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34722, İstanbul, Türkiye
bahar.kirik@marmara.edu.tr

Cihat Kılınç
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34722, İstanbul, Türkiye
cihatkilinc@marun.edu.tr

Ramazan Toplu
Marmara University, Faculty of Science, Department of Mathematics, Göztepe Campus
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Abstract. This paper studies the concircular, projective and conharmonic curvature tensors
on 4−dimensional Lorentzian manifolds known as space-times. We obtain some properties of
these tensor fields by relating the known holonomy algebras for Lorentz signature (+,+,+,−).
For the space-times admitting special vector fields, such as parallel and recurrent vector fields,
some theorems are proved. The eigenbivector structure of the investigated tensor fields is also
examined in these spaces. These results obtained by considering the holonomy theory are
associated with the algebraic classification of the Riemann curvature and Ricci tensors for
Lorentz signature, and various examples related to the study are also given.
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1 Introduction

Special transformations preserving some geometric structures have a cru-
cial role in the literature (see, e.g., [13]). For this reason, the study of tensor
fields that remain invariant under special transformations has attracted the in-
terest of many researchers over the years. Three of the famous tensor fields
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that emerged in this way are concircular, projective and conharmonic curvature
tensors each of which is studied not only by geometers but also by physicists.
These tensor fields of type (1, 3) are invariant under concircular, projective and
conharmonic transformations, respectively. More clearly, two special classes of
conformal transformations are concircular and conharmonic transformations.
Concircular curvature tensor is invariant under a concircular transformation,
a conformal transformation which transforms a geodesic circle into a geodesic
circle (see, [17, 18]). On the other hand, the harmonicity of a function does
not have to be preserved under the conformal transformation. In this respect, a
conformal transformation preserving this property is defined as a conharmonic
transformation where the conharmonic curvature tensor remains invariant, [8].
A tensor that remains invariant under the projective transformation, which is
another special transformation preserving geodesics, is the projective curva-
ture tensor. Looking at the literature, various properties of these special ten-
sor fields have been investigated on different manifolds (among them see, e.g.,
[1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 17, 18]). However, in this study, we examine these
tensor fields from a different perspective by using holonomy theory. In doing
so, attention will be drawn to the properties of these special tensor fields on
4−dimensional Lorentzian manifolds.

Let (M, g) be a space-time, more explicitly, suppose that M is a smooth,
connected manifold of dimension 4 admitting a smooth metric g (with compo-
nents gij) of Lorentz signature (+,+,+,−), which will be assumed to be not
flat. The Levi-Civita connection of (M, g) and the tangent space toM atm ∈M
will be denoted by ∇ and TmM , respectively. For u, v ∈ TmM , the inner pro-
duct g(u, v) arising from g at m will be written as u · v. The causal character
of a non-zero vector u ∈ TmM is either spacelike, timelike or null if it satisfies
u · u > 0, u · u < 0 or u · u = 0, respectively. A pseudo-orthonormal basis of
mutually orthogonal vectors x, y, z, t for TmM is given by

x · x = y · y = z · z = −t · t = 1.

One also has an associated null basis l, n, x, y so that l and n are null vectors
satisfying l · n = 1 and defined by

√
2l = z + t,

√
2n = z − t. The Riemann

curvature tensor with components Ri
jkh will be denoted by Riem where one

gets the curvature tensor of type (0, 4) with components Rijkh = gimR
m

jkh.
The Ricci tensor with components Rij = Rm

imj and the scalar curvature will be
shown by Ric and r, respectively. The concircular, projective and conharmonic
curvature tensors of type (1, 3) in 4−dimensional spaces are given, respectively,
by

Zi
jkh = Ri

jkh −
r

12
(δih gjk − δik gjh) (1.1)



Some special tensor fields on space-times with holonomy algebras 85

W i
jkh = Ri

jkh −
1

3
(δik Rjh − δih Rjk) (1.2)

Li
jkh = Ri

jkh −
1

2
(δih Rjk − δik Rjh + gjkR

i
h − gjhR

i
k) (1.3)

where Z, W , L denote the concircular, projective and conharmonic curvature
tensors, respectively, and δij is the Kronecker delta.

