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Abstract. This survey describes the study of helix (or constant angle) surfaces in different
ambient spaces equipped with a Lorentzian metric. We present the study of constant angle
surfaces in the Minkowski space, the Lorentzian Heisenberg group, the Lorentzian Berger
sphere and some new results the for the 3-dimensional anti-de Sitter space with Berger-like
metrics. In every case, we give characterization theorems which describe such surfaces.
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1 Introduction

A helix surface (or constant angle surface) is an oriented surface with the
property that the normal vector field forms a constant angle with a fixed field of
directions in the ambient space. This surfaces were defined for the first time in
this way in the work of Dillen, Fastenakels, Van der Veken and Vrancken ([4]).

The large interest towards this particular type of surfaces was motivated by
the paper of Cermelli and Di Scala (see [3]) who analyzed the case of surfaces
with constant angle in the three-dimensional Euclidean space. In their work
they deduced a crucial relationship between the Hamilton-Jacobi equation and
such a type of surfaces showing also some interesting applications in the physical
field connected to the equilibrium configuration of liquid crystals. In particular,
one must observe that their molecules present naturally a tendency to align
themselves according to a direction given by a critical field of some energy
functional.

In recent years, different ambient spaces have been considered by many au-
thors while studying helix surfaces. Several examples of the study of helix sur-
faces in Riemannian settings may be found in [3]-[6],[9],[12],[15], [17]-[19] and
references therein. Furthermore, the investigation of such surfaces also extended
to other settings. On the one hand, higher codimensional Riemannian helix sur-
faces were studied (see for example [7], [8], [22]). On the other hand, Lorentzian
ambient spaces were considered in [13], [14], [20] and [21].

http://siba-ese.unisalento.it/ © 2023 Università del Salento
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When we take into account Lorentzian settings, we are allowed to consider
more possibilities, as both spacelike and timelike surfaces can be studied. These
possibilities and other fascinating properties of this type of surfaces motivate
us in exploring further the description of helix surfaces in Lorentzian ambient
spaces. For this reason, this survey presents the study of constant angle surfaces
in the Minkowski space, the Lorentzian Heisenberg group, the Lorentzian Berger
sphere and announces some original results on the 3-dimensional anti-de Sitter
space with Berger-like metrics.

The paper is organized in the following way. In Section 2 we introduce the
problem featuring the general settings to establish in these studies, giving some
useful definitions and tools. Then, in Section 3 we treat the Minkowski space,
following the presentation in [13]. Section 3 analyzes the case of the Lorentzian
Heisenberg group H3(τ) as it appears in [20] and in Section 5 we present the
characterization of the surfaces in the Lorentzian Berger sphere S3ε whose unit
normal vector field makes a constant angle with the unit Hopf vector field,
following [21]. In the conclusive part of the paper we announce some original
results towards the characterization of helix surfaces in the anti-de Sitter space
H3

1 endowed with some left-invariant metrics, offering a generalization to the
case proved in [14].

2 Preliminaries

Let (M̄, ḡ) be a 3-dimensional Lorentzian manifold and M an oriented sur-
face immersed into M̄ . We denote by ∇̄ the Levi-Civita connection of M̄ and
fix the convention:

R̄(X,Y ) = [∇̄X , ∇̄Y ]− ∇̄[X,Y ] (2.1)

for the Riemann curvature tensor.
Let N be the unit normal toM ; then, if we denote by λ = ḡ(N,N) = ±1 the

causal character of the normal, we can make a distinction between two cases:

� λ = −1, that means that the induced metric on M is Riemannian and so
M is called spacelike;

� λ = 1, that means that the induced metric on M is Lorentzian and so M
is called timelike.

At this point, we consider a Killing vector field Ṽ in order to define the angle
function

ν := ḡ(N, Ṽ )ḡ(N,N) = λḡ(N, Ṽ ). (2.2)

Therefore, we report the following.
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Definition 1. M is called a helix surface (or a constant angle surface) if
the angle function ν is constant on M .

The well known Gauss and Weingarten formulas, for all X,Y ∈ X(M), read:

∇̄XY = ∇XY + α(X,Y ), ∇̄XN = −A(X), (2.3)

where ∇ is the Levi–Civita connection on M and α the second fundamental
form with respect to the immersion. In this way, we have

α(X,Y ) = λḡ(A(X), Y )N. (2.4)

In addition, we can also write, with the conventions used above, the Gauss
equation for pseudo-Riemannian surfaces:

K = K̄ + λ
ḡ(A(X), X)ḡ(A(Y ), Y )− ḡ(A(X), Y )2

ḡ(X,X)ḡ(Y, Y )− ḡ(X,Y )2
(2.5)

where

ḡ(A(X), X)ḡ(A(Y ), Y )− ḡ(A(X), Y )2

ḡ(X,X)ḡ(Y, Y )− ḡ(X,Y )2
= detA.

Moreover, the Codazzi equation for hypersurfaces yields:

ḡ(R̄(X,Y )Z,N) = ḡ(∇XA(Y )−∇YA(X)−A[X,Y ], Z). (2.6)

3 Helix surfaces in E3
1

Let ⟨, ⟩ be the standard flat metric in E3
1, the three-dimensional Minkowski

space, that is the Lorentzian metric

⟨, ⟩ = dx21 + dx22 − dx23.

In E3
1 one can define several types of angles depending on the causality of

the two vectors considered (see [10], [11]) and, consequently, different types
of constant angle surfaces may be studied. In particular, in this survey, we
considered the notion of angle between two timelike vectors and the spacelike
surfaces obtained from this choice, following the work of Lopez and Munteanu
([13]).

To begin, if v, w ∈ E3
1 are two timelike vectors, then ⟨v, w⟩ ≠ 0. In particular,

in the case that both vectors lie in the same timelike cone, there exists a unique
number θ ≥ 0, called the hyperbolic angle between v and w, such that

⟨v, w⟩ = −|v||w| cosh θ.
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Now, let M be a surface immersed into E3
1. Our purpose is to describe

a characterization for M to be of constant angle. It is well known that if the
immersion is spacelike, then the surface is orientable. Then, letM be an oriented
spacelike surface immersed into E3

1 with N its unit normal, which is clearly
timelike. Therefore, since the notion of hyperbolic angle works between timelike
vectors, let us take without loss of generality the Killing timelike vector field
e3 = (0, 0, 1). We then specify the relation (2.2) defining the angle function
between N and e3 by:

ν := −⟨N, e3⟩ = cosh θ, (3.1)

where θ is the hyperbolic angle between N and e3.
In analogy with the Euclidean case (see [17]), we can recall the Gauss and

Weingarten formulas given in (2.3) using ∇ for the Levi–Civita connection on
M and α for the second fundamental form with respect to the immersion. In
this way, one gets α(X,Y ) = −g(A(X), Y )N , where g is the restriction of ⟨, ⟩
to M . We now consider the decomposition of e3 as follows:

e3 = T + cosh θN,

where T is tangent to M . It is easy to determine that ||T || = sinh θ.

