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Abstract. For a submodule N of an R-module M , a unique product of prime ideals in R is
assigned, which is called the generalized prime ideal factorization of N in M , and denoted as
PM (N). But for a product of prime ideals p1 · · · pn in R and an R-module M , there may not
exist a submodule N in M with PM (N) = p1 · · · pn. In this article, for an arbitrary product
of prime ideals p1 · · · pn and a module M , we find conditions for the existence of submodules
in M having p1 · · · pn as their generalized prime ideal factorization.
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1 Introduction

Throughout this article, R denotes a commutative Noetherian ring with
identity and M will be a finitely generated unitary R-module. The reference for
standard terminology and notations will be [3] and [4].

A proper submodule N of an R-module M is called a prime submodule of
M if for any a ∈ R and x ∈ M , ax ∈ N implies a ∈ (N : M) or x ∈ N . If N
is a prime submodule of M , then (N : M) = p, a prime ideal in R, and we say
N is a p-prime submodule of M . Let N and K be submodules of M . Then K is
called a p-prime extension of N in M if N is a p-prime submodule of K, and it

is denoted as N
p
⊂ K. In this case, Ass(K/N) = {p}.
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Let N be a proper submodule of an R-module M . Then we have p ∈
Ass(M/N) if and only if there exists a p-prime extension ofN inM [1, Lemma 3].
A p-prime extension K of N is said to be maximal if K is maximal among the
submodules of M which are p-prime extensions of N in M . Since M is Noethe-
rian, maximal p-prime extensions exist. A filtration of submodules F : N =

M0

p1⊂ M1 ⊂ · · · ⊂ Mn−1

pn⊂ Mn = M is called a maximal prime extension

(MPE) filtration of M over N , if Mi−1

pi⊂ Mi is a maximal pi-prime extension
in M for 1 ≤ i ≤ n. It is proved that Ass(M/Mi−1) = {pi, . . . , pn} for each
1 ≤ i ≤ n [1, Proposition 14]. Hence, the set of prime ideals which occur in any
MPE filtration of M over N is exactly equal to Ass(M/N).

A maximal p-prime extension K of N is said to be regular if p is a maximal

element in Ass(M/N), and the filtration F : N = M0

p1⊂ M1 ⊂ · · · ⊂ Mn−1

pn⊂
Mn = M is called a regular prime extension (RPE) filtration of M over N if

Mi−1

pi⊂Mi is a regular pi-prime extension in M for 1 ≤ i ≤ n. In this case, for

each i < j, Mi

pi+1⊂ Mi+1 · · · ⊂Mj−1

pj⊂Mj is also an RPE filtration of Mj over
Mi. Since RPE filtrations are MPE filtrations, Ass(Mj/Mi) = {pi+1, . . . , pj} for
1 ≤ i < j ≤ n. In particular, Ass(M/N) = {p1, . . . , pn}.

The following lemma gives the condition for interchanging the occurrences
of prime ideals in an RPE filtration.

Lemma 1.1. [1, Lemma 20] Let N be a proper submodule of M and N =

M0 ⊂ · · · ⊂ Mi−1

pi⊂ Mi

pi+1⊂ Mi+1 ⊂ · · · ⊂ Mn = M be an RPE filtration of M
over N . If pi+1 6⊆ pi for some i, then there exists a submodule Ki of M such that

N = M0 ⊂ · · · ⊂Mi−1

pi+1⊂ Ki

pi⊂Mi+1 ⊂ · · · ⊂Mn = M is an RPE filtration of
M over N .

RPE filtrations satisfy the following uniqueness property.

Lemma 1.2. [1, Theorem 22] For a proper submodule N of M , the number
of times a prime ideal p occurs in any RPE filtration of M over N is unique,
and hence, any two RPE filtrations of M over N have the same length.

The submodules which occur in an RPE filtration are characterized as fol-
lows.

Lemma 1.3. [2, Lemma 3.1]. Let N be a proper submodule of an R-module

M . If N = M0

p1⊂M1 ⊂ · · · ⊂Mn−1

pn⊂ Mn = M is an RPE filtration of M over
N , then Mi = {x ∈M | p1 · · · pix ⊆ N} for 1 ≤ i ≤ n.

