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of a one parameter family of compact symplectic submanifolds inside a compact symplectic
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1 Introduction

In this paper we give a detailed proof of the following statement that is known
as a folklore within the symplectic community.

Theorem 1. Let (M,ω) be a compact symplectic manifold with a smooth
family {St}t∈[0,1] of closed symplectic submanifolds. Then there is a smooth
Hamiltonian isotopy (ρt)t∈[0,1] such that ρt(S0) = St, t ∈ [0, 1].

This result is part of the lore of the symplectic community, with partial
proofs scattered in some places, see for instance [2, 1, 6]. More details on the
bibliography will be given in Section 4. The scope of this short note is to present
a complete proof, filling eventually all the details.
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http://siba-ese.unisalento.it/


14 P. Antonini, F. Cavalletti and A. Lerario

Notations

Below are some notations that we are going to use.
We shall consider time dependent objects (vector fields, differential forms,

etc.) that depend on a second parameter usually called s ∈ [0, 1]. For instance,
a time dependent vector field, depending on s is a section ζ ∈ Γ([0, 1]× [0, 1]×
M, q∗(TM)), where q : [0, 1]× [0, 1]×M →M is the projection. We also write
this section as ζ : [0, 1]t× [0, 1]s×M −→ TM and put ζst = ζ(t, s) ∈ Γ(M,TM)
for its values. Similar notations will be adopted for other objects as differential
forms.

Given a manifold X, a submanifold Y (or a subset), a fiber bundle E over
X and a map f : E → Z (e.g. a form or a differential), the symbol f ↾ Y will
be used to denote the restriction of f to E|Y . The symbol

∣∣ is used to denote
the classical restriction to subsets.

2 Preliminaries: vector fields, isotopies and Thom
Isotopy Lemma

LetM be a smooth manifold; an (ambient) isotopy is a smooth map ρ :M×
[0, 1] −→M such that ρ0 = IdM and ρt is a diffeomorphism for every t ∈ [0, 1].
An isotopy is a curve starting from the identity inside Diff(M). Differentiating
it we get a time dependent vector field ζt satisfying:

d

dt
ρt = ζt ◦ ρt, t ∈ [0, 1]. (2.1)

Viceversa, given a time dependent vector field ζt with t ∈ [0, 1], it is possible,
under the usual assumptions on the existence of flows, to find a unique isotopy
ρt satisfying equation (2.1). This is called the flow 1 of ζt. If ζ is compactly
supported (i.e. ζt is compactly supported for every t ∈ [0, 1]) then the flow
exists.

It is worth to give few details on the construction of ρt given ζt as it will
be used later to construct the Hamiltonian isotopy. We assume ζt, t ∈ [0, 1] is
compactly supported and put

M̂ :=M × [0, 1] ⊂M × R.

This is an auxiliary submanifold with boundary; M̂ will be also used next. We
have projections π : M × R → R and πM : M × R → M and embeddings
et :M →M × R defined by et(x) = (x, t).

1somewhere called the reduced flow of ζ to distinguish with the full flow as a time dependent
vector field
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Now we extend ζt (keeping the same name) to a vector field ζt ∈ Γ(M ×
R, π∗(TM)) with the property that there is a fixed ε > 0 such that ζt = 0 for
t /∈ [−ε, 1 + ε]. Then we convert it into the standard (autonomous) vector field

ζ̂(x, t) := ζt(x) + ∂t ∈ Γ(M × R, T (M × R)).

It is clear that ζ̂ has an ordinary flow (it is bounded) Φ : (M×R)×R −→M×R
such that

d

ds
Φs((x, t)) = ζ̂(Φs(x, t)), Φ0 = IdM×R .

Since the second component of ζ̂ is ∂t, it follows that Φs has to be in the form
Φs(x, t) = (ΦM (x, t, s), s+ t) for a smooth family of maps ΦM : (M ×R)×R →
M . In particular the restriction of the flow to [0, 1] preserves M̂ . Therefore
defining ρt := ΦM (·, 0, t) for t ∈ [0, 1] we get the flow of ζt. In other words the
flow is defined by the commutative diagram

M̂ M̂

M M

Φt

πMe0

ρt

for t ∈ [0, 1].

