Ideals as Generalized Prime Ideal Factorization of Submodules

K. R. Thulasi ${ }^{i}$
Department of Mathematics, Pondicherry University, Puducherry, India. thulasi.3008@gmail.com
T. Duraivel
Department of Mathematics, Pondicherry University, Puducherry, India. tduraivel@gmail.com
\section*{S. Mangayarcarassy}
Department of Mathematics, Puducherry Technological University, Puducherry, India
dmangay@ptuniv.edu.in

Received: 10.03.2023; accepted: 07.03.2024.

Abstract

For a submodule N of an R-module M, a unique product of prime ideals in R is assigned, which is called the generalized prime ideal factorization of N in M, and denoted as $\mathcal{P}_{M}(N)$. But for a product of prime ideals $\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$ in R and an R-module M, there may not exist a submodule N in M with $\mathcal{P}_{M}(N)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$. In this article, for an arbitrary product of prime ideals $\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$ and a module M, we find conditions for the existence of submodules in M having $\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$ as their generalized prime ideal factorization.

Keywords: prime submodule, prime filtration, Noetherian ring, prime ideal factorization, regular prime extension filtration

MSC 2020 classification: primary 13A05, secondary 13A15, 13E05, 13E15

1 Introduction

Throughout this article, R denotes a commutative Noetherian ring with identity and M will be a finitely generated unitary R-module. The reference for standard terminology and notations will be [3] and [4].

A proper submodule N of an R-module M is called a prime submodule of M if for any $a \in R$ and $x \in M, a x \in N$ implies $a \in(N: M)$ or $x \in N$. If N is a prime submodule of M, then $(N: M)=\mathfrak{p}$, a prime ideal in R, and we say N is a \mathfrak{p}-prime submodule of M. Let N and K be submodules of M. Then K is called a \mathfrak{p}-prime extension of N in M if N is a \mathfrak{p}-prime submodule of K, and it is denoted as $N \stackrel{\mathfrak{p}}{\subset} K$. In this case, $\operatorname{Ass}(K / N)=\{\mathfrak{p}\}$.

[^0]Let N be a proper submodule of an R-module M. Then we have $\mathfrak{p} \in$ $\operatorname{Ass}(M / N)$ if and only if there exists a \mathfrak{p}-prime extension of N in M [1, Lemma 3]. A \mathfrak{p}-prime extension K of N is said to be maximal if K is maximal among the submodules of M which are \mathfrak{p}-prime extensions of N in M. Since M is Noetherian, maximal \mathfrak{p}-prime extensions exist. A filtration of submodules $\mathcal{F}: N=$ $M_{0} \stackrel{\mathfrak{p}_{1}}{\subset} M_{1} \subset \cdots \subset M_{n-1} \stackrel{\mathfrak{p}_{n}}{\subset} M_{n}=M$ is called a maximal prime extension (MPE) filtration of M over N, if $M_{i-1} \stackrel{\mathfrak{p}_{i}}{\subset} M_{i}$ is a maximal \mathfrak{p}_{i}-prime extension in M for $1 \leq i \leq n$. It is proved that $\operatorname{Ass}\left(M / M_{i-1}\right)=\left\{\mathfrak{p}_{i}, \ldots, \mathfrak{p}_{n}\right\}$ for each $1 \leq i \leq n$ [1, Proposition 14]. Hence, the set of prime ideals which occur in any MPE filtration of M over N is exactly equal to $\operatorname{Ass}(M / N)$.

A maximal \mathfrak{p}-prime extension K of N is said to be regular if \mathfrak{p} is a maximal element in $\operatorname{Ass}(M / N)$, and the filtration $\mathcal{F}: N=M_{0} \stackrel{\mathfrak{p}_{1}}{\subset} M_{1} \subset \cdots \subset M_{n-1} \stackrel{\mathfrak{p}_{n}}{\subset}$ $M_{n}=M$ is called a regular prime extension (RPE) filtration of M over N if $M_{i-1} \stackrel{\mathfrak{p}_{i}}{\subset} M_{i}$ is a regular \mathfrak{p}_{i}-prime extension in M for $1 \leq i \leq n$. In this case, for each $i<j, M_{i} \stackrel{\mathfrak{p}_{i+1}}{\subset} M_{i+1} \cdots \subset M_{j-1} \stackrel{\mathfrak{p}_{j}}{\subset} M_{j}$ is also an RPE filtration of M_{j} over M_{i}. Since RPE filtrations are MPE filtrations, $\operatorname{Ass}\left(M_{j} / M_{i}\right)=\left\{\mathfrak{p}_{i+1}, \ldots, \mathfrak{p}_{j}\right\}$ for $1 \leq i<j \leq n$. In particular, $\operatorname{Ass}(M / N)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$.

The following lemma gives the condition for interchanging the occurrences of prime ideals in an RPE filtration.

Lemma 1.1. [1, Lemma 20] Let N be a proper submodule of M and $N=$ $M_{0} \subset \cdots \subset M_{i-1} \stackrel{\mathfrak{p}_{i}}{\subset} M_{i} \stackrel{\mathfrak{p}_{i+1}}{\subset} M_{i+1} \subset \cdots \subset M_{n}=M$ be an RPE filtration of M over N. If $\mathfrak{p}_{i+1} \nsubseteq \mathfrak{p}_{i}$ for some i, then there exists a submodule K_{i} of M such that $N=M_{0} \subset \cdots \subset M_{i-1} \stackrel{\mathfrak{p}_{i+1}}{\subset} K_{i} \stackrel{\mathfrak{p}_{i}}{\subset} M_{i+1} \subset \cdots \subset M_{n}=M$ is an RPE filtration of M over N.