Hence, the product of prime ideals that occur in any two RPE filtrations
of M over N is the same. This product is called the generalized prime ideal
factorization of N in M and denoted as PM (N) in [5], and sufficient conditions
for PM (p1 · · · pnM) = p1 · · · pn were found, where p1, . . . , pn are prime ideals in
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R [5, Theorem 2.14].
There may be products of prime ideals that are not the generalized prime

ideal factorization of any submodule of a given module.

Example 1.4. Let R = k[x,y,z]
(xy−z2,x2−yz) and x, y, z denote the images of x, y, z

respectively in R. Let p be the prime ideal (x, z). Then (p2 : p) = (x, y, z).
Suppose there exists an ideal a in R with PR(a) = p2. Then there exists an

RPE filtration a
p
⊂ a1

p
⊂ R and therefore, Ass(R/a) = {p}. By Lemma 1.3,

a1 = (a : p), and since p2 ⊆ a, we have (p2 : p) ⊆ (a : p). Since (x, y, z) = (p2 :
p) ⊆ (a : p) = a1 ( R and (x, y, z) is a maximal ideal, (x, y, z) = (a : p). Then
(x, y, z) = (a : p) for every p ∈ p\a. This would imply that (x, y, z) ∈ Ass(R/a),
a contradiction. Therefore, an ideal a in R cannot have PR(a) = p2.

In this article, for a product of prime ideals p1 · · · pn (pi’s not necessarily dis-
tinct), we find conditions for the existence of submodules N of M with PM (N) =
p1 · · · pn. We also give a necessary and sufficient condition for PM (p1 · · · pnM) =
p1 · · · pn.

2 Ideals as Generalized Prime Ideal Factorization of
Submodules

Lemma 2.1. Let N be a submodule of M and p1, . . . , pr be some minimal
prime ideals in Ass(M/N). Then there exists a submodule K of M containing
N such that PM (K) = p1 · · · pr.

Proof. Let N = M0

q1⊂ M1 ⊂ · · · ⊂ Mn−1

qn⊂ Mn = M be an RPE filtration of
M over N . Since {q1, . . . , qn} = Ass(M/N), for each 1 ≤ i ≤ r, pi = qj for some
j. Since p1, . . . , pr are minimal, we can reorder q1, . . . , qn such that qj 6⊂ qk for
1 ≤ j < k ≤ n and qn−r+i = pi for 1 ≤ i ≤ r. So using Lemma 1.1 sufficient
times we can have an RPE filtration

N = K0 ⊂ K1 ⊂ · · · ⊂ Kn−r
p1⊂ Kn−r+1

p2⊂ · · · ⊂ Kn−1

pr⊂ Kn = M

of M over N . Then

Kn−r
p1⊂ Kn−r+1

p2⊂ · · · ⊂ Kn−1

pr⊂ Kn = M

is an RPE filtration. So if K = Kn−r, then K is a submodule of M containing
N with PM (K) = p1 · · · pr. QED

Now we show that for a prime ideal p in R, p ∈ Supp(M) is a necessary and
sufficient condition for the existence of a submodule N in M with PM (N) = p.
More generally, we have the following result.
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Proposition 2.2. Let M be an R-module and p1, . . . , pn be prime ideals in
R such that pi 6⊆ pj for every i, j ∈ {1, . . . , n} with i 6= j. Then the following
are equivalent:

(1) {p1, . . . , pn} ⊆ Supp(M);

(2) pi ∈ Supp(M/p1 · · · pnM) for every 1 ≤ i ≤ n;

(3) pi is minimal in Ass(M/p1 · · · pnM) for every 1 ≤ i ≤ n;

(4) There exists a submodule N in M with PM (N) = p1 · · · pn.

Proof. (i) ⇒ (ii): Suppose pi /∈ Supp(M/p1 · · · pnM) for some i. Then we have
(M/p1 · · · pnM)pi = 0. So we get Mpi = (p1 · · · pn)Mpi . Since (p1 · · · pn)pi ⊆
piRpi , by Nakayama’s lemma Mpi = 0. Therefore pi /∈ Supp(M).

