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Abstract. Let C be obtained from the affine plane with 9 points by removing at most 4
lines. We describe the embeddings of these configurations C into Desarguesian planes.
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1 Introduction

The affine plane A of order 3 (with 9 points and 12 lines) is usually repre-
sented in the rational (or real) plane as follows: 8 lines of A are given by the
sides of a parallelogram, its diagonals and the two medians of opposite sides,
and two pairs of parallel lines are represented by curves (see Figure 1).
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Figure 1.

This suggests the following generalization, which we call a near-embedding
of A. Consider a configuration C obtained from A by deleting a set D of d ≤



12 G. Pickert

Figure 2.

4 = 12 − 8 lines, and by keeping the 9 points of A. We call d the defect, D the
defect set, and each line in D a defect line, and we study the embeddability of C
into a Desarguesian projective (or affine) plane P; such an embedding consists
of injective maps of the point set and the line set of C into the corresponding
sets of P such that incidence of points and lines holds in C if, and only if, the
images are incident. The points of C are identified with their images in P, and
the lines of C are written as (unordered) triples ABC of their points.

Let K be the skew field which coordinatizes P. For cardinality reasons, the
case |K| = 2 is impossible, so we can assume that |K| ≥ 3. In the case of
characteristic 2, the projective plane of order 4 plays a special role: in Section 5
we obtain an interesting decomposition of that plane.

The various types of defect sets D 6= ∅ are shown in Figure 2 (in contrast to
affine planes of order > 3, there exists in A no set of 4 lines such that any 3 of
them are not confluent and any 2 of them are not parallel).

The embeddability of the corresponding configuration C is inherited in the
direction of the arrows, and hence the non-embeddability in the converse direc-
tion.
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Since the automorphism group of A acts transitively on the triangles, all
defect sets of the same type are isomorphic, and hence also the corresponding
configurations C are isomorphic.

2 Confluent defect lines

First we study the type in the lower right corner of Figure 2, where D
consists of 4 confluent lines. We introduce homogeneous coordinates (x, y, z) in
P such that the points 3, 3′, 2, 2′ in Figure 1 have the coordinate triples (1, 0, 0),
(0, 1, 0), (0, 0, 1), (1, 1, 1). Without loss of generality we may assume that

D = { 11′1′′, 1′′2′′3′′, 1′′2′3, 1′′23′ } .

Since 3′′ is on 33′ and 2′′ on 22′, the points 3′′ and 2′′ have the coordinate triples
(1, a, 0) and (1, 1, b) with a, b ∈ K \ {0, 1}. The lines 23, 2′3′′ and 2′′3′ pass
through 1 and have the equations y = 0, ax− y + (1 − a)z = 0 and bx− z = 0.
This yields the coordinate triple (1, 0, b) for the point 1 and the condition

a+ b = ab . (1)

The lines 2′3′, 2′′3 and 23′′ through 1′ have the equations x = z, by− z = 0 and
ax− y = 0. Therefore 1′ has the coordinate triple (1, a, 1), and a, b satisfy

ba = 1 . (2)

Thus b = a−1, and a, b commute, hence it suffices to consider a (commutative)
subfield of K (i.e. an embedding into a pappian plane).

If we choose the point 1′′, which is not yet determined in this embedding,
to be the intersection point of 23′ and 2′3, then 1′′ has the coordinate triple
(0, 1, 1). The equations (1) and (2) imply that 1′′ is also on 11′ and on 2′′3′′;
thus we obtain an embedding of defect 0. This yields the embeddability of all
types at the right edge of Figure 2, that is, of all types with confluent defect
lines. According to (1) and (2), this embeddability is equivalent to the existence
of a ∈ K \ {0, 1} with

a2 − a+ 1 = 0 . (3)

If the characteristic of K is not 2 (i.e. if 2 = 1 + 1 6= 0), then (3) is equivalent
to (a − 2−1)2 = −3 · 4−1, hence the embeddability condition says that −3 is a
square in K. (This condition has been derived already in [1], [3], [5]; for K = C

see also [6, p. 86], where A is described as the configuration of the 9 points of
inflection of a non-singular cubic curve.)