RPE filtrations satisfy the following uniqueness property.
Lemma 1.2. [1, Theorem 22] For a proper submodule N of M, the number of times a prime ideal \mathfrak{p} occurs in any RPE filtration of M over N is unique, and hence, any two RPE filtrations of M over N have the same length.

The submodules which occur in an RPE filtration are characterized as follows.

Lemma 1.3. [2, Lemma 3.1]. Let N be a proper submodule of an R-module M. If $N=M_{0} \stackrel{\mathfrak{p}_{1}}{\subset} M_{1} \subset \cdots \subset M_{n-1} \stackrel{\mathfrak{p}_{n}}{\subset} M_{n}=M$ is an RPE filtration of M over N, then $M_{i}=\left\{x \in M \mid \mathfrak{p}_{1} \cdots \mathfrak{p}_{i} x \subseteq N\right\}$ for $1 \leq i \leq n$.

Hence, the product of prime ideals that occur in any two RPE filtrations of M over N is the same. This product is called the generalized prime ideal factorization of N in M and denoted as $\mathcal{P}_{M}(N)$ in [5], and sufficient conditions for $\mathcal{P}_{M}\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$ were found, where $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are prime ideals in
R [5, Theorem 2.14].
There may be products of prime ideals that are not the generalized prime ideal factorization of any submodule of a given module.
Example 1.4. Let $R=\frac{k[x, y, z]}{\left(x y-z^{2}, x^{2}-y z\right)}$ and $\bar{x}, \bar{y}, \bar{z}$ denote the images of x, y, z respectively in R. Let \mathfrak{p} be the prime ideal (\bar{x}, \bar{z}). Then $\left(\mathfrak{p}^{2}: \mathfrak{p}\right)=(\bar{x}, \bar{y}, \bar{z})$. Suppose there exists an ideal \mathfrak{a} in R with $\mathcal{P}_{R}(\mathfrak{a})=\mathfrak{p}^{2}$. Then there exists an RPE filtration $\mathfrak{a} \stackrel{\mathfrak{p}}{\subset} \mathfrak{a}_{1} \stackrel{\mathfrak{p}}{\subset} R$ and therefore, $\operatorname{Ass}(R / \mathfrak{a})=\{\mathfrak{p}\}$. By Lemma 1.3, $\mathfrak{a}_{1}=(\mathfrak{a}: \mathfrak{p})$, and since $\mathfrak{p}^{2} \subseteq \mathfrak{a}$, we have $\left(\mathfrak{p}^{2}: \mathfrak{p}\right) \subseteq(\mathfrak{a}: \mathfrak{p})$. Since $(\bar{x}, \bar{y}, \bar{z})=\left(\mathfrak{p}^{2}:\right.$ $\mathfrak{p}) \subseteq(\mathfrak{a}: \mathfrak{p})=\mathfrak{a}_{1} \subsetneq R$ and $(\bar{x}, \bar{y}, \bar{z})$ is a maximal ideal, $(\bar{x}, \bar{y}, \bar{z})=(\mathfrak{a}: \mathfrak{p})$. Then $(\bar{x}, \bar{y}, \bar{z})=(\mathfrak{a}: p)$ for every $p \in \mathfrak{p} \backslash \mathfrak{a}$. This would imply that $(\bar{x}, \bar{y}, \bar{z}) \in \operatorname{Ass}(R / \mathfrak{a})$, a contradiction. Therefore, an ideal \mathfrak{a} in R cannot have $\mathcal{P}_{R}(\mathfrak{a})=\mathfrak{p}^{2}$.

In this article, for a product of prime ideals $\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}\left(\mathfrak{p}_{i}\right.$'s not necessarily distinct), we find conditions for the existence of submodules N of M with $\mathcal{P}_{M}(N)=$ $\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$. We also give a necessary and sufficient condition for $\mathcal{P}_{M}\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)=$ $\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$.

2 Ideals as Generalized Prime Ideal Factorization of Submodules

Lemma 2.1. Let N be a submodule of M and $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be some minimal prime ideals in $\operatorname{Ass}(M / N)$. Then there exists a submodule K of M containing N such that $\mathcal{P}_{M}(K)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}$.

Proof. Let $N=M_{0} \stackrel{\mathfrak{q}_{1}}{\subset} M_{1} \subset \cdots \subset M_{n-1} \stackrel{\mathfrak{q}_{n}}{\subset} M_{n}=M$ be an RPE filtration of M over N. Since $\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n}\right\}=\operatorname{Ass}(M / N)$, for each $1 \leq i \leq r, \mathfrak{p}_{i}=\mathfrak{q}_{j}$ for some j. Since $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ are minimal, we can reorder $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n}$ such that $\mathfrak{q}_{j} \not \subset \mathfrak{q}_{k}$ for $1 \leq j<k \leq n$ and $\mathfrak{q}_{n-r+i}=\mathfrak{p}_{i}$ for $1 \leq i \leq r$. So using Lemma 1.1 sufficient times we can have an RPE filtration

$$
N=K_{0} \subset K_{1} \subset \cdots \subset K_{n-r} \stackrel{\mathfrak{p}_{1}}{\subset} K_{n-r+1} \stackrel{\mathfrak{p}_{2}}{\subset} \cdots \subset K_{n-1} \stackrel{\mathfrak{p}_{r}}{\subset} K_{n}=M
$$

of M over N. Then

$$
K_{n-r} \stackrel{\mathfrak{p}_{1}}{\subset} K_{n-r+1} \stackrel{\mathfrak{p}_{2}}{\subset} \cdots \subset K_{n-1} \stackrel{\mathfrak{p}_{r}}{\subset} K_{n}=M
$$

is an RPE filtration. So if $K=K_{n-r}$, then K is a submodule of M containing N with $\mathcal{P}_{M}(K)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}$.