(ii) ⇒ (iii): If q ∈ Supp(M/p1 · · · pnM), then p1 · · · pn ⊆ q, and therefore q
contains some pi. So the set of minimal elements of Supp(M/p1 · · · pnM) is con-
tained in {p1, . . . , pn}. Since pi 6⊆ pj for all i 6= j, p1, . . . , pn are minimal elements
in Supp(M/p1 · · · pnM). Therefore p1, . . . , pn are minimal in Ass(M/p1 · · · pnM).

(iii) ⇒ (iv): Since p1, . . . , pn are minimal in Ass(M/p1 · · · pnM), by Lemma
2.1, there exists a submodule N of M with PM (N) = p1 · · · pn.

(iv) ⇒ (i): Since p1, . . . , pn are the prime ideals which occur in an RPE
filtration of M over N , {p1, . . . , pn} = Ass(M/N) ⊆ Supp(M). QED

Corollary 2.3. Let p be a prime ideal in R. Then p ∈ Supp(M) if and only
if there exists a submodule N in M with PM (N) = p.

In Proposition 2.2, the prime ideals are distinct. Now we find conditions for
the product of prime ideals that need not be distinct to be a generalized prime
ideal factorization of some submodule.

Proposition 2.4. Let p be a prime ideal in R and r be a positive integer.
If p ∈ Ass(pr−1M/prM), then there exists a submodule N in M such that
PM (N) = pr.

Proof. Let N = {x ∈ M | (prM : x) 6⊆ p}. Let x1, x2 ∈ N and u ∈ R. Then
there exists a1 ∈ (prM : x1) \ p and a2 ∈ (prM : x2) \ p. Then a1a2 ∈ (prM :
ux1 + x2) \ p, which implies that ux1 + x2 ∈ N . Hence N is a submodule of M .
Since p ∈ Ass(pr−1M/prM), there exists x ∈ pr−1M such that p = (prM : x).
This implies x /∈ N . Therefore N is a proper submodule of M . Also, N ⊇ prM .

We claim that Ass(M/N) = {p}. Let q ∈ Ass(M/N). Then pr ⊆ q since
prM ⊆ N . Therefore p ⊆ q. Now q = (N : z) for some z ∈ M , z /∈ N , that
is, (prM : z) ⊆ p. Let a ∈ q. Then az ∈ N , which gives (prM : az) 6⊆ p. Let
b ∈ R \ p such that baz ∈ prM , i.e., ba ∈ (prM : z) ⊆ p. This implies a ∈ p.
Therefore q ⊆ p. Hence Ass(M/N) = {p}.
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If N = M0

p1⊂ M1 ⊂ · · · ⊂ Mk−1

pk⊂ Mk = M is an RPE filtration of M
over N , then {p1, . . . , pk} = Ass(M/N) = {p}. So PM (N) = pk. Suppose k < r.
Then pr−1 ⊆ pk, which implies pr−1M ⊆ pkM ⊆ N . So, for every x ∈ pr−1M ,
(prM : x) 6⊆ p. But p ∈ Ass(pr−1M/prM) implies p = (prM : x) for some
x ∈ pr−1M , a contradiction. Therefore, k ≥ r, and this implies Mr ⊆Mk = M .
By Lemma 1.3, Mr = {x ∈ M | prx ⊆ N}. For any x ∈ M , prx ⊆ prM ⊆ N .

Therefore Mr = M . So, N
p
⊂ M1

p
⊂ · · ·

p
⊂ Mr = M is an RPE filtration of M

over N , and hence PM (N) = pr. QED

In Example 1.4, p /∈ Ass(p/p2) = {(x, y, z)}. So p need not be an element of
Ass(pr−1M/prM) even if prM ( pr−1M .

Theorem 2.5. Let M be an R-module, p1, . . . , pn be distinct prime ideals
in R ordered as pi 6⊂ pj for i < j, and r1, . . . , rn be positive integers. If pi ∈
Supp(pi

ri−1pi+1
ri+1 · · · pnrnM) for i = 1, . . . , n, then there exists a submodule

N in M such that PM (N) = p1
r1 · · · pnrn .