Remark 1. If θ = 0, then e3 is parallel to N and soM is a plane orthogonal
to e3. For this reason, we can assume, from now on, that θ ̸= 0.

Now, we can define a unit vector field on M , namely E1, collinear to T and
E2 orthogonal to E1 such that {E1, E2} is an orthonormal basis for TM . From
now on, in our discussion we will always consider M a spacelike helix surface
(i.e. θ constant on M). At this point, one is able to calculate the associated
Levi-Civita connection ∇ for a constant angle spacelike surface in E3

1:

∇E1E1 = ∇E1E2 = 0, ∇E2E1 = −a coth θ E2, ∇E2E2 = a coth θ E1,
(3.2)

where a is a function. Moreover, with respect to {E1, E2}, the matrix describing
the shape operator is given by

A =

(
0 0
0 −a

)
.

3.1 The characterization of helix surfaces in E3
1

Following the scheme used in [13], one can choose now a local coordinate
system (u, v) such that:

∂u = E1, ∂v = bE2, (3.3)
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where b is a function on M . The condition 0 = [∂u, ∂v] leads to:

bu + ba coth θ = 0. (3.4)

Now, let us consider a parametrization for the helix surface M : F (u, v) =
F (x(u, v), y(u, v), z(u, v)) with the coordinate defined above.

Therefore, taking into account the relations for the Levi-Civita connection
(3.2) one gets the following:

Fuu = 0; (3.5)

Fuv =
bu
b
Fv; (3.6)

Fvv = −bv
b
Fv − bbu Fu + ab2N. (3.7)

Moreover, the Schwarz identity and the expressions of the partial derivatives of
N leads to an equation for a:

au − a2 coth θ = 0. (3.8)

Also, combining (3.4) and (3.8) the authors obtained au + a
bu
b

= 0, that is

(ab)u = 0 and then there exists a smooth function φ = φ(v), depending only on
v, such that:

ab = φ(v). (3.9)

Our purpose is now to get a solution for a and b in order to obtain a parametriza-
tion for M .

Remark 2. We have already used that Nu = 0, but this fact also implies
that the coefficients of the second fundamental form e and f vanish and so does
the Gaussian curvature. Then, M is locally flat.

Integrating the equations (3.4) and (3.8), also using the (3.9), one gets.

Proposition 1. [13] The functions a and b are given by the following ex-
pressions: either {

a(u, v) = 1
− coth θu+α(v) ,

b(u, v) = φ(v)(− coth θu+ α(v)),
(3.10)

where α and φ are smooth functions on M , or{
a(u, v) = 0,

b(u, v) = b(v).



104 L. Pellegrino

When a = 0 leads to bu = 0 and so Fu vanishes, we have the following.

Proposition 2. [13] Let M be a spacelike helix surface in E3
1 parametrized

by F = F (u, v), where (u, v) are the coordinates given in (3.3). If a(u, v) = 0
on M , then F describes an affine plane.

Now we can consider the following.

Theorem 1. [13] Let M be a spacelike helix surface in E3
1 with constant

hyperbolic angle θ which is not totally geodesic. Up to a rigid motion of the
ambient space, there exist local coordinates u and v such that M is given by the
parametrization

F (u, v) = (u cosh θ cos v + γ1(v), u cosh θ sin v + γ2(v),−u sinh θ), (3.11)

with

γ(v) = (γ1(v), γ2(v)) = sinh θ
(∫ v

0
α(τ) sin τdτ,−

∫ v

0
α(τ) cos τdτ

)
where α is a smooth function on an interval I. Conversely, a parametrization
F (u, v) as above defines a helix surface in E3

1.

Proof. To begin, if we consider the parametrizations given in (3.11), we have:

Fu = (cosh θ cos v, cosh θ sin v,− sinh θ);

Fv = (−(u cosh θ − α(v) sinh θ) sin v, (u cosh θ − α(v) sinh θ) cos v, 0).

Thus, the unit normal is given by:

N = (sinh θ sin v, sinh θ cos v,− cosh θ)

and hence the angle function ν = −⟨N, e3⟩ = cosh θ is constant. Conversely, we
have to prove that if M is a helix surface in E3

1 then it may be parametrized as
in (3.11).

Since Fu = E1, we can write e3 = sinh θ Fu + cosh θ N and so we get:

F (u, v) = (h(u, v), u sin θ) = (x(u, v), y(u, v),−u sin θ). (3.12)

Hence, in order to specify the expression for h we have to consider the expres-
sions for a and b given in Proposition 1 observing that we have already given
the characterization in the case for a = 0.At this point, the authors used the
equations given in (3.10). From (3.5) they get huu = 0 and, since E1 is a unit
vector, |hu| = 1 and so

hu(u, v) = cosh θf(v),
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(a) α(y) = 0 (b) α(y) = 1
sin v

Figure 1: Constant angle spacelike surfaces for some values of α.

where |f(v)| = 1. Hence, integrating one obtains:

h(u, v) = u cosh θf(v) + γ(v),

where γ is a smooth curve in R2. In addition one finds that

Fv = (hv, 0) = (u cosh θf ′(v) + γ′(v), 0)

and from (3.6):

Fuv =
coth θ

u coth θ − α(v)
(u cosh θf ′(v) + γ′(v), 0)

Moreover, since huv = cosh θf ′(v), by comparing with the latter and since we can
suppose that f is the natural parametrization of S1 without loss of generality,
one gets the parametrization in (3.11). QED

At this point we are able to introduce some examples of helix surfaces (see
[13]) with the parametrization given in (1). In particular, in Fig.1 we plot some
examples for θ = 1 and different values for α(v).

3.2 Helix surfaces constructed on curves

Recalling Remark 2 and that, as in the Euclidean space (see [17]), all flat
surfaces are characterized to be locally isometric to planes, cones, cylinders or
tangent developable surfaces, we can consider the following.



106 L. Pellegrino

Corollary 1. [13] Any spacelike helix surface in E3
1 is isometric to either a

plane, a cone, a cylinder or a tangent developable surface.

