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1 Introduction

Given a contact manifold (M,η), with contact form η, contact distribution
D := ker(η) ⊂ TM and Reeb vector field ξ, one can endow M with infinitely
many Riemannian metrics g associated to the contact form η in the sense of
[1]. The study of the interaction between the contact form and the geometric
features of the manifold governed by such a metric is a vast and rich research
subject. We recall that an associated metric g to η is a Riemannian metric for
which there exists a (1, 1) tensor field φ : TM → TM such that

φ2 = −Id+ η ⊗ ξ, η(X) = g(X, ξ), dη(X,Y ) = g(X,φY ),

for every X,Y vector fields on M . The tensor field φ is uniquely determined by
g, and the tensors (φ, ξ, η, g) make up a contact metric structure on M .

Recently, in [12] some sufficient conditions are considered which ensure the
non-compactness of a contact metric manifold, which involve the symmetric
operators:

h :=
1

2
Lξφ, l := R(−, ξ)ξ. (1.1)
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In general, the behaviour of these two operators has a strong influence on the
geometry of the underlying contact metric manifold. We recall that the vanishing
of the operator h characterizes the circumstance that ξ be a Killing vector field;
this is true for instance for the widely studied class of Sasakian manifolds, see
again [1]. Concerning instead the geometric meaning of the operator l, usually
called the characteristic Jacobi operator of M , we remark that, if v is a unit
tangent vector at a point p ∈ M , orthogonal to ξp, then the number g(lv, v) is
the sectional curvature of the 2-plane spanned by v and ξp; such a curvature is
called a ξ-sectional curvature.

In particular, in [12] it is proved that a locally homogeneous, regular contact
metric manifold with vanishing characteristic Jacobi operator must be non-
compact. The regularity assumption means that the orbit spaceM/ξ determined
by the flow of the Reeb vector field is smooth and the canonical projection
π : M → M/ξ is a submersion (for more details, see for instance [1, Chapter
3]). The class of regular contact manifolds contains the class of homogeneous
contact manifolds, due to a general result of Boothy-Wang [3].

In this paper, we consider a significant case which is not covered in [12],
namely the case where the characteristic Jacobi operator l is invariant under
the Reeb flow, i.e.

Lξl = 0.

This condition was already investigated for instance in [2] and [4].

Our result is the following:

Theorem 1. Let (M,φ, ξ, η, g) be a locally homogeneous, regular contact
metric manifold. Assume that the characteristic Jacobi operator l is invariant
under the Reeb flow, that is Lξl = 0.

If M admits at least one negative ξ-sectional curvature, then it is not com-
pact.

We remark that the assumption concerning the ξ-sectional curvatures is es-
sential here; namely, every compact, homogeneous Sasakian manifold satisfies
Lξl = 0, the ξ-sectional curvatures being all equal to 1. As a non Sasakian coun-
terexample, one can consider the tangent sphere bundle T1Sm(c) of a spherical
space form Sm(c) with sectional curvature c > 0, c ̸= 1, which always admits a
homogeneous contact metric structure satisfying the so-called (κ, 0) condition,
which implies that l = κ(Id− η ⊗ ξ), where κ is a positive constant (a suitable
D-homothetic deformation of the standard contact metric structure of T1Sm(c)).
See [1], §7.3 for more information about these examples.

Considering instead the case where l = κ(Id − η ⊗ ξ) with κ < 0, we have
the following immediate corollary:
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Corollary 1. Every locally homogeneous, regular, contact metric manifold
with constant negative ξ-sectional curvature is not compact.

This result follows directly from Theorem 1 because in this case the condition
Lξl = 0 is satisfied automatically: indeed, by assumption, at each point p ∈
M , the restriction lp : Dp → Dp of lp to the contact subbundle has a unique
eigenvalue κ < 0 with maximal multiplicity, which does not depend on p. Thus
l = κ(Id − η ⊗ ξ) and since the Reeb vector field satisfies Lξη = 0, we also
have Lξl = 0. We remark that Corollary 1 was already obtained in [12] (see [12,
Corollary 4.3]) as a consequence of a general non-compactness result, whose
proof makes use of certain deformations of the contact metric structure; the
proof given here is more direct. Again a typical example of a homogeneous, non-
compact contact metric manifold satsfying the assumptions in this Corollary can
be obtained considering a D-homothetic deformation of the standard contact
metric structure of the tangent sphere bundle T1Hm(c) of a hyperbolic space
form with negative sectional curvature c > −1.

2 Preliminaries

A contact form η on an odd-dimensional manifoldM is a globally defined 1-
form such that dη restricts to a non-degenerate skew-symmetric bilinear form on
Dx := Ker(ηx) ⊂ TxM for each point x ∈M . Given a contact manifold (M,η),
we have that TM = D ⊕ Rξ, where D = Ker(η) is the contact subbundle and
Rξ is the 1-dimensional distribution spanned by the Reeb vector field of η, which
is the unique vector field ξ on M such that:

dη(ξ,−) = 0, η(ξ) = 1.