Proof. We prove by induction on n. If n = 1, p1 ∈ Supp(p1
r1−1M) and by

Proposition 2.2, p1 ∈ Ass(p1
r1−1M/p1

r1M). Then by Proposition 2.4, there
exists a submodule N in M with PM (N) = p1

r1 . Now let n > 1, and assume
that the result is true for n− 1 prime ideals. Then there exists a submodule L
in M with PM (L) = p2

r2 · · · pnrn . That is, we have an RPE filtration

L
p2⊂ L(2)

1

p2⊂ · · ·
p2⊂ L(2)

r2

p3⊂ L(3)
1

p3⊂ · · · ⊂ L(n)
rn−1

pn⊂ L(n)
rn = M. (2.1)

Then p2
r2 · · · pnrnM ⊆ L.

So, we have Ann(p1
r1−1L) ⊆ Ann(p1

r1−1p2
r2 · · · pnrnM) ⊆ p1 since p1 ∈

Supp(p1
r1−1p2

r2 · · · pnrnM). That is, p1 ∈ Supp(p1
r1−1L), and by Proposition

2.2, p1 ∈ Ass(p1
r1−1L/p1

r1L). Then by Proposition 2.4, there exists a submodule
N in L such that PL(N) = p1

r1 . That is, we have the RPE filtration

N
p1⊂ L(1)

1

p1⊂ L(1)
2 ⊂ · · ·

p1⊂ L(1)
r1 = L. (2.2)

Next, we show that

N = L
(1)
0

p1⊂ L(1)
1

p1⊂ L(1)
2 ⊂ · · ·

p1⊂ L(1)
r1 = L

p2⊂ L(2)
1

p2⊂ · · ·
p2⊂ L(2)

r2

p3⊂ L(3)
1 ⊂ · · ·

pn−1⊂ L(n−1)
rn−1

pn⊂ L
(n)
1

pn⊂ · · ·
pn⊂ L(n)

rn = M (2.3)

is an RPE filtration ofM overN , which would imply that PM (N) = p1
r1 · · · pnrn .

Since the filtration (2.1) is already an RPE filtration, it is enough to show that

L
(1)
j−1

p1⊂ L(1)
j is a regular prime extension in M for 1 ≤ j ≤ r1.
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From (2.2) we have that L
(1)
j−1 ⊂ L

(1)
j is a p1-prime extension for every

1 ≤ j ≤ r1. Suppose L
(1)
j−1

p1⊂ L
(1)
j is not a maximal p1-prime extension in M

for some j. Then there exists a submodule K ⊃ L
(1)
j such that L

(1)
j−1

p1⊂ K is a

p1-prime extension in M . Since L
(1)
j−1

p1⊂ L(1)
j is a maximal p1-prime extension in

L, K 6⊆ L. Let x ∈ K \ L. For 2 ≤ i ≤ n, since p1 6⊆ pi, there exists pi ∈ p1 \ pi.
Then pix ∈ L(1)

j−1. Since L
(1)
j−1 ⊂ L, from (2.1) we get that pix ∈ L(i)

k for every
2 ≤ i ≤ n, 1 ≤ k ≤ ri.

Since pnx ∈ L
(n)
rn−1, L

(n)
rn−1 ⊂ M is a pn-prime extension, and pn /∈ pn, we

have x ∈ L
(n)
rn−1. Then pnx ∈ L

(n)
rn−2 and L

(n)
rn−2

pn⊂ L
(n)
rn−1 is a prime extension

implies x ∈ L(n)
rn−2. Repeating this argument rn − 3 times, we get x ∈ L(n−1)

rn−1 .

Replacing M by L
(n−1)
rn−1 and pn by pn−1 in the previous paragraph, we get

x ∈ L(n−2)
rn−2 . Continuing this process, finally we get x ∈ L(1)

r1 = L, a contradiction.

Therefore, L
(1)
j−1

p1⊂ L(1)
j is a maximal prime extension in M for every 1 ≤ j ≤ r1,

and hence (2.3) is an MPE filtration of M over N .