The fact that a constant angle (spacelike) surface is a ruled surface appears
clearly in Theorem 1. Exactly, the parametrization (3.11) writes as

F (u, v) = (γ(v), 0) + u(cosh θ cos v, cosh θ sin v,− sinh θ)

which proves that these surfaces are ruled.

Consequently it is very natural for one to ask if the viceversa holds. In
particular, in [13] the authors studied tangent developable surfaces, cones and
cylinders that are helix surfaces.

In the first case, call γ(s) the defining curve for the tangent surfaces; then
we can express the tangent, normal and binormal vectors as follows:

T(s) = γ′(s),

N(s) = γ′′(s)/κ(s),

B(s) = T(s)×N(s),

where κ(s) = |γ′′(s)| > 0 is the curvature of γ at s. The function τ(s) =
−⟨N′(s),B(s)⟩ is called the torsion of γ at s. The principal result for tangent
surface is the following.

Theorem 2. [13] LetM be a tangent developable spacelike surface generated
by γ. ThenM is a helix surface if and only if γ is a helix with τ2 < κ2. Moreover
the direction U with which M makes a constant hyperbolic angle θ is given by

U =
1√

κ2 − τ2

(
− τ(s)T(s) + κ(s)B(s)

)
(3.13)

and the angle θ is determined by the relation

cosh θ =
κ√

κ2 − τ2
. (3.14)

For the case of cones and cylinders we can report the following results.

Theorem 3. [13] The following hold.

� The only constant angle (spacelike) cylinders are planes.

� A (spacelike) cone is a helix surface if and only if the generating curve is
either a circle in a spacelike plane or a straight line (and the surface is a
plane).
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4 Helix surfaces in the Lorentzian Heisenberg group

Let H3(τ) (τ ̸= 0) denote the 3-dimensional Heisenberg group given by R3

equipped with the 1-parameter family of Lorentzian metrics

gτ = dx2 + dy2 − (dz − τ(ydx− xdy))2,

which makes the map π : H3(τ) → R2 a Riemannian submersion. Now, let us
consider the vector fields:

E1 =
∂

∂x
+ τy

∂

∂z
, E2 =

∂

∂y
− τx

∂

∂z
, E3 =

∂

∂z
,

which form a Lorentzian orthonormal basis on H3(τ). At this point, one can
gets the associated Levi-Civita connection ∇τ :

∇τ
E1
E1 = ∇τ

E2
E2 = ∇τ

E3
E3 = 0, ∇τ

E2
E1 = τE3 = −∇τ

E1
E2,

∇τ
E3
E1 = −τE2 = ∇τ

E1
E3, ∇τ

E3
E2 = τE1 = ∇τ

E2
E3.

(4.1)

We may observe that E3 is a unit timelike vector field tangent to the fibers of
π. By (4.1), we have

∇τ
XE3 = τX ∧ E3 ∀X ∈ X(H3(τ)), (4.2)

where ∧ is the cross product in H3(τ) defined by the following relations

E2 ∧ E3 = E1, E3 ∧ E1 = E2, E1 ∧ E2 = −E3

Also, using the fixed convention, one gets the non zero components of the Rie-
mann curvature tensor, as follows:

Rτ (E1, E2)E1 = −3τ2E2, Rτ (E1, E3)E1 = τ2E3,

Rτ (E1, E2)E2 = 3τ2E1, Rτ (E1, E3)E3 = τ2E1,

Rτ (E2, E3)E3 = τ2E2, Rτ (E2, E3)E2 = τ2E3.

(4.3)

Moreover, the tensor Rτ can be described as in the following result, obtained
by accurate calculations.

Proposition 3. [20] The Riemann curvature tensor Rτ of H3(τ) is deter-
mined by

Rτ (X,Y )Z =3τ2[gτ (Y,Z)X − gτ (X,Z)Y ]

+ 4τ2[gτ (Y,E3)gτ (Z,E3)X − gτ (X,E3)gτ (Z,E3)Y

+ gτ (X,E3)gτ (Y,Z)E3 − gτ (Y,E3)gτ (X,Z)E3],

for all vector fields X,Y ,Z on H3(τ).
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4.1 The structure equations for surfaces in H3(τ )

Now, let us consider a pseudo-Riemannian oriented surfaceM immersed into
H3(τ) and, in analogy with previous section, we can specify the relation (2.2)
defining the angle function, or simply angle, by:

ν := gτ (N,E3)gτ (N,N),

where N is the unit normal to M with λ = gτ (N,N) = ±1.

Then, if we consider the decomposition E3 = T + νN we have:

gτ (T, T ) = −(1 + λν2). (4.4)

that leads to:

∇τ
XE3 = ∇τ

XT +X(ν)N + ν∇τ
XN =

= ∇XT + λgτ (A(X), T )N +X(ν)N − νA(X),

moreover, by (4.2) one gets:

∇τ
XE3 = τX ∧ E3 = τλgτ (JX, T )N − τνJX

where we called JX := N ∧X, the rotation of angle π/2 in TM , which satisfies
the relations gτ (JX, JX) = −λgτ (X,X) and J2X = λX.

Comparing the two expressions one obtains:{
∇XT = ν(A(X)− τJX)

X(ν) = −λgτ (A(X)− τJX, T ).
(4.5)

Now, using the equation (2.5) for a pseudo-Riemannian surface and recalling
the Proposition 3 we will report the expressions of the Gauss and Codazzi
equations for a pseudo-Riemannian surface M immersed into H3(τ):

Proposition 4. [20] Let X,Y denote vector fields tangent to M , K the
Gaussian curvature of M and K̄ the sectional curvature in H3(τ) of the plane
tangent to M . Then,

K = K̄ + λdetA = −τ2 + λ
[
detA− 4ν2τ2

]
(4.6)

and

∇XA(Y )−∇YA(X)−A[X,Y ] = 4λντ2 [gτ (X,T )Y − gτ (Y, T )X] .
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4.2 Spacelike helix surfaces in H3(τ )

We now begin the presentation of the study of helix surfaces in H3(τ) con-
sidering firstly the spacelike case, where λ = −1. Therefore, from the equation
(4.4) it follows that (up to the orientation of N) we can write ν = coshϑ, where
ϑ ≥ 0 is called the hyperbolic angle function between N and E3. Now, let us
assume that ϑ is constant.

Remark 3. We observe that ϑ ̸= 0. In fact, if ϑ = 0, then E3 would be
parallel to N and so E1 and E2 would be tangent to M , which is impossible as
the horizontal distribution of π is not integrable.