2.1 Thom isotopy Lemma

This section is a brief reminder on families of submanifolds and the Thom
isotopy Lemma. The material is standard and we are following the lecture notes
[3].

Definition 1. A family {St}t∈[0,1] of submanifolds of a manifold M is
smooth when we can find a smooth map F : M × [0, 1] → L with L a smooth
manifold and a submanifold A ↪→ L having the following properties.

(1) For every t ∈ [0, 1] the map ft := F (·, t) :M → L is transverse to A. This
means that

dft(TxM) + Tft(x)A = Tft(x)L, at every pointx ∈M such that ft(x) ∈ A.

(2) St = f−1
t (A) for every t ∈ [0, 1].

The transversality assumption in (1) implies that every f−1
t (A) is a smooth

submanifold.
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Lemma 1 (Thom isotopy Lemma - basic version). Let M be a smooth
manifold equipped with a smooth function F :M × [0, 1] → R such that:

(1) for every t ∈ [0, 1], zero is a regular value of the function ft := F (·, t) :
M → R.

(2) Every submanifold St = f−1
t (0) is compact.

Then there exists an isotopy ρt :M →M , t ∈ [0, 1] such that for every t ∈ [0, 1]:

ρt(S0) = St.

The same is true for the manifolds with boundary f−1
t ([0,∞)).

Proof. We don’t give the full proof but a somewhat detailed sketch paying
attention to the parts that will be used later. Define

Ẑ := F−1(0) ⊂ M̂,

then St = f−1
t (0) ∼= Ẑ ∩ (M × {t}). Notice that Ẑ is compact. We prove the

thesis by constructing a time dependent vector field ζt on M such that the
corresponding autonomous vector field ζ̂ on M̂ is tangent to Ẑ. Indeed in this
case, the flow Φt of ζ̂ preserves Ẑ while mapping the slice S0 ∼= Ẑ ∩ (M × {0})
to the t-slice St ∼= Ẑ ∩ (M × {t}). Therefore

ρt = πM ◦ Φt ◦ e0,

as defined before is the desired isotopy (with the inverse diffeomorphism pro-
vided by the opposite vector field −ζ̂).

We are left with the construction of ζt; the condition ensuing that ζ̂ is tangent
to Ẑ is equivalent to the equation:

∂F

∂x
(x, t)ζt(x) +

∂F

∂t
(x, t) = 0, (2.2)

at every point (x, t) ∈ Ẑ. Since the partial differential
∂F

∂x
(m, t) is surjective at

every point (x0, t0) ∈ Ẑ, this equation can be locally solved. Every point z0 =
(x0, t0) ∈ Ẑ has a neighborhood Uz0 and a vector field vz0 ∈ Γ(Uz0 , π

∗
M (TM))

such that (2.2) holds in Uz0 .

Finally the compactness of Ẑ implies that we find a finite cover {Uz1 , ..., Uzn}
of Ẑ with corresponding vector fields vz1 , ..., vzn . If we define A := M̂ \ Ẑ, then
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{A,Uz1 , ..., Uzn} is a cover of the whole M̂ . Let {ρA, ρz1 , ..., ρzn} be a subordi-
nated partition of unity; one easily checks that the vector field

ζ :=
n∑

j=1

ρzjvzj

is a well defined time dependent vector field on the whole of M (i.e. is a vector

field on M̂ without the ∂t - component) and has the desired property that the
associated vector field ζ̂ stays tangent to Ẑ. QED

Remark 1. We have presented the result in the case of a family of hyper-
surfaces i.e. the map F is real valued. The conclusion remains valid, with the
same proof for a smooth family in the sense of Definition 1.