QED
Now we show that for a prime ideal \mathfrak{p} in $R, \mathfrak{p} \in \operatorname{Supp}(M)$ is a necessary and sufficient condition for the existence of a submodule N in M with $\mathcal{P}_{M}(N)=\mathfrak{p}$. More generally, we have the following result.

Proposition 2.2. Let M be an R-module and $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be prime ideals in R such that $\mathfrak{p}_{i} \nsubseteq \mathfrak{p}_{j}$ for every $i, j \in\{1, \ldots, n\}$ with $i \neq j$. Then the following are equivalent:
(1) $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\} \subseteq \operatorname{Supp}(M)$;
(2) $\mathfrak{p}_{i} \in \operatorname{Supp}\left(M / \mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)$ for every $1 \leq i \leq n$;
(3) \mathfrak{p}_{i} is minimal in $\operatorname{Ass}\left(M / \mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)$ for every $1 \leq i \leq n$;
(4) There exists a submodule N in M with $\mathcal{P}_{M}(N)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$.

Proof. (i) \Rightarrow (ii): Suppose $\mathfrak{p}_{i} \notin \operatorname{Supp}\left(M / \mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)$ for some i. Then we have $\left(M / \mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)_{\mathfrak{p}_{i}}=0$. So we get $M_{\mathfrak{p}_{i}}=\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}\right) M_{\mathfrak{p}_{i}}$. Since $\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}\right)_{\mathfrak{p}_{i}} \subseteq$ $\mathfrak{p}_{i} R_{\mathfrak{p}_{i}}$, by Nakayama's lemma $M_{\mathfrak{p}_{i}}=0$. Therefore $\mathfrak{p}_{i} \notin \operatorname{Supp}(M)$.
(ii) \Rightarrow (iii): If $\mathfrak{q} \in \operatorname{Supp}\left(M / \mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)$, then $\mathfrak{p}_{1} \cdots \mathfrak{p}_{n} \subseteq \mathfrak{q}$, and therefore \mathfrak{q} contains some \mathfrak{p}_{i}. So the set of minimal elements of $\operatorname{Supp}\left(M / \mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)$ is contained in $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$. Since $\mathfrak{p}_{i} \nsubseteq \mathfrak{p}_{j}$ for all $i \neq j, \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are minimal elements in $\operatorname{Supp}\left(M / \mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)$. Therefore $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are minimal in $\operatorname{Ass}\left(M / \mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)$.
(iii) \Rightarrow (iv): Since $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are minimal in $\operatorname{Ass}\left(M / \mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)$, by Lemma 2.1, there exists a submodule N of M with $\mathcal{P}_{M}(N)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$.
(iv) \Rightarrow (i): Since $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are the prime ideals which occur in an RPE filtration of M over $N,\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}=\operatorname{Ass}(M / N) \subseteq \operatorname{Supp}(M)$.

Corollary 2.3. Let \mathfrak{p} be a prime ideal in R. Then $\mathfrak{p} \in \operatorname{Supp}(M)$ if and only if there exists a submodule N in M with $\mathcal{P}_{M}(N)=\mathfrak{p}$.

In Proposition 2.2, the prime ideals are distinct. Now we find conditions for the product of prime ideals that need not be distinct to be a generalized prime ideal factorization of some submodule.

Proposition 2.4. Let \mathfrak{p} be a prime ideal in R and r be a positive integer. If $\mathfrak{p} \in \operatorname{Ass}\left(\mathfrak{p}^{r-1} M / \mathfrak{p}^{r} M\right)$, then there exists a submodule N in M such that $\mathcal{P}_{M}(N)=\mathfrak{p}^{r}$.

Proof. Let $N=\left\{x \in M \mid\left(\mathfrak{p}^{r} M: x\right) \nsubseteq \mathfrak{p}\right\}$. Let $x_{1}, x_{2} \in N$ and $u \in R$. Then there exists $a_{1} \in\left(\mathfrak{p}^{r} M: x_{1}\right) \backslash \mathfrak{p}$ and $a_{2} \in\left(\mathfrak{p}^{r} M: x_{2}\right) \backslash \mathfrak{p}$. Then $a_{1} a_{2} \in\left(\mathfrak{p}^{r} M\right.$: $\left.u x_{1}+x_{2}\right) \backslash \mathfrak{p}$, which implies that $u x_{1}+x_{2} \in N$. Hence N is a submodule of M. Since $\mathfrak{p} \in \operatorname{Ass}\left(\mathfrak{p}^{r-1} M / \mathfrak{p}^{r} M\right)$, there exists $x \in \mathfrak{p}^{r-1} M$ such that $\mathfrak{p}=\left(\mathfrak{p}^{r} M: x\right)$. This implies $x \notin N$. Therefore N is a proper submodule of M. Also, $N \supseteq \mathfrak{p}^{r} M$.