Proposition 5. [20] Let M denote a helix spacelike surface in H3(τ) and
N the unit vector field normal to M . Then:

(i) with respect to the tangent basis {T, JT}, the matrix describing the shape
operator is given by

A =

(
0 −τ
−τ µ

)
for some smooth function µ on M ;

(ii) the Levi-Civita connection ∇ of M is described by

∇TT = −2τ coshϑJT, ∇JTT = µ coshϑJT,

∇TJT = 2τ coshϑT, ∇JTJT = −µ coshϑT ;

(iii) the Gaussian curvature of M is constant and is given by

K = 4τ2 cosh2 ϑ;

(iv) the function µ satisfies the equation

T (µ) + µ2 coshϑ+ 4τ2 cosh3 ϑ = 0. (4.7)

Proof. Considering the tangent basis {T, JT} and using (4.5), one gets (i) and
(ii).

One can now proceeds calculating the Gaussian curvature. By (4.6) one finds

K = 4τ2ν2 − [detA+ τ2] = 4τ2 cosh2 ϑ.

Finally, one can calculate

∇TA(JT )−∇JTA(T )−A[T, JT ] =

= ∇T (−τT + µJT )−∇JT (−τJT )−A[2τ coshϑT − µ coshϑJT ] =

= [4τ2 coshϑ+ T (µ) + µ2 coshϑ]JT.
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By Proposition 4, the authors obtained

∇TA(JT )−∇JTA(T )−A[T, JT ] = −4τ2 coshϑ[gτ (T, T )JT − gτ (JT, T )T ] =

= −4τ2 coshϑ sinh2 ϑJT

and so, by comparing, one gets (4.7). QED

As we know that gτ (E3, N) = − coshϑ and that E3 is timelike, then there
exists a smooth function φ onM such that N = sinhϑ cosφE1+sinhϑ sinφE2+
coshϑE3, then:

T = E3 − coshϑN = − sinhϑ[coshϑ cosφE1 + coshϑ sinφE2 + sinhϑE3],

JT = sinhϑ(sinφE1 − cosφE2).

Moreover, we can consider the following

A(T ) = −∇τ
TN = [T (φ) + τ cosh2 ϑ+ τ sinh2 ϑ]JT,

A(JT ) = −∇τ
JTN = JT (φ)JT − τT,

and, comparing with (i) of Proposition 5, one gets:{
JT (φ) = µ

T (φ) = −2τ cosh2 ϑ,

whose compatibility is equivalent to (4.7). We now choose local coordinates
(x, y) on M such that

∂x = T, ∂y = aT + bJT (4.8)

where a, b are smooth functions on M . The condition 0 = [∂x, ∂y] leads to:{
ax = −2τb coshϑ

bx = µ b coshϑ.

In conclusion, integrating (4.7) one gets

µ(x, y) = 2τ coshϑ tan
(
η(y)− 2τ cosh2 ϑx

)
;

then, since we are searching just for one solution, let us take for example{
a(x, y) = sin(η(y)−2τ cosh2 ϑx)

coshϑ

b(x, y) = cos(η(y)− 2τ cosh2 ϑx).
(4.9)

Therefore one gets φ(x, y) = −2τ cosh2 ϑx+ c, where c is a real constant.
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Theorem 4. [20] Let M be a helix spacelike surface in H3(τ) with constant
hyperbolic angle ϑ. Then, with respect to the local coordinates (x, y) onM defined
in (4.8) and (4.9), the position vector F of M in R3 is given by

F (x, y) =
(tanhϑ

2τ
sinx+ f1(y),−

tanhϑ

2τ
cosx+ f2(y),

− sinh2 ϑ

2τ
x+

tanhϑ

2τ
[f1(y) cosx+ f2(y) sinx] + f3(y)

)
,

(4.10)

where f1, f2, f3 satisfy:

f ′1(y)
2 + f ′2(y)

2 = sinh2 ϑ, f ′3(y) = τ(f2(y)f
′
1(y)− f1(y)f

′
2(y)).

Proof. By definition of position vector F in R3 one gets

∂xF = T = − sinhϑ[coshϑ cosφE1|F + coshϑ sinφE2|F + sinhϑE3|F ]

and

∂yF = aT + bJT =

= sinhϑ[(−a coshϑ cosφ+ b sinφ)E1|F

− (a coshϑ sinφ+ b cosφ)E2|F − a sinhϑE3|F ].

Moreover, specifying the expressions for E1, E2 and E3, in the equations above
one can calculate explicitly F1, F2 and F3. Therefore, using the map ϕ(x) 7→ x
one gets (4.10) and also the following conditions:

f ′1(y) = − sinhϑ sin(η(y)− c),

f ′2(y) = − sinhϑ cos(η(y)− c),

f ′3(y) = τ(f2(y)f
′
1(y)− f1(y)f

′
2(y)).

(4.11)

QED

Example 1. [20] Choosing η(y) = y + c in (4.11) one gets:

f1(y) = − sinhϑ sin(y), f2(y) = − sinhϑ cos(y), f3(y) = τy sinh2 ϑ.

Therefore we have an explicit parametrization of helix spacelike surfaces de-
pending only on the choice of ϑ. In Fig. 2 we observe plots for some values of
ϑ.
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(a) ϑ = π/3 (b) ϑ = π/4 (c) ϑ = π/6 (d) ϑ = π/8

Figure 2: Constant angle spacelike surfaces for some values of ϑ.

4.3 Timelike helix surfaces in H3(τ )

Following the same scheme as in the spacelike case, we now approach the
study of timelike helix surfaces in H3(τ), where λ = 1. In this case, from the
equation (4.4) it follows that (up to the orientation of N) we can write ν =
sinhϑ, where ϑ ≥ 0 is called, analogously, the hyperbolic angle function between
N and E3. Now, let us assume again that ϑ is constant.

Remark 4. From now on we can assume, also in this case, that ϑ ̸= 0.
In fact, if ϑ = 0, this time E3 would be tangent to M and therefore M is a
cylindrical surface.

Proceeding as in the previous section the authors proved an analogue of
Proposition 5 determining the shape operator, the connection ∇ and the Gaus-
sian curvature.

As we know that gτ (E3, N) = sinhϑ and that E3 is timelike, then, as
above, there exists a smooth function φ on M such that N = coshϑ cosφE1 +
coshϑ sinφE2 + sinhϑE3.

We now choose local coordinates (x, y) on M as in 4.8, then the condition
0 = [∂x, ∂y] and the analogue of (4.7) now leads to

µ(x, y) = 2τ sinhϑ tan(η(y)− 2τ cosh2 ϑx),

and {
a(x, y) = − sin(η(y)−2τ sinh2 ϑx)

sinhϑ

b(x, y) = cos(η(y)− 2τ sinh2 ϑx),
(4.12)



Helix surfaces in Lorentzian ambient spaces 113

(a) ϑ = π/3 (b) ϑ = π/4 (c) ϑ = π/6 (d) ϑ = π/8

Figure 3: Constant angle timelike surfaces for some values of ϑ.

since we are searching again just for one solution for a and b. In addition, one
gets φ(x, y) = 2τ sinh2 ϑx+ c, where c ∈ R.