If g is an associated metric to η, it is known (see e.g. [1]) that:

∇ξξ = 0, (2.2)

∇ξφ = 0, (2.3)

hφ+ φh = 0, (2.4)

∇ξ = −φ− φh, (2.5)

∇ξh = φ(I − h2 − l), (2.6)

where h and l are the symmetric operators defined by (1.1), and I = IdTM .
A contact metric manifold is said to be locally homogeneous provided given

any two points p and q there exists a local automorphism f : U → V , such that
f(p) = q, where U and V are open neighbourhoods of p and q; by definition, f is
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a diffeomorphism which preserves the contact form η and the metric g, restricted
to U and V respectively. We remark that every such local automorphism f must
also preserve the tensor field φ, the Reeb vector field ξ and both the operators
h and l.

3 Proof of the result

Consider a locally homogeneous, regular contact metric manifold M satis-
fying the assumptions in the statement of Theorem 1. The hypothesis that M
is locally homogeneous guarantees that the symmetric operator l has constant
eigenvalues, with constant multiplicities. Indeed, if p, q ∈ M and f : U → V is
a local automorphism such that f(p) = q, then (df)p ◦ lp = lq ◦ (df)p holds true.
Moreover, since we are assuming thatM admits at least one negative ξ-sectional
curvature at some point p ∈ M , at least one of the eigenvalues λ is negative
and there exists a unit tangent vector v ∈ Dp such that l(v) = λv. Consider the
vector subbundle E of TM defined by:

E := Ker(l − λI) ⊂ D.

According to Lξl = 0, we have that

[ξ,ΓE] ⊂ ΓE, (3.7)

where ΓE denotes the module of smooth sections of E.
By regularity, the space B := M/ξ of maximal integral curves of ξ is a

smooth manifold and the natural projection π :M → B is a submersion, whose
fibers are tangent to ξ. We claim that the vector v can be extended to a vector
field Y ∈ X(M), which is a section of the distribution E, and such that:

[Y, ξ] = 0.

Indeed, according to (3.7) the distribution E is projectable; let E′ its projection
onto B. Consider the vector u = π∗(v). Then u can be extended to a smooth
section Z of E′; this vector field Z admits a unique lift Y to a section of D.
Indeed, for each point x ∈M set:

Yx := (dπ)−1
x (Zπ(x)) ∈ Dx,

which is well-defined since (dπ)x : Dx → Tπ(x)B is a linear isomorphism.
By construction, we have that Yp = v and Y is a section of E. Moreover,

Y is invariant under the flow {ψt} of ξ, because for each t, (ψt)∗Y is again a
section of the contact subbundle D and π ◦ ψt = π. Hence [ξ, Y ] = 0.
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Now, we prove by contradiction that M is not compact. Assuming the con-
trary, let γ : R →M be the maximal integral curve of ξ passing through p. We
shall denote by X ′ the covariant derivative of a smooth vector field X along γ;
moreover, for every vector field Z ∈ X(M), we shall use the same symbol Z to
denote its restriction to γ, so that Z ′ = ∇ξZ holds true along γ.

Consider the unique parallel vector field X along γ, such that X(0) = v.
Observe that g(X, ξ) = 0 along the curve, because, according to (2.2), ξ is
parallel along γ and g(v, ξp) = 0.

We now define a smooth function f : R → R as follows:

f(t) := g(Yγ(t), X(t)),

or, more succinctly, f = g(Y,X). Hence, by definition, f(0) = 1. Since M is
assumed to be compact, the norm ||Y || must be bounded on M , and thus f
must also be bounded; indeed:

|f(t)| ≤ ||Yγ(t)|| · ||X(t)|| = ||Yγ(t)||.

Since [Y, ξ] = 0, along γ we have, according to (2.5):

Y ′ = ∇ξY = −φY − φhY = −φ(I + h)Y. (3.8)

Moreover, taking (2.6) into account we get:

(hY )′ = ∇ξhY = (∇ξh)Y + hY ′ =

= φ(I − h2 − l)Y − hφ(I + h)Y,

which can be rewritten, using (2.4), as follows:

(hY )′ = φ(I + h− l)Y. (3.9)

Now, being X parallel along γ, computing f ′ we obtain, using (3.8):

f ′ = g(Y ′, X) = g((I + h)Y, φX).

Moreover, according to (2.3), we have that φX is also parallel along γ; hence
we can compute f ′′ in a similar fashion:

f ′′ = g(Y ′ + (hY )′, φX) = −g(φlY, φX) = −g(lY,X),

where (3.8) and (3.9) have been used. But since Y a section of E we have
lY = λY , so that in conclusion the second derivative of f satisfies:

f ′′ = −λg(Y,X),

namely
f ′′ = −λf.

Since λ < 0, we have reached a contradiction because f is bounded and f ̸= 0.
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