The rest of the paper is structured as follows: Section 2 provides a brief
summary of the bivectors and holonomy algebras on space-times which will be
essential for the study. In Section 3, some results expressing the relationships of
concircular, projective and conharmonic curvature tensor fields with holonomy
algebras and space-times are proved. Accordingly, when the manifold admits a
parallel or recurrent vector field, some properties of these special tensor fields
are obtained. On the other hand, the eigenbivector structure of the related
tensor fields is also investigated and studies are made by presenting several
examples from holonomy algebras. Final remarks are given in Section 4 where
the situation for positive definite metric signature is also mentioned very briefly.

2 Preliminaries

One of the important tools in this study is bivectors which are second order
skew-symmetric tensor fields appearing also in the exterior algebra. Another
important concept to be considered in the study is the theory of holonomy. A
brief information on these topics is presented below.

2.1 Bivectors

Let ΛmM denote the 6−dimensional vector space of all bivectors at m ∈M ,
which is a Lie algebra under matrix commutation [ ]. It is usually called that
a non-zero bivector F is either simple (when the rank of F is 2) or non-simple
(when the rank of F is 4) in 4−dimensional spaces. A simple bivector F with
components F ij = −F ji can be written as F ij = uivj − viuj for u, v ∈ TmM so
that the 2−space spanned by u and v is uniquely determined by F and called
the blade of F . A simple bivector F in a space-time is classified as spacelike
(respectively, timelike or null) if the blade of F , which is denoted by u ∧ v, is
a spacelike (each non-zero member of it is spacelike) (respectively, timelike (it
contains exactly two distinct null directions) or null (it contains exactly one null
direction)) 2−space at the point m. The detailed study of bivectors appears in
the general theory of relativity and all canonical forms of the classified bivectors
together with the corresponding Segre types can be found, e.g., in [4]. For a null
basis l, n, x, y of TmM , some examples of such bivectors are given by (a) x ∧ y
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(simple, spacelike and Segre type {(11)zz̄}), (b) l ∧ n (simple, timelike and
Segre type {11(11)}), (c) l ∧ x or l ∧ y (simple, null and Segre type {(31)}),
(d) γ(l ∧ n) + η(x ∧ y) (non-simple where γ, η ∈ R, γ ̸= 0 ̸= η and Segre type
{11zz̄}).

2.2 Holonomy algebras on space-times

The holonomy group Φm of a connection (more precisely of ∇) at a fix point
m ∈ M is the group defined by all parallel displacements along closed loops
about m. It is known that the holonomy groups at any two points of M are
isomorphic as M is path-connected, yielding the holonomy group Φ of (M, g).
Moreover, Φ is a Lie group having a Lie algebra denoted by ϕ (see for details
[10], [4]). As the metric g has Lorentz signature (+,+,+,−), it follows that ϕ is
a subalgebra of the orthogonal algebra of g, that is, o(1, 3). The important point
of this fact for the study is that the bases of possible holonomy algebras can be
represented by bivector notation which are given in [15]. Using the labellings
R1 (the case of flat which will be omitted), R2, R3, . . . , R15 (the general type)
expressed in [15], these algebras are presented in Table 1. It is also useful to
note that each potential holonomy algebra except type R5, which will therefore
not be considered, in Table 1 can take place as an actual holonomy algebra (see,
e.g. [4]).

Parallel Recurrent Parallel Recurrent
Type Basis vector vector Type Basis vector vector

fields fields fields fields

R2 l ∧ n ⟨x, y⟩ l, n R9 l ∧ n, l ∧ x, l ∧ y — l

R3 l ∧ x ⟨l, y⟩ — R10 l ∧ n, l ∧ x, n ∧ x ⟨y⟩ —

R4 x ∧ y ⟨l, n⟩ — R11 l ∧ x, l ∧ y, x ∧ y ⟨l⟩ —

R5 l ∧ n+ µ(x ∧ y) — — R12 l ∧ x, l ∧ y, l ∧ n+ µ(x ∧ y) — l

R6 l ∧ n, l ∧ x ⟨y⟩ l R13 x ∧ y, y ∧ z, x ∧ z ⟨t⟩ —

R7 l ∧ n, x ∧ y — l, n R14 l ∧ n, l ∧ x, l ∧ y, x ∧ y — l

R8 l ∧ x, l ∧ y ⟨l⟩ — R15 o(1, 3) — —

Table 1: Subalgebras of o(1, 3) are indicated. Here, 0 ̸= µ ∈ R and the symbol
⟨ ⟩ is a spanning set. The bases of holonomy types are located in the second
and sixth columns from which the dimension of these algebras can be easily
understood. Possible (local) parallel and recurrent vector fields that may occur
with these types are expressed, respectively, in the columns 3–7 and 4–8.