We claim that $\operatorname{Ass}(M / N)=\{\mathfrak{p}\}$. Let $\mathfrak{q} \in \operatorname{Ass}(M / N)$. Then $\mathfrak{p}^{r} \subseteq \mathfrak{q}$ since $\mathfrak{p}^{r} M \subseteq N$. Therefore $\mathfrak{p} \subseteq \mathfrak{q}$. Now $\mathfrak{q}=(N: z)$ for some $z \in M, z \notin N$, that is, $\left(\mathfrak{p}^{r} M: z\right) \subseteq \mathfrak{p}$. Let $a \in \mathfrak{q}$. Then $a z \in N$, which gives $\left(\mathfrak{p}^{r} M: a z\right) \nsubseteq \mathfrak{p}$. Let $b \in R \backslash \mathfrak{p}$ such that $b a z \in \mathfrak{p}^{r} M$, i.e., $b a \in\left(\mathfrak{p}^{r} M: z\right) \subseteq \mathfrak{p}$. This implies $a \in \mathfrak{p}$. Therefore $\mathfrak{q} \subseteq \mathfrak{p}$. Hence $\operatorname{Ass}(M / N)=\{\mathfrak{p}\}$.

If $N=M_{0} \stackrel{\mathfrak{p}_{1}}{\subset} M_{1} \subset \cdots \subset M_{k-1} \stackrel{\mathfrak{p}_{k}}{\subset} M_{k}=M$ is an RPE filtration of M over N, then $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}\right\}=\operatorname{Ass}(M / N)=\{\mathfrak{p}\}$. So $\mathcal{P}_{M}(N)=\mathfrak{p}^{k}$. Suppose $k<r$. Then $\mathfrak{p}^{r-1} \subseteq \mathfrak{p}^{k}$, which implies $\mathfrak{p}^{r-1} M \subseteq \mathfrak{p}^{k} M \subseteq N$. So, for every $x \in \mathfrak{p}^{r-1} M$, $\left(\mathfrak{p}^{r} M: x\right) \nsubseteq \mathfrak{p}$. But $\mathfrak{p} \in \operatorname{Ass}\left(\mathfrak{p}^{r-1} M / \mathfrak{p}^{r} M\right)$ implies $\mathfrak{p}=\left(\mathfrak{p}^{r} M: x\right)$ for some $x \in \mathfrak{p}^{r-1} M$, a contradiction. Therefore, $k \geq r$, and this implies $M_{r} \subseteq M_{k}=M$. By Lemma $1.3, M_{r}=\left\{x \in M \mid \mathfrak{p}^{r} x \subseteq N\right\}$. For any $x \in M, \mathfrak{p}^{r} x \subseteq \mathfrak{p}^{r} M \subseteq N$. Therefore $M_{r}=M$. So, $N \stackrel{\mathfrak{p}}{\subset} M_{1} \stackrel{\mathfrak{p}}{\subset} \cdots \stackrel{\mathfrak{p}}{\subset} M_{r}=M$ is an RPE filtration of M over N, and hence $\mathcal{P}_{M}(N)=\mathfrak{p}^{r}$.

In Example 1.4, $\mathfrak{p} \notin \operatorname{Ass}\left(\mathfrak{p} / \mathfrak{p}^{2}\right)=\{(\bar{x}, \bar{y}, \bar{z})\}$. So \mathfrak{p} need not be an element of $\operatorname{Ass}\left(\mathfrak{p}^{r-1} M / \mathfrak{p}^{r} M\right)$ even if $\mathfrak{p}^{r} M \subsetneq \mathfrak{p}^{r-1} M$.

Theorem 2.5. Let M be an R-module, $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be distinct prime ideals in R ordered as $\mathfrak{p}_{i} \not \subset \mathfrak{p}_{j}$ for $i<j$, and r_{1}, \ldots, r_{n} be positive integers. If $\mathfrak{p}_{i} \in$ $\operatorname{Supp}\left(\mathfrak{p}_{i}^{r_{i}-1} \mathfrak{p}_{i+1}{ }^{r_{i+1}} \cdots \mathfrak{p}_{n}^{r_{n}} M\right)$ for $i=1, \ldots, n$, then there exists a submodule N in M such that $\mathcal{P}_{M}(N)=\mathfrak{p}_{1}^{r_{1}} \cdots \mathfrak{p}_{n}^{r_{n}}$.

Proof. We prove by induction on n. If $n=1, \mathfrak{p}_{1} \in \operatorname{Supp}\left(\mathfrak{p}_{1}{ }^{r_{1}-1} M\right)$ and by Proposition 2.2, $\mathfrak{p}_{1} \in \operatorname{Ass}\left(\mathfrak{p}_{1}{ }^{r_{1}-1} M / \mathfrak{p}_{1}{ }^{r_{1}} M\right)$. Then by Proposition 2.4, there exists a submodule N in M with $\mathcal{P}_{M}(N)=\mathfrak{p}_{1}{ }^{r_{1}}$. Now let $n>1$, and assume that the result is true for $n-1$ prime ideals. Then there exists a submodule L in M with $\mathcal{P}_{M}(L)=\mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}{ }^{r_{n}}$. That is, we have an RPE filtration

$$
\begin{equation*}
L \stackrel{\mathfrak{p}_{2}}{\subset} L_{1}^{(2)} \stackrel{\mathfrak{p}_{2}}{\subset} \cdots \stackrel{\mathfrak{p}_{2}}{\subset} L_{r_{2}}^{(2)} \stackrel{\mathfrak{p}}{3}^{C} L_{1}^{(3)} \stackrel{\mathfrak{p}_{3}}{\subset} \cdots \subset L_{r_{n}-1}^{(n)}{ }^{\mathfrak{p}_{n}} L_{r_{n}}^{(n)}=M \tag{2.1}
\end{equation*}
$$

