is obvious, that geodesics are a special case of F-planar curves. Let a geodesic in A_{n}, which satisfies the equations (1) and $\nabla_{\lambda} \lambda=0$, be mapped onto an \bar{F}-planar curve in \bar{A}_{n}, which satisfies the equations (1) and

$$
\bar{\nabla}_{\lambda} \lambda=\bar{\varrho}_{1}(t) \lambda+\bar{\varrho}_{2}(t) \bar{F} \lambda .
$$

Here $\bar{\varrho}_{1}, \bar{\varrho}_{2}$ are functions of the parameter t.
For the deformation tensor we have $P(\lambda(t), \lambda(t))=\bar{\varrho}_{1}(t) \lambda+\bar{\varrho}_{2}(t) \bar{F} \lambda$. It follows from the previous formula that in each point $x \in A_{n}$

$$
P(\lambda, \lambda)=\varrho_{1}(\lambda) \lambda+\varrho_{2}(\lambda) \bar{F} \lambda .
$$

for each tangent vector $\lambda \in T_{x} ; \varrho_{1}(\lambda), \varrho_{2}(\lambda)$ are functions dependent on λ.
Based on Lemma 5 it follows, that there exist linear forms ψ and φ, for which formula

$$
\begin{equation*}
P(X, Y)=\psi(X) Y+\psi(Y) X+\varphi(X) \bar{F} Y+\varphi(Y) \bar{F} X \tag{19}
\end{equation*}
$$

holds.
b) Let a special F-planar curve in A_{n}, which satisfies the equations (1) and $\nabla_{\lambda} \lambda=F \lambda$, be mapped onto an \bar{F}-planar curve in \bar{A}_{n}, which satisfies the equations (1) and

$$
\bar{\nabla}_{\lambda} \lambda=\bar{\varrho}_{1}(t) \lambda+\bar{\varrho}_{2}(t) \bar{F} \lambda .
$$

Here $\bar{\varrho}_{1}, \bar{\varrho}_{2}$ are functions of the parameter t.
For the deformation tensor we have $P(\lambda(t), \lambda(t))=F \lambda+\bar{\varrho}_{1}(t) \lambda+\bar{\varrho}_{2}(t) \bar{F} \lambda$. It follows from the previous formula that in each point $x \in A_{n}$

$$
P(\lambda, \lambda)=F \lambda+\varrho_{1}(\lambda) \lambda+\varrho_{2}(\lambda) \bar{F} \lambda
$$

for each tangent vector $\lambda \in T_{x} ; \varrho_{1}(\lambda), \varrho_{2}(\lambda)$ are functions dependent on λ.
Applying (19) we obtain

$$
F \lambda=\tilde{\varrho}_{1}(\lambda) \lambda+\tilde{\varrho}_{2}(\lambda) \bar{F} \lambda .
$$

Analyzing this expression like in Lemma 5 we convince ourselves that formula (3) holds. In this way we prove

6 Theorem. Any F-planar mapping of a space with affine connection A_{n} onto \bar{A}_{n} preserves F-structures.

5 F-planar mappings for dimension $\mathrm{n}=2$

It is easy to see that for $n=2$ Theorems 3 and 4 do not hold. If they would hold, the functions ϱ_{1} and ϱ_{2}, appearing in (6), would be linear in λ.

In the case

$$
F_{i}^{h}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

for example, these functions have the forms

$$
\varrho_{1}(\lambda)=\frac{\lambda^{1} P_{\alpha \beta}^{1} \lambda^{\alpha} \lambda^{\beta}+\lambda^{2} P_{\alpha \beta}^{2} \lambda^{\alpha} \lambda^{\beta}}{\left(\lambda^{1}\right)^{2}+\left(\lambda^{2}\right)^{2}} \quad \text { and } \quad \varrho_{2}(\lambda)=\frac{\lambda^{1} P_{\alpha \beta}^{2} \lambda^{\alpha} \lambda^{\beta}-\lambda^{2} P_{\alpha \beta}^{1} \lambda^{\alpha} \lambda^{\beta}}{\left(\lambda^{1}\right)^{2}+\left(\lambda^{2}\right)^{2}}
$$

which are not linear in general.
On the other hand an arbitrary diffeomorphism from A_{2} onto \bar{A}_{2} is an F planar mapping with (6) being valid for the above functions ϱ_{1} and ϱ_{2}.

References

[1] D.V. Beklemishev: Differential geometry of spaces with almost complex structure, Itogi Nauki. Geometriya, M. VINITI AN SSSR. 10, pp. 165-212, (1963).
[2] V.E. Fomin: On the projective correspondence of two Riemannian spaces of infinite dimension, Tr. Geom. Semin. 10, pp. 86-96, (1978).
[3] J. Mikeš: Holomorphically projective mappings and their generalizations, J. Math. Sci., 89, 3, pp. 1334-1353, (1998).
[4] J. Mikeš, N.S. Sinyukov: On quasiplanar mappings of spaces of affine connection, Izv. Vyssh. Uchebn. Zaved., Mat., 1(248), pp. 55-61, 1983; Sov. Math., 27, 1, pp. 63-70, (1983).
[5] A.Z. Petrov: Modeling physical fields, Gravitation and the Theory of Relativity, Kazan, 4-5, 7-21, (1968).
[6] N.S. Sinyukov: Geodesic mappings of Riemannian spaces, Nauka, Moscow, 1979.
[7] K. Yano: Differential geometry on complex and almost complex spaces, Oxford-LondonNew York-Paris-Frankfurt: Pergamon Press. XII, 323p., 1965.

[^0]: ${ }^{i}$ This work is supported by grant No. 201/05/2707 of The Czech Science Foundation and by the Council of the Czech Government MSM 6198959214.