Recurrent and parallel vector fields have an important place in the theory of
holonomy (for details, see [4]). Let U ̸= ∅ be a connected, open subset of M . A
vector field v is called recurrent on U if ∇v = λ⊗ v for some 1−form λ, which
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will be called recurrence 1−form, on M . Specially, if λ vanishes on U , that is
if ∇v = 0, then v is called parallel (also referred to as covariantly constant)
on U . In the holonomy theory, it is known that if a non-zero tangent vector v
is an eigenvector for all members of the related holonomy algebra of ϕ, then
there exists a (local) smooth, recurrent vector field on some neighbourhood of
m ∈ M whose value at m is v. Additionally, if each eigenvalue for v is zero
for all F ∈ ϕ, then this vector field can be chosen to be parallel (for details
see, [4]). Based on this information, parallel and recurrent vector fields are
shown, respectively, in the columns 3–7 and 4–8 in Table 1. It is also clear from
Table 1 that if a recurrent vector field occurs for a holonomy algebra, then it
can only be null. Such a vector field will be called properly recurrent because
of the fact that a non-null, recurrent 0 ̸= v ∈ TmM can always be rescaled to
parallel. It is useful to note that if v is parallel, one has from the Ricci identity
vhRhijk = 0. On the other hand, the Ricci identity for a nowhere-zero, recurrent
vector field v is given by as follows:

(∇k∇j −∇j∇k)vi = vhRhijk = (∇kλj −∇jλk)vi. (2.4)

It can be seen from equation (2.4) that if vhRhijk ≡ 0 on U ⊂M , then λ is
a gradient and so, v may be scaled to be parallel (for all details, we refer to [6]).

Another useful information for our study is related to the known algebraic
classification of Riemann curvature and Ricci tensors in this metric signature.
Firstly, it is remarked that Riem gives rise to a linear map f : ΛmM → ΛmM ,
which is called the curvature map, defined by F ij → Rij

khF
kh where F ∈ ΛmM .

One of the facts used in the theory of holonomy is that the range space of the
curvature map, which is indicated by rgf , is a subspace of the Lie algebra ϕ
and that Riem can always be written as a symmetrized sum of products of
bivectors of ϕ. Secondly, the rank of map f called the curvature rank at m ∈M
leads to the algebraic classification of Riem for which five disjoint (and mutu-
ally exclusive) curvature classes occur. Namely, these classes are denoted by A,
B, C, D and O. Finally, it is beneficial to note that for all metric signatures in
4−dimensional manifolds, the algebraic classification of a second order symmet-
ric tensor (and in particular, Ric) is known as the Jordan–Segre classification
where the permitted Segre types for the Lorentzian case are {1, 111} (where the
comma separates off the eigenvalue corresponding to the timelike eigenvector
from those associated with spacelike ones), {211}, {31} and {11zz̄} together
with their potential degeneracies (for all the details in this paragraph we refer
to [4]).
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3 Results and examples on special tensor fields with
holonomy algebras

This section is devoted to state and prove the main results of the study. By
the aid of (1.1), (1.2) and (1.3), it is obtained that the concircular, projective
and conharmonic curvature tensors of type (0, 4) are respectively given by the
following expressions:

Zijkh = Rijkh −
r

12
(gih gjk − gik gjh), (3.5)

Wijkh = Rijkh −
1

3
(gik Rjh − gih Rjk), (3.6)

Lijkh = Rijkh −
1

2
(gih Rjk − gik Rjh + gjkRih − gjhRik). (3.7)