Again, similarly as in Proposition 4, one gets the following.

Theorem 5. [20] Let M be a helix timelike surface in H3(τ) with constant
hyperbolic angle ϑ. Then, with respect to the local coordinates (x, y) onM defined
in (4.8) and (4.12), the position vector F of M in R3 is given by

F (x, y) =
(− cothϑ

2τ
sinx+ f1(y),

cothϑ

2τ
cosx+ f2(y),

cosh2 ϑ

2τ
x− cothϑ

2τ
[f1(y) cosx+ f2(y) sinx] + f3(y)

)
,

(4.13)

where f1, f2, f3 satisfy:

f ′1(y)
2 + f ′2(y)

2 = cosh2 ϑ, f ′3(y) = τ(f2(y)f
′
1(y)− f1(y)f

′
2(y)).

Example 2. [20] Choosing η(y) = y + c in (4.11) one gets:

f1(y) = − coshϑ cos(y), f2(y) = − sinhϑ sin(y), f3(y) = −τy cosh2 ϑ.

Therefore we have an explicit parametrization of helix timelike surfaces depend-
ing only on the choice of ϑ. In Fig. 3 we observe plots for some values of ϑ.

5 Helix surfaces in Lorentzian Berger Spheres

The 3-dimensional Lorentzian Berger spheres are defined as follows, in terms
of the Hopf fibration. Let us consider S2(1/2) ⊂ C×R and S3 ⊂ C2 in order to
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define the Hopf map:

ψ : S3 → S2(1/2)

ψ(z, w) =
1

2
(2zw̄, |z|2 − |w|2).

Such a map is a Riemannian submersion and the vector fields:

X1(z, w) = (iz, iw), X2(z, w) = (−iw̄, iz̄), X3(z, w) = (−w̄, z̄)

parallelize S3, where X1 is vertical and X2, X3 are horizontal. In this way the
3-dimensional Lorentzian Berger spheres S3ε are given by S3 endowed with the
following 1-parameter family of Lorentzian metrics:

gε(X,Y ) = ⟨X,Y ⟩ − (ε2 + 1)⟨X,X1⟩⟨Y,X1⟩,

where ⟨, ⟩ represents the canonical metric of S3. Now, {E1 = ε−1X1, E2 =
X2, E3 = X3} is a pseudo-orthonormal basis for S3ε. Computing the Lie brackets
[Ei, Ej ] and using the Koszul formula, the authors obtained the description of
the Levi-Civita connection of S3ε with respect to {E1, E2, E3}:

∇ε
E1
E1 = 0, ∇ε

E1
E2 =

2+ε2

ε E3, ∇ε
E1
E3 = −2+ε2

ε E2,

∇ε
E2
E1 = εE3, ∇ε

E2
E2 = 0, ∇ε

E2
E3 = εE1,

∇ε
E3
E1 = −εE2, ∇ε

E3
E2 = −εE1, ∇ε

E3
E3 = 0.

(5.1)

We may observe that E1, called Hopf vector field, is a unit timelike vector field
tangent to the fibers of ψ. By (5.1), we have

∇ε
XE1 = −εX ∧ E1, X ∈ X(S3ε), (5.2)

where the cross product ∧ is given by:

U ∧ V =

∣∣∣∣∣∣
−E1 E2 E3

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ , U, V ∈ X(S3ε).

We now consider the curvature tensor, taken with the convention (2.1) and,
using (5.1), one gets

Rε(E1, E2)E1 = −ε2E2, Rε(E1, E3)E1 = −ε2E3,

Rε(E1, E2)E2 = −ε2E1, Rε(E1, E3)E3 = −ε2E1,

Rε(E2, E3)E3 = (4 + 3ε2)E2, Rε(E2, E3)E2 = −(4 + 3ε2)E3.

(5.3)

The following result is obtained in a completely analogous way as in Proposition
3.
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Proposition 6. [21] The Riemann curvature tensor Rε of S3ε is determined
by:

Rε(X,Y )Z =(4 + ε2)[gε(Y, Z)X − gε(X,Z)Y ]

+ 4(1 + ε2)[gε(Y,E1)gε(Z,E1)X − gε(X,E1)gε(Z,E1)Y

+ gε(X,E1)gε(Y, Z)E1 − gε(Y,E1)gε(X,Z)E1],

for all vector field X, Y , Z on S3ε.
Now we can conclude this subsection, recalling that the isometry group of

S3ε can be identified with:

{Q ∈ O(4) : QJ1 = ±J1Q} where J1 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

Moreover, in order to describe a 1-parameter family Q(y) of orthogonal matrices
4 × 4 in Iso(S3ε), one can use four functions: ξ1 = ξ1(y), ξ2 = ξ2(y), ξ3 = ξ3(y)
and ξ = ξ(y) and consider:

Q(ξ1, ξ2, ξ3, ξ)(y) =


r1(y)

±J1r1(y)
cos ξ(y)J2r1(y) + sin ξJ3r1(y)
∓ cos ξ(y)J3r1(y)± sin ξJ2r1(y)

 , (5.4)

where

r1(y) = (cos ξ1(y) cos ξ2(y),− cos ξ1(y) sin ξ2(y), sin ξ1(y) cos ξ3(y),− sin ξ1(y) sin ξ3(y)),

and

J2 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , J3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

5.1 The structure equations for surfaces in S3
ε

Let us consider a pseudo-Riemannian oriented surface M immersed into
S3ε, and in analogy with previous cases we can specify (2.2), defining the angle
function, or simply angle, by:

ν := gε(N,N)gε(N,E1), (5.5)
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where N is the unit normal to M .
Therefore, if we call again λ := gε(N,N) = ±1 and we specify the relations

found in (2.3) and (2.4) for this case, all of them are still true. Then, considering
the decomposition E1 = T + νN one gets:

gε(T, T ) = −(1 + λν2),

that leads to:

∇ε
XE1 = ∇ε

XT +X(ν)N + ν∇ε
XN =

= ∇XT + λgε(A(X), T )N +X(ν)N − νA(X).