So, for 1 ≤ j ≤ r1, we get Ass(M/L
(1)
j−1) = {p1, . . . , pn} and since p1 6⊂ pi for

every i > 1, p1 is maximal in Ass(M/L
(1)
j−1). Therefore (2.3) is an RPE filtration

of M over N . Hence PM (N) = p1
r1 · · · pnrn . QED

The converse of Theorem 2.5 does not hold. For example, if p2 ( p1 are
prime ideals in a ring R and M is the R-module R

p2
⊕ R

p2
, then for its submodule

N = p1

p2
⊕ 0, we have the RPE filtration

N =
p1

p2
⊕ 0

p1⊂ R

p2
⊕ 0

p2⊂ R

p2
⊕ R

p2
= M

of M over N . So we have PM (N) = p1p2. But p2M = 0. Therefore p1 /∈
Supp(p2M).

Next, we show that if we assume further that pi 6⊂ pj for i 6= j, the converse
of Theorem 2.5 holds. We need the following lemma.

Lemma 2.6. [2, Lemma 2.8] If N
p
⊂ K is a regular p-prime extension in M ,

then for any submodule L of M , N ∩L
p
⊂ K ∩L is a regular p-prime extension

in L when N ∩ L 6= K ∩ L.

Theorem 2.7. Let N be a submodule of M with PM (N) = p1
r1 · · · pnrn ,

where p1, . . . , pn are distinct prime ideals in R and r1, . . . , rn are positive in-
tegers. If all the prime ideals in Ass(M/N) are minimal, then we have pi ∈
Supp(p1

r1 · · · pi−1
ri−1pi

ri−1pi+1
ri+1 · · · pnrnM) for i = 1, . . . , n.
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Proof. Since p1, . . . , pn are minimal, for every i we can reorder p1, . . . , pn such
that p1 = pi and by Lemma 1.1, we have an RPE filtration

N
p1⊂ L(1)

1

p1⊂ L(1)
2 ⊂ · · · ⊂ L(1)

r1−1

p1⊂ L(1)
r1

p2⊂ L(2)
1 ⊂ · · ·

pn⊂ L(n)
rn = M

of M over N . So it is enough to show that p1 ∈ Supp(p1
r1−1p2

r2 · · · pnrnM).

Clearly p1
r1 · · · pnrnM ⊆ N and p1

r1−1p2
r2 · · · pnrnM ⊆ L(1)

1 .

We claim that p1
r1−1p2

r2 · · · pnrnM 6⊆ N . Let x ∈ L(1)
r1 \L(1)

r1−1. Then p1
r1−1x ⊆

L
(1)
1 and p1

r1−1x 6⊂ N . So there exists b ∈ p1
r1−1 such that bx ∈ L

(1)
1 \ N .

Choose aj ∈ pj \ p1 for every 2 ≤ j ≤ n and let a =
∏

2≤j≤n a
rj
j . Then

bax ∈ p1
r1−1p2

r2 · · · pnrnM . Suppose bax ∈ N . Then, since bx ∈ L(1)
1 \ N and

N
p1⊂ L

(1)
1 is a p1-prime extension, we get a ∈ p1, a contradiction. So bax /∈ N .

Therefore p1
r1−1p2

r2 · · · pnrnM 6⊆ N . So we have

N ∩ (p1
r1−1p2

r2 · · · pnrnM) ( p1
r1−1p2

r2 · · · pnrnM
= L

(1)
1 ∩ (p1

r1−1p2
r2 · · · pnrnM).

Then by Lemma 2.6,

N ∩ (p1
r1−1p2

r2 · · · pnrnM)
p1⊂ p1

r1−1p2
r2 · · · pnrnM

is a regular p1-prime extension in p1
r1−1p2

r2 · · · pnrnM . Then by Corollary 2.3,
p1 ∈ Supp(p1

r1−1p2
r2 · · · pnrnM). QED

From Theorems 2.5 and 2.7, we get the following corollary.