Now, let us examine the relationships between the aforementioned tensor
fields with parallel vector fields. Suppose that M admits a non-zero parallel
vector field v. Then we have, ∇v = 0, and so the Ricci identity and its contrac-
tion over gik yield that

Rijkhv
h = 0 , Rjhv

h = 0. (3.8)

For v ∈ TmM , let us investigate the non-zero solutions of the following
equations, respectively

(a) Zijkhv
h = 0, (b) Wijkhv

h = 0, (c) Lijkhv
h = 0. (3.9)

• Firstly, consider the concircular curvature tensor Z together with the
equation (3.9)(a). Contracting (3.5) by vh and using (3.8), we get

Zijkhv
h = − r

12
(vigjk − vjgik). (3.10)

Substituting (3.9)(a) in (3.10), we obtain

r(vigjk − vjgik) = 0. (3.11)

Multiplying (3.11) by gjk gives that r must be zero as v is non-zero. It then
follows from (3.5) that Z = Riem (cf. [9]).

• Secondly, let us take into account the projective curvature tensor W to-
gether with the equation (3.9)(b). A contraction of (3.6) by vh under the con-
straints of (3.8) reveals that

Wijkhv
h =

1

3
viRjk. (3.12)
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Plugging the equation (3.9)(b) into (3.12) gives

viRjk = 0. (3.13)

Thus, if (M, g) is not Ricci-flat, it then follows from (3.13) that there are no
non-zero solutions of the equation (3.9)(b). Consequently, ifM admits a parallel
vector field v and if one investigates the non-zero solutions of the equation
(3.9)(b), then (M, g) must be Ricci-flat and hence, W = Riem.

Remark 1. It can be seen from the equations (3.8) and (3.12) that if v is
parallel, then one automatically has

Wijkhv
jvh = 0.

• Finally, consider the conharmonic curvature tensor L together with the
equation (3.9)(c). Multiplying (3.7) by vh, using the equations (3.8) and (3.9)(c)
yield that

viRjk − vjRik = 0. (3.14)

Contracting (3.14) by vj , we get

(vjv
j)Rik = 0. (3.15)

It follows from (3.15) that either (M, g) is Ricci-flat or v is null. Therefore,
we have the following cases:

Case 1: If (M, g) is Ricci-flat, then we have from (3.7) that L = Riem.

Case 2: If v is null, contracting (3.14) by gjk gives

rvi − vkRik = 0. (3.16)

As v is non-zero and parallel, by using (3.8) and (3.16) it is achieved that
the scalar curvature r must be zero. Moreover, the equation (3.14) yields that,
the Segre type of Ricci tensor is {(211)} with zero eigenvalue.

Combining the above results, we have proved the following theorem:

Theorem 1. Let (M, g) be a space-time, and suppose that it admits a
parallel vector field v on U ⊂M . Then the following conditions hold:

i. For the concircular curvature tensor Z; the non-zero solutions of the equa-
tion (3.9)(a) force the scalar curvature to be zero and so, Z = Riem.

ii. For the projective curvature tensor W ; if (M, g) is not Ricci-flat, then
there are no non-zero solutions of the equation (3.9)(b).
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iii. For the conharmonic curvature tensor L; if (M, g) is not Ricci-flat, the
non-zero solutions of the equation (3.9)(c) force the vector field v to be
null and the scalar curvature r to be zero. In this case, the Segre type of
Ricci tensor is {(211)} with zero eigenvalue.

Example 1. Consider the holonomy type R3 with the algebra ⟨l ∧ x⟩. As
(M, g) is not flat, there exists a point m ∈M such that Riem ̸= 0 at m. Thus,
there is an open subset U such that Riem is nowhere-zero on U . In that case, by
restricting to this subset, we get a local expression for Riem as in the following:

Rijkh = α(lixj − xilj)(lkxh − xklh)

where α : U → R is a nowhere-zero smooth function. In this case, the Ricci
tensor and the scalar curvature are calculated respectively as follows:

Rjh = αljlh, r = 0. (3.17)

