# Lower bounds for Riesz-Fischer maps in rigged Hilbert spaces

#### Francesco Tschinke

Department of Matematica e Informatica, University of Palermo, Italy francesco.tschinke@unipa.it

Received: 21.12.2022; accepted: 13.2.2023.

**Abstract.** This note concerns a further study about Riesz-Fischer maps, already introduced by the author in a recent work, that is a notion that extends to the spaces of distributions the sequences that are known as Riesz-Fischer sequences. In particular it is proved a characterizing inequality that has as consequence the existence of the continuous inverse of the synthesis operator.

Keywords: distributions, rigged Hilbert spaces, frames, Riesz-Fischer sequences

MSC 2022 classification: primary 42C15, secondary 47A70

# Introduction

As it is known, given an element  $f \in \mathcal{H}$  and a sequence of elements  $\{f_n\}_{n \in \mathbb{N}}$ in a Hilbert space  $\mathcal{H}$  endowed of the inner product  $\langle \cdot | \cdot \rangle$ , the sequence  $a_n : \mathbb{N} \to \mathbb{C}$ ,  $a_n := \langle f | f_n \rangle$  is called *moment sequence* -briefly *moments- of*  $f \in \mathcal{H}$ . The problem to find a solution  $f \in \mathcal{H}$  of the equations:

$$\langle f|f_n\rangle = a_n, \quad n \in \mathbb{N}$$

given  $\{f_n\}_{n\in\mathbb{N}}\subset\mathcal{H}$  and  $\{a_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ , is known as moment problem.

In particular, the sequence  $\{f_n\}_{n\in\mathbb{N}}$  is called *Riesz-Fischer sequence* if, for every  $\{a_n\}_{n\in\mathbb{N}} \in \ell^2$  (i.e. such that  $\sum_{1}^{\infty} |a_n|^2 < \infty$ ), there exists a solution f of the moment problem.

On the other hand, the sequence  $\{f_n\}_{n\in\mathbb{N}}$  is called *Bessel sequence* if, for all  $f \in \mathcal{H}$ , one has  $\{\langle f|f_n\rangle\}_{n\in\mathbb{N}} \in \ell^2$ .

We have the well-known characterization results [22, Ch. 4, Sec. 2, Th. 3]:

•  $\{f_n\}_{n\in\mathbb{N}}$  is a Riesz-Fischer sequence if, and only if, there exists A > 0 such that:

$$A\sum |c_n|^2 \le \|\sum c_n f_n\|^2$$
 (0.1)

for all finite scalar sequences  $\{c_n\} \subset \mathbb{C}$ ;

http://siba-ese.unisalento.it/ (C) 2023 Università del Salento

•  $\{f_n\}_{n\in\mathbb{N}}$  is a Bessel sequence if, and only if, there exists B > 0 such that:

$$\|\sum c_n f_n\|^2 \le B \sum |c_n|^2 \tag{0.2}$$

for all finite scalar sequences  $\{c_n\} \subset \mathbb{C}$ .

Bessel and Riesz-Fischer sequences play an important role in the theory of frames and, in particular, in the study of Riesz bases [22, 8]. Roughly speaking, a frame is an extension of a basis in a Hilbert space, in the sense that every vector of  $\mathcal{H}$  can be decomposed in terms of elements of a frame, but this decomposition is not unique. This "loss of constraints" or "more leeway" allows several applications in many branches of mathematical sciences and technology.

More precisely, a sequence  $\{f_n\}_{n\in\mathbb{N}}$  in  $\mathcal{H}$  is a *frame* if there exist A, B > 0 such that:

$$A||f||^{2} \leq \sum_{n \in \mathbb{N}} |\langle f|f_{n}\rangle|^{2} \leq B||f||^{2}, \forall f \in \mathcal{H}.$$

A frame  $\{f_n\}_{n\in\mathbb{N}}$  that is also a basis for  $\mathcal{H}$ , is called *Riesz basis*. One has that Bessel, Riesz-Fischer sequences and Riesz basis are related via linear operators to orthonormal basis (see [22, 8, 5]). Furthermore, if  $\{f_n\}_{n\in\mathbb{N}}$  is complete or total (i.e. the set of its linear span is dense in  $\mathcal{H}$ ), then it is a Riesz basis if, and only if, it is both Bessel and Riesz-Fischer sequence [22].