In characteristic 2, equation (3) says that { 0, 1, a, a−1 } is the field GF(4),
hence embeddability means that GF(4) is a subfield of K. In particular, we
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obtain the known result that the affine plane of order 3 can be embedded into
the projective plane of order 4. In this embedding, each parallel class of A gives
a triangle in P, which can be checked easily for the lines 123, 1′2′3′, 1′′2′′3′′.
The 4 triangles obtained in this fashion are disjoint, since non-parallel lines of
A intersect in A, hence not in any point of these 4 triangles. As 21 = 9 + 12,
these 4 triangles consist of all the points of P \ A.

3 Triangles

Now we study the case where the defect lines form a triangle, so we may
assume that

D = { 11′1′′, 1′′2′′3′′, 12′3′′ } . (4)

As in Section 1 we determine a, b, obtaining again equation (2) and the coor-
dinate triple (1, a, 1) for the point 1′. The point 1 is the intersection point of
23 and 2′′3′ and has the coordinate triple (1, 0, a−1), as in Section 1, and 1′′ is
the intersection point of 23′ and 2′3 and has the coordinate triple (0, 1, 1). This
covers all 9 lines of C, with the only condition that a ∈ K \ {0, 1}. Thus the 4
types where D contains the sides of a triangle are embeddable; again it suffices
to consider the (commutative) subfield of K generated by a.

For the case (4), the configuration C is easier to survey in Figure 3, where
the letters A, B, C etc. indicate the situation of inscribed triangles. The triples
required for the representation of A are drawn by dashed curves.

The 9 collinear triples

BA′C, CB′A, AC ′B,
B′A′′C ′, C ′B′′A′, A′C ′′B′,
AA′′A′, BB′′B′, CC ′′C ′

(5)

give rise to the following configurational proposition, which holds in every pap-
pian affine plane: Denote by (Mi) the assertion that for each triple in the i-th
row of (5), the second point of the triple is the midpoint of the other two points
of the triple; then the assertions (Mi) with i = 1, 2, 3 are equivalent.

This can be proved easily, with vectors or with ratios (in characteristic 2 the
proposition holds trivially, due to the non-existence of midpoints).

If C ′, B′, A′ lie between A,B and A,C and B,C, respectively, then (M3)
says that the triangles A′BC ′, C ′AB′, B′CA′ and A′B′C ′ have the same area.
With the above proposition we infer that (M1) holds; in [4] this has been proved
in a different way.
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Figure 3.

4 Parallel defect lines

It remains to consider those types where D contains a pair of parallel lines
(two of these types in the last row of Figure 2 have been considered already in
Section 2). First let

D = { 11′1′′, 22′2′′ } . (6)

With the notation of Section 1 and with (1, a, 0) as the coordinate triple of 3′′,
we obtain the coordinate triple (a−1, 0, a) for the intersection point 1 of 23 and
2′3′′. Since 2′′ is on 13′ (with the equation ax+ (1 − a)z = 0), this point has a
coordinate triple (a− 1, c, a) with c ∈ K \ {0}. As in Section 1, the intersection
point 1′ of 2′3′ and 23′′ has the coordinate triple (1, a, 1); however, since 2′′3
now has the equation ay − cz = 0, we obtain the condition

a2 = c . (7)

The intersection point 1′′ of 23′ and 2′3 has the coordinate triple (0, 1, 1). Using
(7) we obtain (a − 1, c, a) − (1, a, 0) · (a − 1) = (0, a, a), which gives the yet
missing collinearity of 1′′2′′3′′.

Each choice of a ∈ K\{0, 1} (which is possible as |K| ≥ 3) determines c = a2

and yields an embedding of C; again it suffices to consider the (commutative)
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subfield of K generated by a. According to the arrows in Figure 2, the same
applies to all the other types where D contains a pair of parallel lines.

In summary, we have the following result.