From Table 1, since l is a parallel null vector field, the relations (3.8) are
satisfied. In other words, we have Rijkhl

h = 0 and so, Rjhl
h = 0. Therefore,

it follows that Z = Riem and Zijkhl
h = 0. Hence, the equation (3.9)(a) has

at least one non-zero solution l and so, Theorem 1(i) is satisfied for holonomy
type R3. It is also noted that for this holonomy type, the curvature type is D
and the Segre type of Ric is {(211)} with eigenvalue zero. On the other hand,
contracting (3.7) by lh and then using (3.8) and (3.17), we obtain

Lijkhl
h = Rijkhl

h − 1

2
(liRjk − gikRjhl

h + gjkRihl
h − ljRik)

= −α
2
(liljlk − ljlilk)

= 0. (3.18)

Thus, it is achieved from (3.18) that the equation (3.9)(c) has at least one
non-zero solution l which is null and hence, Theorem 1(iii) is also satisfied for
holonomy type R3.

Suppose now that M admits a non-zero recurrent vector field v. Then we
have, ∇v = λ ⊗ v for some 1−form λ. Besides, the Ricci identity (2.4) yields
that

Rhijkv
h = θjkvi (3.19)

where θjk := ∇kλj −∇jλk. Multiplying (3.19) by gik, it is obtained that

Rjhv
h = θjhv

h. (3.20)

It is known that if v is a smooth recurrent vector field on a subset U ⊂ M
which is non-empty, open and connected, then v is an eigenvector of the Ricci
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tensor on U (see, Lemma 3 of [6] on page 271). It then follows that Rjhv
h = φvj

for some smooth function φ on U ⊂M . By using this fact in (3.20), we obtain

φvj = Rjhv
h = θjhv

h = −θhjvh. (3.21)

Let us now investigate the relations of concircular, projective and conhar-
monic curvature tensors with recurrent vector fields.

◦ Assume that M admits a non-zero properly recurrent vector field v and
let us consider the concircular curvature tensor Z. Contracting (3.5) by vjvh

and using (3.19), it can be seen that

Zijkhv
jvh = θjkv

jvi −
r

12
(vivk − vjv

jgik). (3.22)

The fact that v is a properly recurrent vector field yields it to be null. By
the aid of this fact and (3.21), it can be achieved from (3.22) that

Zijkhv
jvh = −

(
φ+

r

12

)
vivk

where v is also a null eigenvector of the Ricci tensor corresponding to eigenvalue
φ.

◦ Now, let us do a similar investigation for the projective curvature tensor
W . Contracting (3.6) by vjvh and considering (3.19), after some calculations it
follows that

Wijkhv
jvh = θjkv

jvi −
1

3
(φvjv

jgik − viRjkv
j). (3.23)

By using the equations (3.20) and (3.21) in (3.23), it can be seen that

Wijkhv
jvh = −φvivk −

1

3
(φvjv

jgik − φvivk). (3.24)

Since v is null (as it is properly recurrent), from (3.24), it can be concluded
that

Wijkhv
jvh = −2

3
φvivk

where v is also a null eigenvector of the Ricci tensor corresponding to eigenvalue
φ.

◦ We finally consider for the conharmonic curvature tensor L and perform
similar steps as above. After a contraction (3.7) by vjvh and using the relations
(3.19) and (3.21), it can be derived that

Lijkhv
jvh = −2φvivk +

1

2
(φvjv

jgik + vjv
jRik). (3.25)
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Furthermore, by using the fact that v is null, from (3.25), we obtain

Lijkhv
jvh = −2φvivk

where v is also an eigenvector of the Ricci tensor corresponding to eigenvalue
φ.

Therefore, we proved the following theorem:

Theorem 2. Let (M, g) be a space-time, and suppose that it admits a pro-
perly recurrent vector field v on U ⊂M . Then

i. The concircular curvature tensor Z satisfies

Zijkhv
jvh = −

(
φ+

r

12

)
vivk.

ii. The projective curvature tensor W satisfies

Wijkhv
jvh = −2

3
φvivk.

iii. The conharmonic curvature tensor L satisfies

Lijkhv
jvh = −2φvivk.

For all these conditions, v is a null eigenvector of the Ricci tensor corresponding
to eigenvalue φ.