Then $\mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}{ }^{r_{n}} M \subseteq L$.
So, we have $\operatorname{Ann}\left(\mathfrak{p}_{1}{ }^{r_{1}-1} L\right) \subseteq \operatorname{Ann}\left(\mathfrak{p}_{1}^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}{ }^{r_{n}} M\right) \subseteq \mathfrak{p}_{1}$ since $\mathfrak{p}_{1} \in$ $\operatorname{Supp}\left(\mathfrak{p}_{1}^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}^{r_{n}} M\right)$. That is, $\mathfrak{p}_{1} \in \operatorname{Supp}\left(\mathfrak{p}_{1}{ }^{r_{1}-1} L\right)$, and by Proposition $2.2, \mathfrak{p}_{1} \in \operatorname{Ass}\left(\mathfrak{p}_{1}{ }^{r_{1}-1} L / \mathfrak{p}_{1}{ }^{r_{1}} L\right)$. Then by Proposition 2.4 , there exists a submodule N in L such that $\mathcal{P}_{L}(N)=\mathfrak{p}_{1}{ }^{r_{1}}$. That is, we have the RPE filtration

$$
\begin{equation*}
N \subset \stackrel{p}{1}_{\mathfrak{p}_{1}}^{\subset} L_{1}^{(1)} \stackrel{\mathfrak{p}_{1}}{\subset} L_{2}^{(1)} \subset \cdots \stackrel{\mathfrak{p}_{1}}{\subset} L_{r_{1}}^{(1)}=L \tag{2.2}
\end{equation*}
$$

Next, we show that

$$
\begin{align*}
N=L_{0}^{(1)} \stackrel{\mathfrak{p}_{1}}{\subset} & L_{1}^{(1)} \stackrel{\mathfrak{p}_{1}}{\subset} L_{2}^{(1)} \subset \cdots \stackrel{\mathfrak{p}_{1}}{\subset} L_{r_{1}}^{(1)}=L \stackrel{\mathfrak{p}_{2}}{\subset} L_{1}^{(2)} \stackrel{\mathfrak{p}_{2}}{\subset} \cdots \\
& \stackrel{\mathfrak{p}_{2}}{\subset} L_{r_{2}}^{(2)} \stackrel{\mathfrak{p}_{3}}{\subset} L_{1}^{(3)} \subset \cdots{ }^{\mathfrak{p}_{n-1}} \subset L_{r_{n-1}}^{(n-1)} \stackrel{\mathfrak{p}_{n}}{\subset} L_{1}^{(n)} \stackrel{\mathfrak{p}_{n}}{\subset} \cdots{ }^{\mathfrak{p}_{n}} L_{r_{n}}^{(n)}=M \tag{2.3}
\end{align*}
$$

is an RPE filtration of M over N, which would imply that $\mathcal{P}_{M}(N)=\mathfrak{p}_{1}{ }^{r_{1}} \cdots \mathfrak{p}_{n}{ }^{r_{n}}$. Since the filtration (2.1) is already an RPE filtration, it is enough to show that $L_{j-1}^{(1)} \stackrel{\mathfrak{p}}{1}^{\subset} L_{j}^{(1)}$ is a regular prime extension in M for $1 \leq j \leq r_{1}$.

From (2.2) we have that $L_{j-1}^{(1)} \subset L_{j}^{(1)}$ is a \mathfrak{p}_{1}-prime extension for every $1 \leq j \leq r_{1}$. Suppose $L_{j-1}^{(1)} \stackrel{\mathfrak{p}_{1}}{\subset} L_{j}^{(1)}$ is not a maximal \mathfrak{p}_{1}-prime extension in M for some j. Then there exists a submodule $K \supset L_{j}^{(1)}$ such that $L_{j-1}^{(1)} \stackrel{p_{1}}{\subset} K$ is a \mathfrak{p}_{1}-prime extension in M. Since $L_{j-1}^{(1)} \stackrel{\mathfrak{p}_{1}}{\subset} L_{j}^{(1)}$ is a maximal \mathfrak{p}_{1}-prime extension in $L, K \nsubseteq L$. Let $x \in K \backslash L$. For $2 \leq i \leq n$, since $\mathfrak{p}_{1} \nsubseteq \mathfrak{p}_{i}$, there exists $p_{i} \in \mathfrak{p}_{1} \backslash \mathfrak{p}_{i}$. Then $p_{i} x \in L_{j-1}^{(1)}$. Since $L_{j-1}^{(1)} \subset L$, from (2.1) we get that $p_{i} x \in L_{k}^{(i)}$ for every $2 \leq i \leq n, 1 \leq k \leq r_{i}$.

Since $p_{n} x \in \bar{L}_{r_{n}-1}^{(n)}, L_{r_{n}-1}^{(n)} \subset M$ is a \mathfrak{p}_{n}-prime extension, and $p_{n} \notin \mathfrak{p}_{n}$, we have $x \in L_{r_{n}-1}^{(n)}$. Then $p_{n} x \in L_{r_{n}-2}^{(n)}$ and $L_{r_{n}-2}^{(n)} \stackrel{\mathfrak{p}_{n}}{\subset} L_{r_{n}-1}^{(n)}$ is a prime extension implies $x \in L_{r_{n}-2}^{(n)}$. Repeating this argument $r_{n}-3$ times, we get $x \in L_{r_{n-1}}^{(n-1)}$.