Moreover, by (5.2) one gets:

∇ε
XE1 = −εX ∧ E1 = −ελgε(JX, T )N + ενJX,

where we called JX := N ∧ X, gε(JX, JY ) = −λgε(X,Y ) and J2X = λX.
Comparing the two expressions one obtains:{

∇XT = ν(A(X) + εJX)

X(ν) = −λgε(A(X) + εJX, T ).

Now, using Proposition 6, the authors obtained the expressions of the Gauss
and Codazzi equations for a pseudo-Riemannian surface M immersed into S3ε:

Proposition 7. [21] Let X, Y denote vector fields tangent to M , K the
Gaussian curvature of M and K̄ the sectional curvature in S3ε of the plane
tangent to M . Then,

K = K̄ + λdetA = −ε2 + λ[detA− 4ν2(1 + ε2)]

and

∇XA(Y )−∇YA(X)−A[X,Y ] = 4λν(1 + ε2)[gε(X,T )Y − gε(Y, T )X].

5.2 Helix surfaces in S3
ε

In the case of S3ε, we consider the expression for the angle function given in
5.5. Then, one can study naturally helix surfaces in this ambient space.

We observe that if a helix surface M in S3ε is spacelike, then |ν| > 1. More-
over, if M is timelike with ν = 0, then E1 is tangent to M and so M is an Hopf
tube. For this reason, by now, we can assume ν ̸= 0. With same reasoning as in
Proposition 5 the authors proved the following.
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Proposition 8. [21] Let M denote a helix surface in S3ε and N the unit
vector field normal to M . Then:

(i) with respect to the tangent basis {T, JT}, the matrix describing the shape
operator is given by

A =

(
0 −λε
ε µ

)
for some smooth function µ on M ;

(ii) the Levi-Civita connection ∇ of M is described by

∇TT = 2ενJT, ∇JTT = µνJT, ∇TJT = 2λενT, ∇JTJT = λµνT ;

(iii) the Gaussian curvature of M is constant and is given by

K = −4λ(1 + ε2)ν2;

(iv) function µ satisfies equation

T (µ) + νµ2 + 4λνB = 0, (5.6)

where we put B := 1 + λν2(1 + ε2).

Remark 5. We observe that if M is a spacelike (respectively, timelike)
surface, then the constant B is negative (respectively, positive). Therefore, in
both cases, we have that λB > 0. Consequently, if a helix surface is minimal
(i.e., trA = 0), from (i) of the Proposition 8 it follows that µ = 0 and, so ν = 0
and the surface is a timelike Hopf tube.

As we know that gε(E1, N) = λν and that E1 is timelike, then there ex-
ists a smooth function φ on M such that: N = λνE1 +

√
λ+ ν2 cosφE2 +√

λ+ ν2 sinφE3, then:

T = E1 − νN = (1 + λν2)E1 − ν
√
λ+ ν2 cosφE2 − ν

√
λ+ ν2 sinφE3,

JT = N ∧ T =
√
λ+ ν2(sinφE2 − cosφE3).

Moreover, one gets the following

A(T ) = −∇ε
TN = [T (φ) + ε−1(2 + ε2)(1 + λν2) + λεν2]JT,

A(JT ) = −∇ε
JTN = JT (φ)JT − λεT
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and, comparing with (i) of Proposition 8, one obtains:{
JT (φ) = µ

T (φ) = −2ε−1B

whose compatibility is equivalent to (5.6). We now choose local coordinates
(x, y) on M such that

∂x = T, ∂y = aT + bJT, (5.7)

where a, b are smooth functions on M . Now, since we are searching just for one
solution, by condition 0 = [∂x, ∂y] and integrating (5.6) one gets, for example,
µ(x, y) = 2

√
λB tan(η(y)− 2ν

√
λBx) and{

a(x, y) = λε√
λB

sin(η(y)− 2ν
√
λBx)

b(x, y) = cos(η(y)− 2ν
√
λBx).

(5.8)

Therefore one obtains φ(x, y) = −2ε−1Bx+ c where c ∈ R.

Now, using the definition of position vector F in R4 and clever calculations
the authors proved the following.

Proposition 9. [21] Let M be a helix surface in the Lorentzian Berger
sphere S3ε with constant angle function ν. Then, with respect to the local coordi-
nates (x, y) on M defined above, the position vector F of M in R4 satisfies the
equation

∂4F

∂x4
+ (b̃2 − 2ã)

∂2F

∂x2
+ ã2F = 0, (5.9)

where ã = λε−2B(λ+ ν2) and b̃ = −2ε−1B.

Remark 6. By |F |2 = 1 and the relations given in Proposition 9, one gets:

⟨F, F ⟩ = 1, ⟨Fx, Fx⟩ = ã, ⟨F, Fx⟩ = 0,

⟨Fx, Fxx⟩ = 0, ⟨Fxx, Fxx⟩ = D, ⟨F, Fxx⟩ = −ã,

⟨Fx, Fxxx⟩ = −D, ⟨Fxx, Fxxx⟩ = 0, ⟨F, Fxxx⟩ = 0,

⟨Fxxx, Fxxx⟩ = E,

(5.10)

where we put

D = ãb̃2 − 3ã2, E = (b̃2 − 2ã)D − ã3.

The following result is then obtained integrating equation (5.9).
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Theorem 6. [21] LetM be a helix surface in S3ε with constant angle function
ν. Then, with respect to the local coordinates (x, y) defined above, the position
vector F of M in R4 is explicitly given by

F (x, y) = cos(α1x)g
1(y) + sin(α1x)g

2(y) + cos(α2x)g
3(y) + sin(α2x)g

4(y),

where

α1,2 = ε−1(λB ± ε|ν|
√
λB)

are real constants and gi(y), i = 1, 2, 3, 4, are mutually orthogonal vector fields
in R4, depending only on y, such that, setting gij = ⟨gi(y), gj(y)⟩ for all indices
i,j, we have:

g11 = g22 =
λε

2B
α2, g33 = g44 =

λε

2B
α1.

Proof. The proof of this theorem consists in two parts. The first one is essentially
the integration of (5.9) in terms of α1,2, the solutions of the associated char-
acteristic equation, and gi(y), i = 1, 2, 3, 4, four vector fields in R4, depending
only on y. This leads to:

F (x, y) = cos(α1x)g
1(y) + sin(α1x)g

2(y) + cos(α2x)g
3(y) + sin(α2x)g

4(y).

The second one consists in the computation of the norms gij = ⟨gi(y), gj(y)⟩ for
all indices i,j by the solution of a system obtained evaluating F (x, y) on (0, y),
in the relations found in (5.10). QED

5.3 The Characterization Theorem of the helix surfaces in S3
ε

We first observe that if F is the position vector of a helix surface in S3ε, we
have that:

J1F (x, y) = X1|F (x,y) = εE1|F (x,y) = ε(Fx + νN)

and thus, the conditions under which an immersion defines a helix surface in S3ε
are given in the following proposition.