Remark 2. It is useful to note that each holonomy type exceptR10, R13, R15

given in Table 1 contains a recurrent or parallel vector field l (or n) which is null.
In that case, this vector field is a repeated principal null direction of the Weyl
curvature tensor, denoted by C, and the Petrov type is algebraically special at
any m ∈M (for details, see [4], pages 220, 252–253).

Example 2. Consider the holonomy type R2 with the algebra ⟨l ∧ n⟩. By
applying similar steps performed in Example 1, one can calculate the local
expressions for Riem, Ric and r, respectively, as follows:

Rijkh = α(linj − nilj)(lknh − nklh), (3.26)

Rjh = −α(ljnh + njlh), (3.27)

r = −2α (3.28)

where α : U → R is a nowhere-zero smooth function. Plugging the equations
(3.26) and (3.28) into (3.5), it follows that

Zijkh = α(linj − nilj)(lknh − nklh) +
α

6
(gihgjk − gjhgik). (3.29)



Some special tensor fields on space-times with holonomy algebras 93

Contracting (3.29) by ljlh, we obtain

Zijkhl
jlh =

7α

6
lilk. (3.30)

On the other hand, from Table 1, it is known that l is a properly recurrent,
null vector field. Moreover, it is easily seen from (3.27) that Rjhl

h = −α lj
and hence, l is an eigenvector of Ric corresponding to eigenvalue φ = −α. In
this case, by using the equation (3.28) we get that −(φ + r

12) = 7α
6 which is

the coefficient of term lilk in (3.30). Therefore, Theorem 2(i) is satisfied for
holonomy type R2 with φ = −α.

Similarly, for the projective and conharmonic tensor fields, we obtain

Wijkhl
jlh =

2

3
α lilk, Lijkhl

jlh = 2α lilk

and so the relations in Theorem 2(ii) and (iii) are also satisfied for holonomy
type R2 with φ = −α. It is noted that for this example, the vector field n could
also be taken instead of l. Furthermore, from the equation (3.26), it can be seen
that the curvature type is D and also, from the equation (3.27), one has in a
basis l, n, x, y

Rijl
j = −αli, Rijn

j = −αni, Rijx
j = 0, Rijy

j = 0

which shows that the Segre type of Ric is {(11)(11)}.
Remark 3. As we proved in Theorem 2, if M admits a non-zero (properly)

recurrent, null vector field v, one has the property Tijkhv
jvh ∝ vivk where T

can be one of the concircular, projective or conharmonic curvature tensors. It is
noted that this special property does not have to be satisfied when one contracts
the tensor fields in question to any arbitrary vector field. For example, consider
the holonomy type R4 with the algebra ⟨x ∧ y⟩. Then, one can compute Riem,
Ric and r, respectively, as in the Examples 1 and 2. In this case, when one
calculates the concircular curvature tensor Z from (3.5) and then contracting it
by xjxh, it is found

Zijkhx
jxh = αyiyk −

α

6
(xixk − gik)

where α : U → R is a nowhere-zero smooth function. This shows that Zijkhx
jxh

is not proportional to xixk. Therefore, Theorem 2 does not have to be imple-
mented for vector fields that are not properly recurrent and null.

Next, let us discuss the link between eigenbivector structure of Riem and
the special tensor fields considered. The situation is known for the concircular
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curvature tensor, which was examined in [9] and where it was proven that a
bivector 0 ̸= F ∈ ΛmM is an eigenbivector of the concircular curvature tensor
corresponding to eigenvalue ξ + r

6 if and only if F is an eigenbivector of Riem
corresponding to eigenvalue ξ ∈ R which is given by

RijkhF
kh = ξFij . (3.31)

Moreover, it was analysed in [9] that for 1−dimensional holonomy types R2,
R3 and R4, the concircular curvature tensor has a timelike, null and spacelike
eigenbivectors, respectively, and for each of these cases, the curvature type is
D.