3 The Moser trick

We follow the book [2, 5] for basic facts in symplectic geometry. A symplec-
tic manifold is a couple (M,ω) where M is a smooth manifold and ω ∈ Ω2(M)
is a closed, non-degenerate 2-form. Non-degenerateness means that there is an
induced isomorphism of vector bundles TM −→ T ∗M by v 7→ ω(v, ·). In partic-
ular M is even dimensional: dimM = 2k and oriented (by ω) because ωk/(k!)
is a volume form.

Example 1. A standard example is the cotangent bundle T ∗M of every
manifold. In this case, the symplectic structure is exact: ω = −dα where α ∈
Ω(T ∗M) is a specific 1-form, the canonical Liouville form

α(v) = φ(dφπ(v)), v ∈ Tφ(T
∗M), φ ∈ T ∗M,

with π : T ∗M → M the projection. In local coordinates (x1, ..., xn, ξ1, ..., ξn) :
T ∗U → R2n induced by coordinates (x1, ..., xn) : U → Rn on the base, we have:
α =

∑
i ξidxi so that

ω = dxi ∧ dξi. (3.3)

The previous example is in some local sense universal. Indeed by the Darboux
Theorem [2, Theorem 8.1], every symplectic manifold is locally equivalent to the
cotangent bundle of an open set in the euclidean space. The equivalence here is
given by symplectomorphisms. A symplectomorphism φ : (M1, ω1) −→ (M2, ω2)
between two symplectic manifolds is a diffeomorphism φ : M1 → M2 such that
φ∗(ω2) = ω1. A standard way to produce symplectomorphisms is via symplectic
or Hamiltonian isotopies.
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Now we recall the Moser trick. This admits several versions and can be
regarded more as a method than a single result. Here we follow closely [5]
presenting the general procedure in the form of a lemma. In Section 4 we will
prove the parameter dependent relative form.

Lemma 2 (Moser trick). Let M be a manifold with a family ωt ∈ Ω2(M),
of symplectic forms, defined for t ∈ [0, 1] such that

d

dt
ωt = dσt,

for every t ∈ [0, 1], where σt is a smooth family of one forms. Then there is a
unique time dependent vector field ζt, t ∈ [0, 1] satisfying The Moser equation

σt + ι(ζ)ωt = 0. (3.4)

The flow ρt of ζt has the property that at every time t for which it exists:

ρ∗tωt = ω0.

In particular if M is compact ρ1 : (M,ω0) → (M,ω1) is a symplectomorphism.

Proof. The equation (3.4) is solved by the nondegenerateness of any ωt. Let ρt
be the flow of the unique solution ζt; we have

d

dt
ρ∗tωt = ρ∗t

(
d

dt
ωt + ι(ζt)dωt + dι(ζt)ωt

)
= ρ∗t (dσt + dι(ζt)ωt))

= dρ∗t (σt + ι(ζt)ωt) = 0.

QED

Remark 2. We have presented the proof in a somewhat reversed order.
Often one first looks for an isotopy such that ρ∗tωt = ω0, then by differentiation,
Moser equation appears. Moreover note that the main assumption on the differ-

ential forms can be written as
d

dt
[ωt] = 0 (de Rham cohomology class). In this

case a smooth family of potentials σt can be found. A quick proof, as indicated
in [5, Theorem 3.2.4], uses basic Hodge theory.

The next results are the parameter versions of two consequences of the Moser
method. Again we follow closely [5] checking that all their proofs remain valid
with an extra parameter.
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We begin with the trivial observation that the Moser trick can be performed
with a parameter. Let M be a (non necessarily compact) manifold and ωs

t for
(t, s) ∈ [0, 1]× [0, 1] a family of symplectic forms with exact t-derivative:

d

dt
ωs
t = dσst , t, s ∈ [0, 1], (3.5)

for a smooth family (σst )s,t of time dependent 1-forms. Non degenerateness im-
plies that there is a unique s-family of time dependent vector fields solving The
Moser equation:

ι(ζst )ω
s
t + σst = 0.