Proposition 10. [21] Let F : Ω → S3ε be an immersion from an open
set R2, with local coordinates (x, y). Then F (Ω) is a spacelike (respectively,
timelike) helix surface and the projection of E1 = ε−1J1F to the tangent space
of F (Ω) ⊂ S3ε is Fx if and only if{

gε(Fx, Fx) = gε(E1, Fx) = −(1 + λν2)

gε(Fx, Fy)− gε(Fy, E1) = 0,
(5.11)

where λ = 1 ( respectively, λ = −1).



120 L. Pellegrino

Now, we can consider the main result.

Theorem 7. [21] Let M be a helix surface in S3ε. Then, locally the position
vector of M in R4 with respect to the local coordinates (x, y) on M defined in
(5.7) and (5.8), is given by

F (x, y) = Q(y)β(x),

where

β(x) = (
√
g11 cos(α1x),

√
g11 sin(α1x),

√
g33 cos(α2x),

√
g33 sin(α2x))

is a twisted geodesic in the torus S1(√g11)× S1(√g33) ⊂ R3, the constants g11,
g33, α1 and α2 are given in Theorem 6 and Q(y) is a 1-parameter family of 4×4
orthogonal matrices such that J1Q(y) = Q(y)J1, with ξ constant and

cos2(ξ1(y))ξ
′
2(y)− sin2(ξ1(y))ξ

′
3(y) = 0. (5.12)

Conversely, a parametrization F (x, y) = Q(y)β(x) as above defines a helix sur-
face in S3ε.

Proof. From the Theorem 6 we recover the expression for the position vector of
M in R4 with respect to the local coordinates (x, y) on M defined in (5.7) and
(5.8):

F (x, y) = cos(α1x)g
1(y) + sin(α1x)g

2(y) + cos(α2x)g
3(y) + sin(α2x)g

4(y)

Then, putting ei(y) = gi(y)/||gi(y)||, i = 1, 2, 3, 4, one can write as follows:

F (x, y) =
√
g11(cos(α1x)e1(y) + sin(α1x)e2(y)) +

√
g33(cos(α2x)e3(y) + sin(α2x)e4(y)).

(5.13)

Now, if we consider the matrix J̄i,j = ⟨J1ei, ej⟩ in [21] the authors proved that
J̄ = λ(J1)

T . Then, if we fix the orthonormal basis of R4 defined by:

Ẽ1 = (1, 0, 0, 0), Ẽ2 = (0, λ, 0, 0), Ẽ3 = (0, 0, 1, 0), Ẽ4 = (0, 0, 0, λ),

there must exist a 1-parameter family of 4 × 4 orthogonal matrices such that
J1Q(y) = Q(y)J1 and that ei(y) = Q(y)Ẽi. Consequently, from (5.13) we have

F (x, y) = Q(y)β(x)

with β(x) and Q(y) as in the statement.
Now, one has to show that the condition (5.12) is true. From (5.7) and (5.8)

one gets that ⟨Fy, Fy⟩ = λ+ ν2, and so

∂

∂x
⟨Fy, Fy⟩|x=0 = 0. (5.14)



Helix surfaces in Lorentzian ambient spaces 121

Moreover if we denote q1,q2,q3,q4 the columns of Q(y) the latter leads to:

⟨q′
2,q

′
3⟩ = 0, ⟨q′

2,q
′
4⟩ = 0

where ′ denotes the derivative with respect to y. Now, specifying the latter,
using (5.4) one obtains: {

ξ′h(y) = 0

ξ′k(y) = 0,

where h(y) and k(y) satisfy h2 + k2 = 4(ξ1)
′2 + sin2(2ξ1)(−ξ′ + ξ′2 + ξ′3)

2. Con-
sequently, two possibilities can occur:

(i) ξ is constant;

(ii) 4(ξ1)
′2 + sin2(2ξ1)(−ξ′ + ξ′2 + ξ′3)

2 = 0.

In [21] the authors proved that (ii) cannot occur since it is equivalent to the
case of the timelike Hopf tube. So, (i) holds. Finally, in this case, the condition
(5.12) is obtained by rewriting the second of (5.11).

For the converse, it suffices a direct calculation as follows from the Proposi-
tion 10.

QED

Considering the parametrization with arc length of the curve β(x) the au-
thors obtained the following.

Corollary 2. [21] Let M be a helix spacelike (respectively, timelike) surface
in S3ε. Then, there exist local coordinates on M such that the position vector of
M in R4 is given by:

F (s, y) = Q(y)β(s),

where

β(s) =
1√

1 + d2

(
d cos

(s
d

)
, λd sin

(s
d

)
, cos(ds), λ sin(ds)

)
(5.15)

is a twisted geodesic in the torus S1( d√
1+d2

)× S1( 1√
1+d2

) ⊂ R4 parametrized by

arc length, whose slope is given by

d =

√
λB − ε|ν|√
λ+ ν2

∈ (0, 1),

where λ = −1 (respectively, λ = 1) and Q(y) as in Theorem 7.
Conversely, a parametrization F (s, y) = Q(y)β(s) as above defines a helix

surface in S3ε.
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Figure 4: Stereographic projection in R3 of the helix surface spacelike and time-
like with ν = 4, ε = 2, s ∈ (−4π, 4π), y ∈ (−2π, 2π) e ξ2(y) = y.

Remark 7. The curve β : R → S3 parametrized by (5.15) is a spherical
helix in S3 with constant geodesic curvature and torsion given by

κg =

√
1− d2

d
=

2ε|ν|√
λ+ ν2

, |τg| = 1.

Recalling that a non-null curve β in a Lorentzian manifold is called a general
helix if there exist a Killing vector field Ṽ , called axis of β with constant length
along β and such that the angle between Ṽ and β′ is a non-zero constant along
β, a simple calculation give the following.

Proposition 11. [21] The curve β : R → S3ε parametrized by (5.15), used
in Corollary 2 to characterize a constant angle spacelike (respectively, timelike)
surface M is a spacelike (respectively, timelike) general helix in S3ε with axis E1,
i.e. it has a constant angle with the fibers of the Hopf fibration.

As a consequence the authors obtained the following.

Corollary 3. [21] Let M be a helix surface in S3ε parametrized by F (s, y) =
Q(y)β(s). Then, the hyperbolic angle between N and E1 is the same that the
one of general helix β makes with its axis E1.