Now, let us investigate this structure for the projective and conharmonic
curvature tensors. Suppose that 0 ̸= F ∈ ΛmM is an eigenbivector of Riem.
Then, the relation (3.31) is satisfied for some ξ ∈ R. A contraction of (3.6) by
F kh(= −F hk) gives

WijkhF
kh = ξFij −

1

3
(Fi

h Rjh − F k
i Rjk)

= ξFij +
2

3
F k

i Rjk. (3.32)

Similarly, contracting (3.7) by F kh, it is obtained that

LijkhF
kh = ξFij − F k

i Rjk + F k
j Rik. (3.33)

From the right hand sides of the equations (3.32) and (3.33), we conclude
that an eigenbivector of the Riemann curvature tensor need not be an eigen-
bivector of either projective or conharmonic curvature tensors. Nevertheless, by
looking at Table 1, it is also possible to find holonomy types where this situation
may occur. Let us examine these situations in the following examples.

Example 3. Consider the 2−dimensional holonomy type R6. Let P denote
the bivector metric on ΛmM (for its definition, see [4]). For this holonomy type,
a local expression for Riem is of the form

Rijkh = γFijFkh + δGijGkh + η(FijGkh +GijFkh) (3.34)

where F = l ∧ n (timelike) and G = l ∧ x (null) are the generators and γ, δ, η
are smooth functions. In this case, Ric can be written in the following form

Rjh = −γ(ljnh + njlh) + δljlh − η(ljxh + xjlh). (3.35)

For the inner products between generators, we have

P (F, F ) = FijF
ij = −2, P (F,G) = FijG

ij = 0, P (G,G) = GijG
ij = 0.

(3.36)
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By evaluating the equations (3.34) and (3.36) together, one gets

RijkhF
kh = −2(γFij + ηGij), RijkhG

kh = 0 (3.37)

which shows that G is an eigenbivector of Riem corresponding to zero eigenvalue
but F is not.

On the other hand, by using (3.32), (3.33), (3.35) and (3.37), it can be seen
that

WijkhG
kh =

2

3
(−γ xilj + η lilj) , LijkhG

kh = −γGij . (3.38)

It then follows from (3.38) that G is also an eigenbivector of the conharmonic
curvature tensor L but this condition is not satisfied for the projective curvature
tensor W .

Example 4. Let us now consider holonomy type R8 with the algebra
⟨l ∧ x, l ∧ y⟩. For this type Riem is of the form (3.34) where F = l ∧ x (null)
and G = l ∧ y (null). In this case, we have RijkhF

kh = RijkhG
kh = 0 and these

indicate that both F and G are eigenbivectors of Riem with zero eigenvalue.
Moreover, Ric is of the form ψlilj for some smooth function ψ, in other words,
its Segre type is {(211)} with zero eigenvalue. With the help of (3.32) and (3.33),
it is obtained that WijkhF

kh = WijkhG
kh = 0 and LijkhF

kh = LijkhG
kh = 0.

According to these, the bivectors F and G are also eigenbivectors of projective
and conharmonic curvature tensors corresponding to zero eigenvalue.

It can be seen from the Examples 3 and 4 that as the dimension of holonomy
type increases, nothing definite can be said about the eigenbivector structure of
the projective and conharmonic tensor fields. However, for 1−dimensional holo-
nomy types, by considering the generators it can be seen that the eigenbivector
structure of these tensor fields in question shows a compatible behaviour in the
usual null basis l, n, x, y. Indeed, for holonomy type R2, by using (3.26) and
(3.27) in (3.32) and (3.33), we respectively get

WijkhF
kh = −4

3
αFij , LijkhF

kh = −4αFij (3.39)

where F = l ∧ n is the generator of this holonomy type. It is achieved from the
relations (3.39) that the timelike bivector F is an eigenbivector of projective
and conharmonic curvature tensors corresponding to eigenvalues −4

3α and −4α,
respectively. When similar calculations are made for holonomy type R3, it can
be seen that the null bivector l ∧ x is an eigenbivector of the projective and
conharmonic curvature tensors corresponding to zero eigenvalue. For holonomy
type R4, the local expressions for Riem and Ric are given, respectively, as
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follows:

Rijkh = α(xiyj − yixj)(xkyh − ykxh), Rjh = α(xjxh + yjyh), (3.40)

where α : U → R is a nowhere-zero smooth function. Then we have from (3.32),
(3.33) and (3.40)