If it is not diversely specified, a frame is intended as discrete. However, a notion of *continuous frame* have been introduced by S. T. Ali, J. P. Antoine, J. P. Gazeau in [1, 2] in order to study coherent states, and, independently, by G. Kaiser in [17]. Instead of a sequence, it is considered a map F from a measure space  $(X, \mu)$  ( $\mu$  is a positive measure) to a Hilbert space  $\mathcal{H}$ , i.e.:  $F : X \to \mathcal{H}$ ,  $F : x \mapsto F_x$ . The map F is called continuous frame with respect to  $(X, \mu)$  if:

- F is weakly measurable, i.e. that is  $x \to \langle f | F_x \rangle$  is  $\mu$ -measurable for every  $f \in \mathcal{H}$ ;
- there exist A, B > 0 such that:

$$A||f||^2 \le \int_X |\langle f|F_x\rangle|^2 d\mu \le B||f||^2, \quad \forall f \in \mathcal{H}.$$

In [20], C. Trapani, S. Triolo and the author have extended the notion of frame, and related topics as Bessel, bases, Riesz basis, etc., to the spaces of distributions; in [21] and [10] a further study has been done respectively for Riesz-Fischer sequences and multipliers.

An appropriate framework for the spaces of distributions is given by the rigged Hilbert space i.e. a triple  $\mathcal{D} \subset \mathcal{H} \subset \mathcal{D}^{\times}$  where  $\mathcal{D}$  is a locally convex space,

 $\mathcal{D}^{\times}$  the conjugate dual to  $\mathcal{D}$ , and where the inclusions have to be intended as continuous and dense embedding. They have been introduced by Gel'fand in [13, 14] with the aim to define the *generalized eigenvectors* of an essential self-adjoint operator on  $\mathcal{D}$  and to prove the theorem known as Gel'fand-Maurin theorem, on the existence of a complete system of generalized eigenvector (see also [15]). For that it is called also *Gel'fand triple*, also denoted by  $(\mathcal{D}, \mathcal{H}, \mathcal{D})$ .

However *Gel'fand triple* play a relevant role also in other branches of mathematics, such as Gabor Analysis: see for example [9, 11, 12]. More exhaustive references, papers and talks can be found on: www.nuhag.eu/talks.

Reconsidering Riesz-Fischer maps introduced in [21], the aim of this paper is to continue the study, proving characterizing conditions, analogously to (0.1)for the Riesz-Fischer sequences. The paper is organized as follows. In Section 2 are recalled some preliminaries, definitions and previous results. In Section 3 are proved some characterizations of Riesz-Fischer maps in term of lower bounds properties.

### **1** Preliminary definitions and facts

As usual, let us denote by  $\mathcal{H}$  a Hilbert space,  $\langle \cdot | \cdot \rangle$  its inner product and  $\| \cdot \|$  the Hilbert norm. Let  $\mathcal{D}$  be a dense subspace of  $\mathcal{H}$  endowed with a locally convex topology t stronger than the topology induced by the Hilbert norm. The embedding of  $\mathcal{D}$  in  $\mathcal{H}$  is continuous and dense, and it is denoted by  $\mathcal{D} \hookrightarrow \mathcal{H}$ . The space of conjugate linear continuous forms on  $\mathcal{D}$  is called *conjugate dual* of  $\mathcal{D}$  and it is denoted by  $\mathcal{D}^{\times}$ . Unless otherwise stated, the value of  $F \in \mathcal{D}^{\times}$  on  $f \in \mathcal{D}$  is denoted by  $\langle f | F \rangle$ . The space  $\mathcal{D}^{\times}$  is endowed with the strong dual topology  $t^{\times} = \beta(\mathcal{D}^{\times}, \mathcal{D})$  defined by the set of seminorms:

$$p_{\mathcal{M}}(F) = \sup_{g \in \mathcal{M}} |\langle g | F \rangle|, \quad F \in \mathcal{D}^{\times},$$
(1.3)

where  $\mathcal{M}$  is a bounded subset of  $\mathcal{D}[t]$ . In this way, the Hilbert space  $\mathcal{H}$  can be continuously embedded as subspace of  $\mathcal{D}^{\times}$  (see [16]). If  $\mathcal{D}$  is reflexive, i.e.  $\mathcal{D}^{\times \times} = \mathcal{D}$ , the embedding is dense and the Gel'fand triple is obtained:

$$\mathcal{D}[t] \hookrightarrow \mathcal{H} \hookrightarrow \mathcal{D}^{\times}[t^{\times}], \tag{1.4}$$

where  $\hookrightarrow$  denotes a continuous and dense embedding. The sesquilinear form  $\langle \cdot | \cdot \rangle$  that puts  $\mathcal{D}$  and  $\mathcal{D}^{\times}$  in duality is an extension of the inner product of  $\mathcal{H}$  and has the same notation. We put:  $\langle F | f \rangle := \overline{\langle f | F \rangle}$ .

Throughout the paper,  $(X, \mu)$  will be measure space, where  $\mu$  is a  $\sigma$ -finite positive measure. By  $L^1(X, \mu), L^2(X, \mu), \cdots$  we mean the usual spaces of measurable functions; if  $X = \mathbb{R}$ , and  $\mu$  is the Lebesgue measure, we denote them as

 $L^p(\mathbb{R})$ . Furthermore, S stands for the *Schwartz space*, i.e. the space of infinitely differentiable and rapidly decreasing functions on  $\mathbb{R}$ . The conjugate dual of S, denoted by  $S^{\times}$ , is known as the space of *tempered distributions* (see [18] for more accurate definitions). An usual example of rigged Hilbert space is given by:

$$\mathcal{S} \hookrightarrow L^2(\mathbb{R}) \hookrightarrow \mathcal{S}^{\times}$$

The vector space of all continuous linear maps from  $\mathcal{D}[t]$  into  $\mathcal{D}^{\times}[t^{\times}]$  will be denoted by  $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\times})$ . If  $\mathcal{D}[t]$  is barreled (e.g. reflexive), an involution can be introduced in  $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\times})$ ,  $X \mapsto X^{\dagger}$ , by:

$$\left\langle X^{\dagger}\eta|\xi\right\rangle = \overline{\langle X\xi|\eta\rangle}, \quad \forall \xi, \eta \in \mathcal{D}.$$
 (1.5)

Hence, in this case,  $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\times})$  is a <sup>†</sup>-invariant vector space. For a detailed study, see [3].

In this paper we consider maps with values in a distribution space, defined in [20] as *weakly measurable maps*, and here denoted by  $\omega$ . The definition extends the notion, previously recalled in the introduction, of weakly measurable functions considered for continuous frames (see [2]).

**Definition 1.** The correspondence  $\omega : X \to \mathcal{D}^{\times}, x \mapsto \omega_x$  is called *weakly* measurable map if the complex valued function  $x \mapsto \langle f | \omega_x \rangle \in \mathbb{C}$  is  $\mu$ -measurable for all  $f \in \mathcal{D}$ .

In particular, the notions of completeness and independence of sequences in the Hilbert space is extended to the spaces of distributions by the following:

**Definition 2.** Let  $\omega : x \in X \to \omega_x \in \mathcal{D}^{\times}$  be a weakly measurable map, then:

- i)  $\omega$  is total or complete if,  $f \in \mathcal{D}$  and  $\langle f | \omega_x \rangle = 0$   $\mu$ -a.e.  $x \in X$  implies f = 0;
- ii)  $\omega$  is  $\mu$ -independent if the unique measurable function  $\xi : X \to \mathbb{C}$  such that  $\int_X \xi(x) \langle g | \omega_x \rangle \, d\mu = 0$  for every  $g \in \mathcal{D}$ , is  $\xi(x) = 0 \mu$ -a.e.