Example 3. [21] Taking ξ = π/2, ξ1 = π/4, ξ2(y) = ξ3(y), specifying (5.4)
one obtain

Q(y) =
1√
2


cos ξ2(y) − sin ξ2(y) cos ξ2(y) − sin ξ2(y)
sin ξ2(y) cos ξ2(y) sin ξ2(y) cos ξ2(y)

− cos ξ2(y) − sin ξ2(y) cos ξ2(y) sin ξ2(y)
sin ξ2(y) − cos ξ2(y) − sin ξ2(y) cos ξ2(y)

 .

In Fig. 4 and Fig. 5 we observe the plots of the stereographic projection in R3

of helix surfaces surfaces with Q(y) as above.

Example 4. [21] We consider a constant angle surface F (x, y) = Q(y)β(x).
Following the proof of Theorem 7, it is easy to check that:

⟨Fy, Fy⟩ = ⟨q′
i,q

′
i⟩, i = 1, ...4.
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Figure 5: Stereographic projection in R3 of the helix surface spacelike and time-
like with ν = 2, ε = 2, s ∈ (−2π, 2π), y ∈ (−2, 2) e ξ2(y) = ey.

Figure 6: Stereographic projection in R3 of the helix surface spacelike and time-
like with ν =

√
5, obtained for ε = 1.

Then, one gets

λ+ ν2 = ξ′(y)2 + cos2(ξ1(y))(ξ
′
2(y))

2 + sin2(ξ1(y))(ξ
′
3(y))

2.

Assuming that ξ1 is constant and such that cos(ξ1(y)) ̸= 0 and sin(ξ1(y)) ̸= 0,
one obtains:

ξ2(y) = tan ξ1
√
λ+ ν2 y + d2, ξ3(y) = cot ξ1

√
λ+ ν2 y + d3

where d2 and d3 are real constants. In particular, choosing d2 = 0 = d3 and the
constant ξ1 = 1/

√
1 + d2, where d is the constant given in the Corollary 2, the

immersion F (s, y) depends only on ν and λ. This permits us to show in Fig. 6
and Fig. 7 the plot of the stereographic projection in R3 of helix surfaces for
some values of ν and λ.

6 Conclusions and announcements

This work gives a complete overview on the results present in literature on
helix surfaces in Lorentzian ambient space. In [2], the author, in a joint work
with G. Calvaruso, I. Onnis and D. Uccheddu, obtained a complete classification



124 L. Pellegrino

Figure 7: Stereographic projection in R3 of the helix surface spacelike and time-
like with ν = 2, obtained for ε = 1.

of helix surfaces in the anti-de Sitter space H3
1 endowed with a family of metrics

which naturally extends the idea of Berger metrics introduced in [21].
We consider as a starting point the results given in [1], where the authors

introduced and studied a new family of metrics g̃λµν on the anti-de Sitter space
H3

1. These metrics were induced in a natural way by corresponding metrics
defined on the tangent sphere bundle T1H2(κ), after describing the covering
map F from H3

1(κ/4) to T1H2(κ) in terms of paraquaternions. A crucial role in
this construction is played by the hyperbolic Hopf map:

h : H3
1 → H2(κ)

(z, w) 7→
√
κ

4
(2zw̄, |z|2 + |w|2).

and the hyperbolic Hopf vector field :

X1(z, w) =

√
κ

2
(iz, iw),

that are, respectively, the hyperbolic counterparts of the Hopf map and Hopf
vector field on S3, respectively. This fact leads us to investigate the description
of surfaces whose normal vector field forms a constant angle with the hyperbolic
Hopf vector field, similarly to the discussion made in [21] for S3ε.

Some useful results are developed by Lucas and Ortega-Yagües on helix sur-
faces in H3

1, considering the canonical metric. In particular, in [14], they proved
that such surfaces are flat and exhibited the distinction between Riemannian
and Lorenztian helix surfaces giving explicit descriptions of such surfaces which
involve general helices.

In a natural way, in our work, we focus on Berger-like metrics on H3
1, de-

scribed by

gτ (X,Y ) = ⟨X,Y ⟩+ (1− τ2)⟨X,X1⟩⟨Y,X1⟩.
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where ⟨, ⟩ is the canonical metric of R4
2. By now, we denote by H3

1,τ the Lo-

rentzian space (H3
1(κ/4), gτ ). In addition, we consider a pseudo-Riemannian

oriented surface M immersed in H3
1,τ with N its λ-unit normal and we obtain

the Gauss and Codazzi equations. Requiring the constant angle property (i.e.
the angle ν is constant), we obtain the the Gaussian curvature of M :

K = λκν2(1− τ2)

which recovers the flatness for the standard case (τ2 = 1) proved in [14]. There-
fore, once we express the shape operator with respect to a tangent basis {T, JT},
constructed similarly as in Proposition 8, in the following way

A =

 0 −
√
κ

2
λτ

√
κ

2
τ µ

 ,

we get

T (µ) + νµ2 + κνB = 0, (6.1)

where B := ν2(τ2 − 1) − λ and then we need to make a distinction between
the cases where B is positive, null or negative. Now we choose local coordinates
(x, y) on M , such that {

∂x = T,

∂y = a T + b JT,
(6.2)

for some smooth functions a = a(x, y), b = b(x, y) on M . Then we get a differ-
ential equation for the position vector F of M in R4

2 in the different cases:

(a) if B = 0,

∂2F

∂x2
= 0, (6.3)

(b) if B ̸= 0,

∂4F

∂x4
+ (b̃2 + 2ã)

∂2F

∂x2
+ ã2F = 0, (6.4)

where

ã =
κ

4

B

τ2
(λ+ ν2), b̃ = −

√
κ
B

λτ
.

In conclusion, after we integrate (6.3) and (6.4) and discuss some necessary and
sufficient conditions to be satisfied in the case of helix surfaces in H3

1,τ as we
made in Proposition 10, we give the characterization theorem.
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Theorem 8. [2] (of characterization) Let M be a helix surface in H3
1,τ ⊂ R4

2

with constant angle function ν. Then, locally, the position vector of M in R2
4,

with respect to the local coordinates (x, y) on M defined in (6.2), is

F (x, y) = A(y) γ(x),

where γ is a curve and A(y) = A(ξ, ξ1, ξ2, ξ3)(y) is a 1-parameter family of
4× 4 pseudo-orthogonal matrices commuting with X1. This curve γ is explicitly
described depending on whether B > 0, B = 0 or B < 0.

As in the previous section, we showed that the curves γ involved in the
parametrization of helix surfaces in H3

1,τ are general helices.
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of the manuscript.
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