1 Theorem. If all defect lines are confluent, then a near-embedding of A
into the projective plane P over K exists if, and only if, −3 is a square in K
and, if K has characteristic 2, the field GF(4) is a subfield of K. For all other
types of defect sets, a near-embedding is possible whenever |K| ≥ 3.

2 Remark. The configuration C with (6) can be regarded as a Pappos
hexagon 12′31′23′ with the carrier lines 123, 1′2′3′, the line 1′′2′′3′′ of diagonal
points, and the additional line 33′3′′, but also as the Pascal hexagon 12′1′′21′2′′

with the Pascal line 33′3′′ and the additional lines 123, 1′2′3′, 1′′2′′3′′ (each of
these 3 additional collinearities is implied by the other two). C is represented in
Figure 4 in a similar way as A in Figure 1, with the coordinate pairs of the 9
points in a coordinate system of A as the affine plane over GF(3).

3 Remark. If D consists of 3 parallel lines, then C is a 93-configuration;
these configurations have been classified in [2, p. 107]. We have a 93-configu-
ration of type I, i.e. a Pappos configuration (C as in Remark 1 without 33′3′′);
this may also be inferred from the fact that type II contains no triple of points
which are mutually not joined, and type III has just one such triple. Adding
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this triple as a line to a 93-configuration of type III yields a configuration which
has 3 points of order 4 and 6 points of order 3, like the configuration C in
Remark 1, without being isomorphic to that configuration. The 93-configuration
of type III differs from the configuration belonging to (4) (which is not a 93-
configuration) as follows: in (5), one has to replace the second row by A′B′′C ′′,
A′′B′C ′′, A′′B′′C ′.

5 Affine near-embeddings

If not only an embedding of C into a projective plane P is required, but
rather an embedding into an affine plane obtained by removing a line (and its
points) from P, then one needs a line of P which contains none of the 9 points
of A. If |K| > 4, such a line always exists, as we show now. For two parallel
lines of A, let S be their intersection point in P, which does not belong to A.
Projecting the 9 points of A (with projection center S) into some line g not
passing through S yields at most 5 points. Since |K| ≥ 5, the line g contains
at least 6 points, hence also a point P which is distinct from the points of the
A-projection. Then the line SP contains no point of A. If |K| = 3, then A
itself can be taken as the embedding affine plane. Therefore, if |K| 6= 4, then
projective embeddability implies affine embeddability.

It remains to consider the case K = GF(4). Here each a ∈ K \{0, 1} satisfies

a2 + a+ 1 = 0, a3 = 1 (8)

and K = { 0, 1, a, a2 }. At most one of the 4 lines of A passing through a point P
can be a non-collinear triple of points in P; indeed, such a triple yields in P two
joining lines with P , so that the existence of two such lines (through P ) in P
would lead to at least 2+2+2 = 6 lines through P . Hence two lines of A which
are not collinear as point triples in P are necessarily parallel in A; therefore there
are at most 3 such lines. Using the notation of Figure 1, we may assume that they
are among 11′1′′, 22′2′′, 33′3′′. We choose a homogeneous coordinate system as
in Section 1, with the coordinate triples for 3, 3′, 2, 2′ as in Section 1. The point
1 on 23 has then a coordinate triple (a, 0, 1) with a ∈ K \ {0, 1}. The lines 23′

and 2′3 have the equations x = 0 and y = z, thus their intersection point 1′′ has
the coordinate triple (0, 1, 1). The line 12′ has the equation x+!(a−1)y−az = 0;
therefore, in view of (8) and the equation 1+1 = 0, the point 3′′ on this line has
a coordinate triple (1, b, a2(b + 1) + b) with b ∈ {a, a2}. The lines 13′ and 1′′3′′

with the equations x− az = 0 and a2(b− 1)x+ y − z = 0 yield the coordinate
triple (a, b, 1) for the point 2′′, and the lines 23′′ and 2′3′ with the equations
bx − y = 0 and x = z yield the coordinate triple (1, b, 1) for 1′. In view of the
equation (1, b, 1)− (a, b, 1) = (1− a, 0, 0) also 1′2′′3 are collinear. Thus we have
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an embedding of the configuration obtained from A by removing the lines 11′1′′,
22′2′′, 33′3′′.