Let us recall the notion of *Bessel map*:

**Definition 3.** [20, Definition 3.2] A weakly measurable map  $\omega$  is a *Bessel* distribution map (briefly: Bessel map) if for every  $f \in \mathcal{D}$ ,  $\int_X |\langle f | \omega_x \rangle|^2 d\mu < \infty$ .

As a consequence of the closed graph theorem, if  $\mathcal{D}$  is a Frèchet space, for the Bessel maps one has the following characterization result:

**Proposition 1.** [20, Proposition 3.1] Let  $\mathcal{D}[t]$  be a Frèchet space, and  $\omega$ :  $x \in X \to \omega_x \in \mathcal{D}^{\times}$  be a weakly measurable map. The following statements are equivalent.

(i)  $\omega$  is a Bessel map;

Riesz-Fischer maps in rigged Hilbert spaces

(ii) there exists a continuous seminorm p on  $\mathcal{D}[t]$  such that:

$$\left(\int_X |\langle f|\omega_x\rangle|^2 d\mu\right)^{1/2} \le p(f), \quad \forall f \in \mathcal{D}$$

(iii) for every bounded subset  $\mathcal{M}$  of  $\mathcal{D}$  there exists  $C_{\mathcal{M}} > 0$  such that:

$$\sup_{f \in \mathcal{M}} \left| \int_X \xi(x) \left\langle \omega_x | f \right\rangle d\mu \right| \le C_{\mathcal{M}} \|\xi\|_2, \quad \forall \xi \in L^2(X,\mu).$$

The previous proposition has the following consequences [20]:

• If  $\xi \in L^2(X, \mu)$ , then the conjugate linear functional  $\Lambda_{\omega}^{\xi}$  on  $\mathcal{D}$  defined by:

$$\left\langle f|\Lambda_{\omega}^{\xi}\right\rangle := \int_{X} \xi(x) \left\langle f|\omega_{x}\right\rangle d\mu, \quad \forall f \in \mathcal{D}$$
 (1.6)

is defined and continuous, i.e.  $\Lambda_{\omega}^{\xi} \in \mathcal{D}^{\times}[t^{\times}];$ 

• the synthesis operator  $D_{\omega} : L^2(X,\mu) \to \mathcal{D}^{\times}[t^{\times}]$  weakly defined by  $D_{\omega} : \xi \mapsto \Lambda_{\omega}^{\xi}$ , i.e. such that:

$$\langle f|D_{\omega}\xi\rangle := \int_{X} \xi(x) \langle f|\omega_{x}\rangle d\mu, \quad \forall f \in \mathcal{D}$$

is continuous;

- the analysis operator  $C_{\omega} : \mathcal{D}[t] \to L^2(X,\mu)$  defined by  $(C_{\omega}f)(x) = \langle f | \omega_x \rangle$  is continuous;
- the frame operator  $S_{\omega} : \mathcal{D} \to \mathcal{D}^{\times}, S_{\omega} := D_{\omega}C_{\omega}$  is continuous, i.e.  $S_{\omega} \in \mathcal{L}(\mathcal{D}, \mathcal{D}^{\times}).$