Replacing M by $L_{r_{n-1}}^{(n-1)}$ and p_{n} by p_{n-1} in the previous paragraph, we get $x \in L_{r_{n-2}}^{(n-2)}$. Continuing this process, finally we get $x \in L_{r_{1}}^{(1)}=L$, a contradiction. Therefore, $L_{j-1}^{(1)} \stackrel{\mathfrak{p}_{1}}{\subset} L_{j}^{(1)}$ is a maximal prime extension in M for every $1 \leq j \leq r_{1}$, and hence (2.3) is an MPE filtration of M over N.

So, for $1 \leq j \leq r_{1}$, we get $\operatorname{Ass}\left(M / L_{j-1}^{(1)}\right)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ and since $\mathfrak{p}_{1} \not \subset \mathfrak{p}_{i}$ for every $i>1, \mathfrak{p}_{1}$ is maximal in $\operatorname{Ass}\left(M / L_{j-1}^{(1)}\right)$. Therefore (2.3) is an RPE filtration of M over N. Hence $\mathcal{P}_{M}(N)=\mathfrak{p}_{1}{ }^{r_{1}} \ldots \mathfrak{p}_{n}{ }^{r_{n}}$.

The converse of Theorem 2.5 does not hold. For example, if $\mathfrak{p}_{2} \subsetneq \mathfrak{p}_{1}$ are prime ideals in a ring R and M is the R-module $\frac{R}{\mathfrak{p}_{2}} \oplus \frac{R}{\mathfrak{p}_{2}}$, then for its submodule $N=\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{2}} \oplus 0$, we have the RPE filtration

$$
N=\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{2}} \oplus 0 \quad \stackrel{\mathfrak{p}_{1}}{\subset} \quad \frac{R}{\mathfrak{p}_{2}} \oplus 0 \quad \stackrel{\mathfrak{p}_{2}}{\subset} \quad \frac{R}{\mathfrak{p}_{2}} \oplus \frac{R}{\mathfrak{p}_{2}}=M
$$

of M over N. So we have $\mathcal{P}_{M}(N)=\mathfrak{p}_{1} \mathfrak{p}_{2}$. But $\mathfrak{p}_{2} M=0$. Therefore $\mathfrak{p}_{1} \notin$ $\operatorname{Supp}\left(\mathfrak{p}_{2} M\right)$.

Next, we show that if we assume further that $\mathfrak{p}_{i} \not \subset \mathfrak{p}_{j}$ for $i \neq j$, the converse of Theorem 2.5 holds. We need the following lemma.

Lemma 2.6. [2, Lemma 2.8] If $N \stackrel{\mathfrak{p}}{\subset} K$ is a regular \mathfrak{p}-prime extension in M, then for any submodule L of $M, N \cap L \stackrel{\mathfrak{p}}{\subset} K \cap L$ is a regular \mathfrak{p}-prime extension in L when $N \cap L \neq K \cap L$.

Theorem 2.7. Let N be a submodule of M with $\mathcal{P}_{M}(N)=\mathfrak{p}_{1}^{r_{1}} \cdots \mathfrak{p}_{n}{ }^{r_{n}}$, where $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are distinct prime ideals in R and r_{1}, \ldots, r_{n} are positive integers. If all the prime ideals in $\operatorname{Ass}(M / N)$ are minimal, then we have $\mathfrak{p}_{i} \in$ $\operatorname{Supp}\left(\mathfrak{p}_{1}^{r_{1}} \cdots \mathfrak{p}_{i-1}{ }^{r_{i-1}} \mathfrak{p}_{i}{ }^{r_{i}-1} \mathfrak{p}_{i+1}{ }^{r_{i+1}} \cdots \mathfrak{p}_{n}{ }^{r_{n}} M\right)$ for $i=1, \ldots, n$.

Proof. Since $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are minimal, for every i we can reorder $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ such that $\mathfrak{p}_{1}=\mathfrak{p}_{i}$ and by Lemma 1.1, we have an RPE filtration

$$
N \subset L_{1}^{\mathfrak{p}_{1}} \subset L_{1}^{(1)} \stackrel{\mathfrak{p}_{1}}{\subset} L_{2}^{(1)} \subset \cdots \subset L_{r_{1}-1}^{(1)} \subset L_{r_{1}}^{(1)} \stackrel{\mathfrak{p}_{1}}{\mathfrak{p}_{2}} L_{1}^{(2)} \subset \cdots{ }^{\mathfrak{p}_{n}} \subset L_{r_{n}}^{(n)}=M
$$

of M over N. So it is enough to show that $\mathfrak{p}_{1} \in \operatorname{Supp}\left(\mathfrak{p}_{1}{ }^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}{ }^{r_{n}} M\right)$. Clearly $\mathfrak{p}_{1}{ }^{r_{1}} \cdots \mathfrak{p}_{n}{ }^{r_{n}} M \subseteq N$ and $\mathfrak{p}_{1}{ }^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}{ }^{r_{n}} M \subseteq L_{1}^{(1)}$.