IfM is compact we can find a smooth, two parameters family of diffeomorphisms
ψs
t such that

ψs
0 = Id, (ψs

t )
∗ωs

0 = ωs
t , t, s ∈ [0, 1].

In general, the result holds for all the values of s such that the time dependent
vector field ζ(t, s) admits a (local) flow.

The next result is the parametric version of [5, Lemma 3.2.1].

Proposition 1 (Moser isotopy with parameter, [5]). LetM be a 2n-dimensional
manifold with a compact submanifold X. Assume that (ωs

0)s∈[0,1], (ω
s
1)s∈[0,1] are

two s-families of closed 2-forms such that for every s ∈ [0, 1] :

(1) ωs
0 ↾ X = ωs

1 ↾ X as differential forms (i.e. on the whole TXM)

(2) ωs
0 ↾ X and ωs

1 ↾ X are non degenerate on TXM .

Then there exists a neighborhood U0 of X, a family of open neighborhoods
{Us}s∈[0,1] of X and a family of diffeomorphisms ψs : U0 −→ Us = ψs(U0)
such that

ψs|X = IdX , ωs
1 = (ψs)∗ωs

0, s ∈ [0, 1].

Moreover choices can be made in a way that dψs ↾ X = IdTXM for every s ∈
[0, 1].

Proof. The result follows from Moser method once we find a neighborhood U0

of X and a smooth family (σs)s∈[0,1] of 1-forms on U0 such that

ωs
1 − ωs

0 = dσs on U0 and σs ↾ X = 0 on TXM,

for every s ∈ [0, 1].

This granted, the family

ωs
t := ωs

0 + tdσs
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is symplectic on X for every s, t. It remains symplectic, for every s, t on an open
set U0 ⊃ X where we can find a vector field ζst such that ι(ζst )ω

s
t + σs = 0 for

t, s ∈ [0, 1]. Moreover the crucial property:

V s
t |X = 0

for every t, s holds. Shrinking U0 if required, we can apply The Moser method
(smooth in s) around X.

Finally the construction of σs is performed exactly in the same way as in
loc. cit. using the homotopy operator on a tubular neighborhood. Since the
difference ωs

1 − ωs
0 vanishes identically on X, we can find σs such that all its

coefficients with their first partial derivatives vanish on X on every coordinate
chart (see [4, Appendix 1.]). Such a property implies dψs ↾ X = IdTXM . QED

Now comes the Weinstein symplectic neighborhood Theorem, the parametric
version of [5, Theorem 3.4.10].

Proposition 2 (Weinstein symplectic neighborhood Theorem with param-
eter). For j = 0, 1 let (Mi, ωi) symplectic manifolds with compact symplectic
submanifolds Si. Let Φs : νS0 −→ νS1, s ∈ [0, 1] be a family of isomorphisms
of the corresponding symplectic normal bundles covering a family of symplecto-
morphisms ϕs : (S0, ω0) −→ (S1, ω1). There is a neighborhood U0 of S0 and a
family of symplectomorphisms

ψs : U0 −→ ψs(U0)

such that: ψs(U0) is an open neighborhood of S1, ψ
s extends ϕs and dψs|νS0

=
Φs.

Proof. Choose Riemannian metrics and open neighborhoods Vj of Sj such that
the exponential maps induce diffeomorphisms: expj : νSj −→ Vj . Let Ψ

s be the
family of diffeos defined by the diagram:

νS0 V0

νS1 V1

exp0

Φs Ψs

exp1

Then the Ψs constitute a family of diffeomorphisms that extend ϕs and induce
Φs (via the normal derivative). In this way, we may apply the Moser Isotopy
Theorem, Proposition 1 to V0 equipped with the forms ω0 and (Ψs)∗ω1. Such
forms are equal on the whole TS0M0. Of course to preserve the normal data the
diffeomorphism provided by the Moser isotopy should be chosen with differential
equal to the identity on the submanifold. QED
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4 Hamiltonian Thom isotopy

Let (M,ω) be a symplectic manifold. For every function f ∈ C∞(M), the Hamil-
tonian vector field associated to f is defined uniquely by the equation:

ι(Vf )ω = df.