In the case b = a we obtain the coordinate triples derived in Section 1 for a
complete embedding of A. Since each point P of A carries exactly one line of P
which meets A only in P , there are 12+9 = 21 lines of P which contain a point
of A, and in view of 21 = 42 + 4 + 1 these are all the lines of P. Hence this case
does not allow affine embeddability. (The non-existence of an affine embedding
of A is also a consequence of the fact that GF(3) is not a subfield of GF(4).)

In the case b = a2, we use (8) and the equation 1 + 1 = 0 to prove that each
of the triples 11′1′′, 22′2′′, 33′3′′ is not collinear. Each of the 9 points of C, which
is now a Pappos configuration, carries two P-lines with exactly two C-points
and three P-lines with exactly three C-points, hence no P-line with exactly one
C-point. Therefore precisely 18 = 9+9 P-lines meet C, hence 3 = 21−18 P-lines
contain no point of C. We conclude that C can be embedded into an affine plane
of order 4.

Thus we have the following result: Only the two types on the left edge of
Figure 2 with 3 parallel defect lines lead to embeddability into the affine plane
of order 4; for all other types one has affine embeddability only for |K| 6= 4,
provided that one has projective embeddability.

6 The projective plane of order 4

The three lines without C-points appearing in Section 4 for |K| = 4, b = a2

have the equations

x+ ay + z = 0, ax+ ay + z = 0, x+ a2y + z = 0 ,

as one shows easily using (8) and the equation 1+1 = 0. The intersection point
U of the first two lines has the coordinate triple (0, a2, 1), the intersection point
V of the last two lines has the coordinate triple (a, 1, 1), and the intersection
point W of the first and the last line has the coordinate triple (1, 0, 1). The three
lines 12′3′′, 1′′23′, 1′2′′3 are confluent in U , the three lines 1′′2′3, 12′′3′, 1′23′′ are
confluent in V , and 123, 1′2′3′, 1′′2′′3′′ are confluent in W . The line VW meets
those three lines through U in their fifth points 4, 4′, 4′′ with the coordinate
triples (1, a, 0), (0, 1, a2), (a2, a2, 1). Analogously, replacing U by V or W , we
obtain the points 5, 5′, 5′′ on WU with the coordinate triples (a2, 1, 1), (a, a, 1),
(1, a2, 0) and the points 6, 6′, 6′′ on UV with the coordinate triples (1, 0, a),
(1, a, 1), (1, 1, 0). The lines 11′, 1′1′′, 1′′1, 22′, 2′2′′, 2′′2, ! 33′, 3′3′′ and 3′′3 carry
the (yet missing) point triples 4′56′′, 45′6, 4′′5′′6′, 4′′5′6′′, 4′5′′6, 456′, 45′′6′′, 4′′56
and 4′5′6′, respectively. Together with the triples 44′4′′, 55′5′′, 66′6′′ (which lie
on VW , WU , UV , respectively) they form an affine plane A′ of order 3. Each
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of the 21 lines of P belongs either to the Pappos configuration C or to the affine
plane A′, and each of the 21 points of P belongs either to C or to A′ or to
{U, V,W}. This proves the following result.

4 Theorem. The projective plane of order 4 can be decomposed into a Pap-
pos configuration, an affine plane of order 3 and a triangle, in such a way that
the point sets are disjoint but the line sets are not completely disjoint, since the
sides of the triangle are lines of the affine plane.

As the above construction shows, the Pappos configuration C determines
the affine plane A′ and the triangle {U, V,W}. In fact, {U, V,W} determines
A′: the lines of A′ are the lines of P which pass through one of the points
U, V,W . In contrast, A′ has 4 parallel classes and yields therefore 4 possibilities
for {U, V,W} (see the remark at the end of Section 1).
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