We claim that $\mathfrak{p}_{1}{ }^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}{ }^{r_{n}} M \nsubseteq N$. Let $x \in L_{r_{1}}^{(1)} \backslash L_{r_{1}-1}^{(1)}$. Then $\mathfrak{p}_{1}{ }^{r_{1}-1} x \subseteq$ $L_{1}^{(1)}$ and $\mathfrak{p}_{1}{ }^{r_{1}-1} x \not \subset N$. So there exists $b \in \mathfrak{p}_{1}{ }^{r_{1}-1}$ such that $b x \in L_{1}^{(1)} \backslash N$. Choose $a_{j} \in \mathfrak{p}_{j} \backslash \mathfrak{p}_{1}$ for every $2 \leq j \leq n$ and let $a=\prod_{2 \leq j \leq n} a_{j}^{r_{j}}$. Then bax $\in \mathfrak{p}_{1}{ }^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}{ }^{r_{n}} M$. Suppose bax $\in N$. Then, since $b x \in L_{1}^{(1)} \backslash N$ and $N \stackrel{\mathfrak{p}_{1}}{\subset} L_{1}^{(1)}$ is a \mathfrak{p}_{1}-prime extension, we get $a \in \mathfrak{p}_{1}$, a contradiction. So bax $\notin N$. Therefore $\mathfrak{p}_{1}{ }^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}{ }^{r_{n}} M \nsubseteq N$. So we have

$$
\begin{aligned}
N \cap\left(\mathfrak{p}_{1}^{r_{1}-1} \mathfrak{p}_{2}^{r_{2}} \cdots \mathfrak{p}_{n}^{r_{n}} M\right) & \subsetneq \mathfrak{p}_{1}^{r_{1}-1} \mathfrak{p}_{2}^{r_{2}} \cdots \mathfrak{p}_{n}^{r_{n}} M \\
& =L_{1}^{(1)} \cap\left(\mathfrak{p}_{1}^{r_{1}-1} \mathfrak{p}_{2}^{r_{2}} \cdots \mathfrak{p}_{n}^{r_{n}} M\right)
\end{aligned}
$$

Then by Lemma 2.6,

$$
N \cap\left(\mathfrak{p}_{1}{ }^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}^{r_{n}} M\right) \quad \stackrel{\mathfrak{p}_{1}}{\subset} \quad \mathfrak{p}_{1}^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}^{r_{n}} M
$$

is a regular \mathfrak{p}_{1}-prime extension in $\mathfrak{p}_{1}^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}{ }^{r_{n}} M$. Then by Corollary 2.3 , $\mathfrak{p}_{1} \in \operatorname{Supp}\left(\mathfrak{p}_{1}{ }^{r_{1}-1} \mathfrak{p}_{2}{ }^{r_{2}} \cdots \mathfrak{p}_{n}^{r_{n}} M\right)$.

QED
From Theorems 2.5 and 2.7, we get the following corollary.
Corollary 2.8. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be distinct prime ideals in R with $\mathfrak{p}_{i} \not \subset \mathfrak{p}_{j}$ for $i \neq j$, and r_{1}, \ldots, r_{n} be positive integers. Then $\mathfrak{p}_{1}{ }^{r_{1}} \cdots \mathfrak{p}_{n}{ }^{r_{n}}$ is the generalized prime ideal factorization of some submodule of M if and only if $\mathfrak{p}_{i} \in$ $\operatorname{Supp}\left(\mathfrak{p}_{1}^{r_{1}} \cdots \mathfrak{p}_{i-1}{ }^{r_{i-1}} \mathfrak{p}_{i}^{r_{i}-1} \mathfrak{p}_{i+1}{ }^{r_{i+1}} \cdots \mathfrak{p}_{n}^{r_{n}} M\right)$ for every $1 \leq i \leq n$.

In [5] we have found conditions for $\mathcal{P}_{M}\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{n} M\right)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$ [5, Theorem 2.14] and showed that this need not always be true [5, Example 2.5]. Now for an R-module M and a product of prime ideals $\mathfrak{a}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}\left(\mathfrak{p}_{i}\right.$'s not necessarily distinct), we give a necessary and sufficient condition for $\mathcal{P}_{M}(\mathfrak{a} M)=\mathfrak{a}$.

Theorem 2.9. Let M be an R-module and $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be prime ideals in R, not necessarily distinct, with \mathfrak{p}_{i} maximal among $\left\{\mathfrak{p}_{i}, \ldots, \mathfrak{p}_{n}\right\}$ for $1 \leq i \leq n$. Let $\mathfrak{a}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}, \mathfrak{a}_{0}=R$, and $\mathfrak{a}_{i}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{i}$ for $i=1, \ldots, n-1$. Then $\mathcal{P}_{M}(\mathfrak{a} M)=\mathfrak{a}$ if and only if $\operatorname{Ass}\left(\frac{\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)}{\left(\mathfrak{a} M: \mathfrak{a}_{i-1}\right)}\right)=\left\{\mathfrak{p}_{i}\right\}$ for every $1 \leq i \leq n$.