The flow of an Hamiltonian vector field preserves the symplectic structure. A
vector field is said Hamiltonian if arises from a function in this way.

Let now ρ :M×[0, 1] →M be an isotopy; if every ρt is a symplectomorphism
then ρ is called a symplectic isotopy. A special class of symplectic isotopies are
the Hamiltonian isotopies, the ones with ζt Hamiltonian for every t. In this
case a smooth time dependent Hamiltonian H : M × [0, 1] −→ R such that
ι(ζt)ω = dH(·, t) can be found. Of course if H1(M,R) = 0, every symplectic
isotopy is Hamiltonian.
Here we prove Theorem 1. We state it again for ease of reading.

Theorem 2. Let (M,ω) be a compact symplectic manifold with a smooth
family {St}t∈[0,1] of closed symplectic submanifolds. Then there is a smooth
Hamiltonian isotopy (ρt)t∈[0,1] such that ρt(S0) = St, t ∈ [0, 1].

As said in the introduction this is part of the lore of the symplectic community.
Let’s list shortly the main references.

- C. Da Silva [2] states the result without the Hamiltonian property of the
isotopy i.e. ρt is a symplectic isotopy.

- Auroux [1, Proposition 4] shows that there is a continuous family of sym-
plectomorphisms (ρt)t such that ρ0 = Id and ρt(S0) = St, t ∈ [0, 1]. By
checking that the Moser method and its consequences, as the Weinstein
symplectic neighborhood, can be performed with respect to a parameter,
the same proof shows that the family of symplectomorphisms is smooth.
(Actually it seems that this proof requires such smoothness.)

- Siebert and Tian [6, Proposition 0.3] prove Theorem 1 in dimension 4.
Their proof uses complex coordinates, a fact that can be replaced by the
existence, a priori, of a symplectic isotopy ρt mapping S0 to St.

We will prove Theorem 1 with the following steps:

(1) we first show that the proof of Auroux includes smooth dependence in
time;

(2) adapt Siebert–Tian proof given a smooth symplectic isotopy ρt for granted.

We are ready to add smoothness to the proof of Auroux [1, Proposition 4].
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Proposition 3. Let (M,ω) a compact symplectic manifold with a smooth
family {St}t∈[0,1] of closed symplectic submanifolds. Then there is a smooth sym-
plectic isotopy (ρt)t∈[0,1] such that ρt(S0) = St, t ∈ [0, 1].

Proof. Denote with ιt : St ↪→ M the inclusions. By the Thom isotopy Lemma
there is a smooth isotopy φ :M × [0, 1] −→M with φt(S0) = St that combined
with Moser stability (with smooth parameter) produces a smooth family of
symplectomorphisms

ψt : (S0, ι
∗
0ω) −→ (St, ι

∗
tω).

Such a family is covered by a smooth family NωS0 −→ NωSt of isomorphisms
between the symplectic normal bundles of the submanifolds St. Indeed one first
considers the principal bundle P −→ S0× [0, 1] of the normal symplectic frames
of the submanifolds; the structure group being the symplectic group. Parallel
transport with respect to a connection on P gives a family of isomorphisms
of principal bundles P

∣∣
S0

−→ P
∣∣
St
. This induces isomorphisms on all the as-

sociated bundles such as the symplectic normal bundles. By proposition 2 we
end up with a smooth family ψt : U0 −→ Ut of symplectomorphisms between
tubular neighborhoods Ut ⊃ St. Let now µt : M −→ M be any smooth family
of diffeomorphisms of the ambient extending ψt and, following closely [1], put:

ωt := µ∗tω, Ωt = − d

dt
ωt.