Corollary 2.8. Let p1, . . . , pn be distinct prime ideals in R with pi 6⊂ pj
for i 6= j, and r1, . . . , rn be positive integers. Then p1

r1 · · · pnrn is the gener-
alized prime ideal factorization of some submodule of M if and only if pi ∈
Supp(p1

r1 · · · pi−1
ri−1pi

ri−1pi+1
ri+1 · · · pnrnM) for every 1 ≤ i ≤ n.

In [5] we have found conditions for PM (p1 · · · pnM) = p1 · · · pn [5, Theo-
rem 2.14] and showed that this need not always be true [5, Example 2.5]. Now
for an R-module M and a product of prime ideals a = p1 · · · pn (pi’s not neces-
sarily distinct), we give a necessary and sufficient condition for PM (aM) = a.

Theorem 2.9. Let M be an R-module and p1, . . . , pn be prime ideals in R,
not necessarily distinct, with pi maximal among {pi, . . . , pn} for 1 ≤ i ≤ n. Let
a = p1 · · · pn, a0 = R, and ai = p1 · · · pi for i = 1, . . . , n− 1. Then PM (aM) = a

if and only if Ass
( (aM :ai)

(aM :ai−1)

)
= {pi} for every 1 ≤ i ≤ n.

Proof. If Ass
( (aM :ai)

(aM :ai−1)

)
= {pi} for every 1 ≤ i ≤ n, we show that

aM
p1⊂ (aM : a1)

p2⊂ (aM : a2) ⊂ · · · ⊂ (aM : an−1)
pn⊂ (aM : a) = M (2.4)
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is an RPE filtration.
Ass
( (aM :ai)

(aM :ai−1)

)
= {pi} implies that there exists a regular pi-prime extension

K of (aM : ai−1) in (aM : ai). Then K = {x ∈ (aM : ai) | pix ⊆ (aM : ai−1)} by
Lemma 1.3. For every x ∈ (aM : ai), ai−1pix = aix ⊆ aM , that is, pix ⊆ (aM :
ai−1). Therefore, K = (aM : ai), and hence (aM : ai) is the unique regular
pi-prime extension of (aM : ai−1) in (aM : ai). Suppose it is not maximal in
M . Then there exists x ∈ M \ (aM : ai) such that pix ⊆ (aM : ai−1), i.e., x ∈
(aM : ai−1pi) = (aM : ai), a contradiction. So (aM : ai) is a maximal pi-prime
extension of (aM : ai−1) in M for every i. Therefore (2.4) is an MPE filtration
of M over aM . This implies that Ass

(
M

(aM :ai−1)

)
= {pi, . . . , pn} for every 1 ≤

i ≤ n. Since pi is maximal among {pi, . . . , pn}, pi is maximal in Ass
(

M
(aM :ai−1)

)
.

Therefore (2.4) is an RPE filtration. Hence PM (aM) = p1 · · · pn = a.
Conversely, suppose that PM (aM) = a = p1 · · · pn. Since pi is maximal

among {pi, . . . , pn} for every 1 ≤ i ≤ n, we can construct an RPE filtration

aM = M0

p1⊂M1

p2⊂M2 ⊂ · · ·Mn−1

pn⊂ Mn = M

of M over aM . Then by Lemma 1.3, Mi = {x ∈M | p1 · · · pix ⊆ aM}, i.e., Mi =

(aM : ai) for every 1 ≤ i ≤ n. Then clearly Ass
( (aM :ai)

(aM :ai−1)

)
= Ass

(
Mi
Mi−1

)
= {pi}

for every 1 ≤ i ≤ n. QED

References

[1] T. Duraivel, S. Mangayarcarassy, and K. Premkumar, Prime extension filtration of mod-
ules, Int. J. Pure Appl. Math., 98(2) (2015), 211–220.

[2] T. Duraivel, S. Mangayarcarassy, and K. Premkumar, Prime extension dimension of a
module, J. Algebra Relat. Top., 6(2) (2018), 97–106.

[3] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer-
Verlag, 1995.

[4] H. Matsumura, Commutative ring theory, Cambridge University Press, 1989.

[5] K. R. Thulasi, T. Duraivel, and S. Mangayarcarassy, Generalized prime ideal factorization
of submodules, J. Algebra Relat. Top., 9(2) (2021), 121–129.