Proof. If $\operatorname{Ass}\left(\frac{\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)}{\left(\mathfrak{a} M: \mathfrak{a}_{i-1}\right)}\right)=\left\{\mathfrak{p}_{i}\right\}$ for every $1 \leq i \leq n$, we show that

$$
\begin{equation*}
\mathfrak{a} M \stackrel{\mathfrak{p}_{1}}{\subset}\left(\mathfrak{a} M: \mathfrak{a}_{1}\right) \stackrel{\mathfrak{p}_{2}}{\subset}\left(\mathfrak{a} M: \mathfrak{a}_{2}\right) \subset \cdots \subset\left(\mathfrak{a} M: \mathfrak{a}_{n-1}\right) \stackrel{\mathfrak{p}_{n}}{\subset}(\mathfrak{a} M: \mathfrak{a})=M \tag{2.4}
\end{equation*}
$$

is an RPE filtration.
$\operatorname{Ass}\left(\frac{\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)}{\left(\mathfrak{a} M \mathfrak{a}_{i}\right)}\right)=\left\{\mathfrak{p}_{i}\right\}$ implies that there exists a regular \mathfrak{p}_{i}-prime extension K of $\left(\mathfrak{a} M: \mathfrak{a}_{i-1}\right)$ in $\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)$. Then $K=\left\{x \in\left(\mathfrak{a} M: \mathfrak{a}_{i}\right) \mid \mathfrak{p}_{i} x \subseteq\left(\mathfrak{a} M: \mathfrak{a}_{i-1}\right)\right\}$ by Lemma 1.3. For every $x \in\left(\mathfrak{a} M: \mathfrak{a}_{i}\right), \mathfrak{a}_{i-1} \mathfrak{p}_{i} x=\mathfrak{a}_{i} x \subseteq \mathfrak{a} M$, that is, $\mathfrak{p}_{i} x \subseteq(\mathfrak{a} M$: $\left.\mathfrak{a}_{i-1}\right)$. Therefore, $K=\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)$, and hence $\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)$ is the unique regular \mathfrak{p}_{i}-prime extension of $\left(\mathfrak{a} M: \mathfrak{a}_{i-1}\right)$ in $\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)$. Suppose it is not maximal in M. Then there exists $x \in M \backslash\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)$ such that $\mathfrak{p}_{i} x \subseteq\left(\mathfrak{a} M: \mathfrak{a}_{i-1}\right)$, i.e., $x \in$ $\left(\mathfrak{a} M: \mathfrak{a}_{i-1} \mathfrak{p}_{i}\right)=\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)$, a contradiction. So $\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)$ is a maximal \mathfrak{p}_{i}-prime extension of $\left(\mathfrak{a} M: \mathfrak{a}_{i-1}\right)$ in M for every i. Therefore (2.4) is an MPE filtration of M over $\mathfrak{a} M$. This implies that $\operatorname{Ass}\left(\frac{M}{\left(\mathfrak{a} M: \mathfrak{a}_{i-1}\right)}\right)=\left\{\mathfrak{p}_{i}, \ldots, \mathfrak{p}_{n}\right\}$ for every $1 \leq$ $i \leq n$. Since \mathfrak{p}_{i} is maximal among $\left\{\mathfrak{p}_{i}, \ldots, \mathfrak{p}_{n}\right\}, \mathfrak{p}_{i}$ is maximal in $\operatorname{Ass}\left(\frac{M}{\left(\underline{a} M: \boldsymbol{a}_{i-1}\right)}\right)$. Therefore (2.4) is an RPE filtration. Hence $\mathcal{P}_{M}(\mathfrak{a} M)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}=\mathfrak{a}$.

Conversely, suppose that $\mathcal{P}_{M}(\mathfrak{a} M)=\mathfrak{a}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$. Since \mathfrak{p}_{i} is maximal among $\left\{\mathfrak{p}_{i}, \ldots, \mathfrak{p}_{n}\right\}$ for every $1 \leq i \leq n$, we can construct an RPE filtration

$$
\mathfrak{a} M=M_{0} \stackrel{\mathfrak{p}_{1}}{\subset} M_{1} \stackrel{\mathfrak{p}_{2}}{\subset} M_{2} \subset \cdots M_{n-1} \stackrel{\mathfrak{p}_{n}}{\subset} M_{n}=M
$$

of M over $\mathfrak{a} M$. Then by Lemma 1.3, $M_{i}=\left\{x \in M \mid \mathfrak{p}_{1} \cdots \mathfrak{p}_{i} x \subseteq \mathfrak{a} M\right\}$, i.e., $M_{i}=$ $\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)$ for every $1 \leq i \leq n$. Then clearly $\operatorname{Ass}\left(\frac{\left(\mathfrak{a} M: \mathfrak{a}_{i}\right)}{\left(\mathfrak{a} M: \mathfrak{a}_{i-1}\right)}\right)=\operatorname{Ass}\left(\frac{M_{i}}{M_{i-1}}\right)=\left\{\mathfrak{p}_{i}\right\}$ for every $1 \leq i \leq n$.

References

[1] T. Duraivel, S. Mangayarcarassy, and K. Premkumar, Prime extension filtration of modules, Int. J. Pure Appl. Math., 98(2) (2015), 211-220.
[2] T. Duraivel, S. Mangayarcarassy, and K. Premkumar, Prime extension dimension of a module, J. Algebra Relat. Top., 6(2) (2018), 97-106.
[3] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, SpringerVerlag, 1995.
[4] H. Matsumura, Commutative ring theory, Cambridge University Press, 1989.
[5] K. R. Thulasi, T. Duraivel, and S. Mangayarcarassy, Generalized prime ideal factorization of submodules, J. Algebra Relat. Top., 9(2) (2021), 121-129.

[^0]: ${ }^{i}$ The first author was supported by INSPIRE Fellowship (IF170488) of the Department of Science and Technology (DST), Government of India.
 http://siba-ese.unisalento.it/ (C) 2024 Università del Salento