Assume we can find a vector field ζt such that:

- the forms αt := ι(ζt)ωt satisfy dαt = Ωt,

- ζt
∣∣
S0

is tangent to S0 for every t.

Then the proof is completed for if σt denotes the flow of ζt, let ρt := µt ◦ σt; we
have Lζtωt = Ωt by the Cartan formula so that:

d

dt
ρ∗tω =

d

dt
(σ∗t ωt) = (σt)

∗
(
d

dt
ωt + Lζtωt

)
= 0.

This means that ρt is a family of symplectomorphisms mapping S0 to St.

Let us show how to find ζt or equivalently αt. By construction ωt is constant
on U0 so that the condition: ζt

∣∣
S0

∈ Γ(TS0) means exactly that NωS0 ⊂ Kerαt.

Now all the ωt are cohomologous, which implies [Ωt] = 0 in H2(M,R). A smooth
family of potentials βt ∈ Ω1(M) on the entire M , such that dβt = Ωt can be
found. The smoothness following exactly by the argument in the proof of [5,
Theorem 3.17]. On U0 we have dβt = Ωt = 0 i.e. the forms βt define classes
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in H1(U0,R). Now, let π : U0 −→ S0 the projection of a tubular neighborhood
satisfying Txπ

−1(x) = Nω
x S0 at every point x ∈ S0 and define:

γt := (ι0 ◦ π)∗βt ∈ Ω1(U0)

with ι0 : S0 ↪→ M the inclusion. Since (ι0 ◦ π)∗ is the identity in cohomology
we have [γt] = [βt

∣∣
U0
] in H1(U0,R). It follows that there is a smooth family

of functions ft ∈ C∞(U0,R) with γt = βt + dft in U0. Let gt be any family
of functions on the whole M extending ft and put αt := βt + dgt. We have
found our αt. Indeed dαt = dβt = Ωt and from αt ↾ U0 = γt it follows that
Nω

x S0 ⊂ ker (αt ↾ x) at every point x in S0. QED

We finally prove Theorem 1 following the idea of the proof of [6, Proposition
0.3].

Proof of Theorem 1. Following the proof of lemma 1, it is enough to construct
a Hamiltonian function H :M × I → R such that, with ht := H(·, t) :M → R,
the vector field

V̂ht = VHt + ∂t

is tangent to Ŝ = {(x, t) ∈ M × [0, 1] : x ∈ St}. To this end, for every z =
(p0, t0) ∈ M × I we will find a neighborhood Uz = Up0 × Ut0 and a local
Hamiltonian functionHz : Uz → R such that, again denoting by hz,t := Hz(·, t) :
Up0 → R, two conditions are satisfied:

(1) Vhz,t + ∂t is tangent to Uz ∩ Ŝ,

(2) Hz vanishes on Uz ∩ Ŝ.

The global Hamiltonian H will then be defined using a partition of unity
{θz}z∈M×I subordinated to the cover {Uz}z∈M×I , i.e. we will setH :=

∑
z dθzHz.

Its Hamiltonian vector field (at every fixed t) for such H will satisfy:

ι(Vht)ω =
∑
z

dθzhz,t + θzdhz,t. (4.6)

Condition (2) ensures that along Ŝ the first summand in (4.6) vanishes; together
with condition (1), this ensures that Vht is tangent to Ŝ.

We proceed now with the construction of such functions Hz using a sym-
plectic isotopy ρt : M −→ M with t ∈ [0, 1] such that ρt(St) = S0. This is (or
better its inverse) provided by proposition 3.