WijkhF
kh =

4

3
αFij , LijkhF

kh = 4αFij (3.41)

where F = x ∧ y is the generator of this holonomy type. The relations (3.41)
yield that the spacelike bivector F is an eigenbivector of projective and conhar-
monic curvature tensors corresponding to eigenvalues 4

3α and 4α, respectively.
Therefore, we proved the following theorem:

Theorem 3. Let (M, g) be a space-time and assume that Riem does not
vanish at m ∈M . Then the following conditions are satisfied for 1−dimensional
holonomy types:

i. For holonomy type R2, the timelike bivector l∧n is an eigenbivector of the
projective and conharmonic curvature tensors corresponding to non-zero
eigenvalue.

ii. For holonomy type R3, the null bivector l ∧ x is an eigenbivector of the
projective and conharmonic curvature tensors corresponding to zero eigen-
value.

iii. For holonomy type R4, the spacelike bivector x∧y is an eigenbivector of the
projective and conharmonic curvature tensors corresponding to non-zero
eigenvalue.

For all of the above cases, Riem is of type D.

In the general theory of relativity, one of the best known family of exact
solutions of Einstein’s field equations are pp-wave space-times (see, e.g., [3, 16])
whose connection with our work is explained below.

Example 5. Consider a pp-wave space-timeM = R4 with global coordinate
system u, v, x, y whose metric tensor can be described in the following form

ds2 = 2H(u, x, y)du2 + 2dudv + dx2 + dy2 (3.42)

where H is an arbitrary smooth function. For this metric, li = u,i is a null
and parallel (co)vector field where the comma denotes the partial derivative.
Moreover, Ric is expressed as

Rij = (Hxx +Hyy)lilj (3.43)
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where Hxx and Hyy are second-order partial derivatives of H with respect to x
and y. It is clear from (3.43) that if Ric is not zero, it is of Segre type {(211)}
with eigenvector l corresponding to zero eigenvalue. On the other hand, if the
Laplacian of H, denoted by ∆H, with respect to x, y vanishes identically, that
is, if ∆H = Hxx + Hyy = 0, then (M, g) is Ricci-flat. In this case, (M, g) is
known as a vacuum pp-wave in the theory of general relativity. Moreover, this
implies that r = 0, and so Riem = Z =W = L satisfying

Rijkhl
h = Zijkhl

h =Wijkhl
h = Lijkhl

h = 0

as l is parallel. Thus, the equations (3.9) have a non-zero solution l and the
holonomy group is of type R8. Additionally, the null bivectors F = l ∧ x and
G = l ∧ y are eigenbivectors of Riem (and hence, of concircular, projective
and conharmonic curvature tensors) corresponding to zero eigenvalue. It is also
known that for the pp-wave space-times, the Weyl tensor C has Petrov type N
with repeated principal null direction spanned by the vector field l or type O
at each m ∈M .

4 Final remarks and conclusion

In the present work, we found out some properties of the concircular, pro-
jective and conharmonic curvature tensors on space-times. The fact that these
tensor fields have close connections with classification of the Riemann, Ricci
and Weyl tensors has also come to the fore in this study. For holonomy types
admitting parallel or recurrent vector fields, several conditions were obtained
on these vector fields and the tensor fields in question. On the other hand, it
is concluded that the eigenbivectors of Riemann curvature tensor do not have
to be the eigenbivectors of the projective and conharmonic curvature tensors.
Nevertheless, for all 1-dimensional holonomy types, the generator bivectors are
the eigenbivectors of Riem, Z, W and L.

Finally, it will be helpful to make a few comments about the positive definite
metric signature as well. In this case, g has signature (+,+,+,+) and the Lie
algebra ϕ is a subalgebra of the orthogonal algebra of g, that is, o(4). For this
signature, the holonomy types are given in [7], which are labelled as S1, S2,

S3,
+
S3,

+
S4 or S6 (up to isomorphism). It can be checked that types S1 and S3

admit parallel vector fields whilst there is no properly recurrent vector field for
any holonomy types in this signature. In addition, the conditions (i) and (ii) of
Theorem 1 are also satisfied for this signature. However, for the conharmonic
curvature tensor, the equation (3.15) implies (M, g) to be Ricci-flat as v cannot
be null in that case and hence, L = Riem.
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