**Remark 1.** If  $\mathcal{D}$  is a Frèchet space, a Bessel map  $\omega$  is bounded from above by a continuous seminorm on  $\mathcal{D}$ , but, in general, is not bounded from above by the Hilbert norm. An example, considered in [21], is the system of derivative of Dirac deltas on  $\mathcal{S} \hookrightarrow L^2(\mathbb{R}) \hookrightarrow \mathcal{S}^{\times}$  denoted by  $\{\delta'_x\}_{x \in \mathbb{R}}$ , and defined by:  $\langle f | \delta'_x \rangle := -f'(x)$ . Then  $\delta'_x$  is a Bessel map but is not bounded from above by the Hilbert norm. In [20] the notion of *bounded Bessel map* is defined, i.e. a Bessel map  $\omega$  such that there exists B > 0 such that:  $\int_X |\langle f | \omega_x \rangle|^2 d\mu \leq B \| f \|^2$ for all  $f \in \mathcal{D}$ . In particular, if  $\omega$  is also total and if there exists B > 0 such that  $0 < \int_X |\langle f | \omega_x \rangle|^2 d\mu \leq B \| f \|^2$  for all  $f \neq 0$ , then  $\omega$  is called *distribution upper semiframe* [21], as extension to the space of distributions of the corresponding notion of *continuous upper semiframe* introduced in [4]. If a bounded Bessel map  $\omega$  is also bounded from below by the Hilbert norm, we have the definition of *distribution frame*:

**Definition 4.** [20, Definition 3.6] Let  $\mathcal{D}[t] \hookrightarrow \mathcal{H} \hookrightarrow \mathcal{D}^{\times}[t^{\times}]$  be a rigged Hilbert space, with  $\mathcal{D}[t]$  a reflexive space and  $\omega$  is a Bessel map. We say that  $\omega$ is a *distribution frame* if there exist A, B > 0 such that:

$$A\|f\|^{2} \leq \int_{X} |\langle f|\omega_{x}\rangle|^{2} d\mu \leq B\|f\|^{2}, \quad \forall f \in \mathcal{D}.$$

We have that (see [20] for details):  $\Lambda_{\omega}^{\xi}$  is bounded in  $(\mathcal{D}, \|\cdot\|)$  and the bounded extension to  $\mathcal{H}$  is denoted by  $\tilde{\Lambda}_{\omega}^{\xi}$ ; the synthesis operator  $D_{\omega}$  has range in  $\mathcal{H}$  and it is bounded; the Hilbert adjoint  $D_{\omega}^*$  extends  $C_{\omega}$  to  $\mathcal{H}$ ; the operator  $\tilde{S}_{\omega} = D_{\omega}D_{\omega}^*$ is bounded and extends the frame operator  $S_{\omega}$ .

If  $\omega$  is a distribution frame, then the frame operator  $\hat{S}_{\omega}$  satisfies the inequality:

$$A||f|| \le ||S_{\omega}f|| \le B||f||, \quad \forall f \in \mathcal{H},$$

with A, B > 0 frame bounds for  $\omega$ . Since  $\hat{S}_{\omega}$  is symmetric, this implies that  $\hat{S}_{\omega}$  has a bounded inverse  $\hat{S}_{\omega}^{-1}$  everywhere defined in  $\mathcal{H}$ .

In [21] are defined the Riesz-Fischer maps in the space of distributions. They are the analogous of that notion in Hilbert spaces whose extension to the continuous case is given in [19].

**Definition 5.** [21, Definition 3.4] Let  $\mathcal{D}[t]$  be a locally convex space. A weakly measurable map  $\omega : x \in X \mapsto \omega_x \in \mathcal{D}^{\times}$  is called a *Riesz-Fischer* distribution map (briefly: Riesz-Fischer map) if, for every  $h \in L^2(X, \mu)$ , there exists  $f \in \mathcal{D}$  such that:

$$\langle f | \omega_x \rangle = h(x) \quad \mu\text{-a.e.}$$
 (1.7)

In this case, we say that f is a solution of equation  $\langle f | \omega_x \rangle = h(x)$ .

Clearly, if  $f_1$  and  $f_2$  are solutions of (1.7), then  $f_1 - f_2 \in \omega^{\perp} := \{g \in \mathcal{D} : \langle g | \omega_x \rangle = 0, \quad \mu - a.e. \}$ . If  $\omega$  is total, the solution is unique.