For every point z = (p0, t0) in the open set (M × [0, 1]) \ Ŝ we pick a small
neighborhood Uz = Up0 × Ut0 disjoint from Ŝ and we set Hz ≡ 0.
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For every point z = (p0, 0) ∈ Ŝ we proceed as follows. Since S0 is symplectic,
we can find a neighborhood Up0 ⊂M and coordinates Θ : Up0 −→ Rn

x×Rn
y such

that Up0 ∩ S0 is described by {xj = yj = 0, j = m+ 1, ..., n} and

ω =
n∑

i=1

dxi ∧ dyi with e∗0(ω) =
m∑
i=1

dxi ∧ dyi. (4.7)

Indeed this is (again) consequence of Weinstein symplectic neighborhood Theo-
rem, or better it’s non compact version [4, Theorem 15.2]. One first locally triv-
ializes the symplectic normal bundle, then applies the symplectic neighborhood
Theorem to split the symplectic structure as a product, then applies the stan-
dard Darboux Theorem on the two factors. In alternative, the Carathéodory–
Jacobi–Lie Theorem [4, Theorem 17.2] can be used.

The above coordinate system induces coordinates in M̂ of the form:

Θ̂ : Uz := {(p, t) : ρt(p) ∈ Up0} −→ Rn
x̂ × Rn

ŷ × [0, 1]τ

with:
x̂i(p, t) := xi(ρt(p)), ŷi(p, t) := yi(ρt(p)), τ(p, t) = t.

In such coordinates we have: Ŝ∩Uz = {x̂i = 0 = ŷi, i = m+ 1, ..., 0} so that ∂τ

is tangent to Ŝ. Let ζt be the vector field associated to ρt, i.e:
d

dt
ρt = ζt ◦ ρt for

t ∈ [0, 1], with coordinate representation
∑n

j=1 ξ
j
t ∂xj + ηjt∂yj in Up0 given by

ξjt (p) =
d

ds

∣∣
s=t
xj
(
ρs(ρ

−1
t (p))

)
, ηjt (p) =

d

ds

∣∣
s=t
yj
(
ρs(ρ

−1
t (p))

)
.

Using the inclusions et : M ↪→ M × {t} ⊂ M̂ at time t, locally defined vector

fields onM can be considered on M̂ omitting (when the context is clear) further
notations. In this sense:

d
(
ρ−1
t

)
∂xi

∣∣
p
= ∂ x̂i

∣∣
(p,t)

(4.8)

and similar identities for ŷj . Since the vector field ∂t on M̂ is given by ∂t
∣∣
(p,t)

=

d

ds

∣∣
s=t
γp(s) with γp(s) = (p, s), we have, over Uz the formula:

∂t
∣∣
(p,t)

= ∂τ +
n∑

j=1

ξjt (ρt(p))∂ x̂j

∣∣
(p,t)

+ ηjt (ρt(p))∂ŷj
∣∣
(p,t)

. (4.9)

We define, in Uz the local Hamiltonian by:

Hz(p, t) =

n∑
j=m+1

ηjt (ρt(p)) x̂j(p, t)− ξjt (ρt(p)) ŷj(p, t). (4.10)
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Clearly Hz vanishes on Uz ∩ Ŝ, i.e. it satisfies condition (2) above. As for con-
dition (1), since every ρt is a symplectomorphism the Hamiltonian vector fields
are ρt-related:

Vht

∣∣
p
= dq

(
ρ−1
t

) (
Vkt

∣∣
q

)
, q = ρt(p),

where kt is the local Hamiltonian function kt : Up0 −→ R defined by

kt =

n∑
j=m+1

ηtj xj − ξtj yj .

For the Hamiltonian vector field of kt we compute

Vkt
∣∣
S0

= −
n∑

j=m+1

(
ξtj ∂xj + ηtj ∂yj

) ∣∣
S0
.

It follows, using formulas (4.8) and (4.9) that at every point (p, t) ∈ Ŝ ∩ Uz we
have:

(Vht + ∂τ )
∣∣
(p,t)

= ∂τ
∣∣
(p,t)

+

m∑
j=1

ξjt (ρt(p))∂ x̂j

∣∣
(p,t)

+ ηjt (ρt(p))∂ŷj
∣∣
(p,t)

,

which is manifestly tangent to Ŝ. The proof is completed because the open sets
Uz in the form discussed above constitute an open covering of Ŝ. QED
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