The analysis operator  $C_{\omega}$  is defined on  $dom(C_{\omega}) := \{f \in \mathcal{D} : \langle f | \omega_x \rangle \in L^2(X, \mu)\}$  as  $C_{\omega} : f \in dom(C_{\omega}) \mapsto \langle f | \omega_x \rangle \in L^2(X, \mu)$ . Clearly,  $\omega$  is a Riesz-Fischer map if and only if  $C_{\omega} : dom(C_{\omega}) \to L^2(X, \mu)$  is surjective. If  $\omega$  is total, it is injective too, so, in this case,  $C_{\omega}$  is invertible.

To define the synthesis operator  $D_{\omega}$  we consider the following subset of  $L^2(X,\mu)$ :

$$dom(D_{\omega}) := \{\xi \in L^2(X,\mu), \text{s.t. } \int_X \xi(x)\omega_x d\mu \text{ is convergent in } \mathcal{D}^{\times}\}.$$

Where convergent in  $\mathcal{D}^{\times}$  means that:  $\int_X \xi(x) \langle f | \omega_x \rangle d\mu$  is convergent for all  $f \in \mathcal{D}$  and the conjugate functional on  $\mathcal{D}$  defined in (1.6) by  $\Lambda_{\omega}^{\xi}$ , is continuous,

Riesz-Fischer maps in rigged Hilbert spaces

so  $\Lambda_{\omega}^{\xi} \in \mathcal{D}^{\times}$ . Then the synthesis operator  $D_{\omega} : dom(D_{\omega}) \to \mathcal{D}^{\times}$  is weakly defined by:

$$D_{\omega}: \xi \mapsto \Lambda_{\omega}^{\xi} := \int_X \xi(x) \omega_x d\mu.$$

The range of  $D_{\omega}$  is denoted by  $Ran(D_{\omega})$ :

$$Ran(D_{\omega}) := \Big\{ F \in \mathcal{D}^{\times} : \exists \xi \in dom(D_{\omega}) : \forall f \in \mathcal{D}, \langle f | F \rangle := \int_{X} \xi(x) \langle f | \omega_{x} \rangle \, d\mu \Big\}.$$

If  $\mathcal{D}$  is a Frèchet space, as a consequence of the closed graph theorem one has, for a total Riesz-Fischer map  $\omega$ , the following inequality:

**Corollary 1.** [21, Corollary 3.7] Assume that  $\mathcal{D}[t]$  is a Frèchet space. If the map  $\omega : x \in X \to \omega_x \in \mathcal{D}^{\times}$  is a total Riesz-Fischer map, then for every continuous seminorm p on  $\mathcal{D}$ , there exists a constant C > 0 such that, for the solution f of (1.7):

$$p(f) \le C \| \langle f | \omega_x \rangle \|_2.$$

It follows that, if  $\omega$  is a total Riesz-Fischer map, the inverse of the analysis operator  $C_{\omega}^{-1}: L^2(X, \mu) \to dom(C_{\omega})$  is continuous.

# 2 Main results

In this section are proved some characterization properties of Riesz-Fischer maps. We have the following:

**Proposition 2.** Let  $(X, \mu)$  be a measure space,  $h(x) \in L^2(X, \mu)$  and  $\omega : X \ni x \mapsto \omega_x \in \mathcal{D}^{\times}$  a weakly measurable map. Then  $\omega$  is a Riesz-Fischer map if, and only if, there exists a bounded subset  $\mathcal{M} \subset \mathcal{D}$  such that:

$$\left|\int_{X} \xi(x)\overline{h(x)}d\mu\right| \leq \sup_{f \in \mathcal{M}} \left|\int_{X} \xi(x)\left\langle\omega_{x}|f\right\rangle d\mu\right|$$
(2.8)

for all  $\xi(x) \in L^2(X,\mu)$  such that  $\int_X \xi(x) \omega_x d\mu$  is convergent in  $\mathcal{D}^{\times}$ .

*Proof.* Necessity is obvious: let  $\overline{f}$  be a solution of (1.7), then, for all  $\xi(x)$ , one has:

$$\Big|\int_X \xi(x)\overline{h(x)}d\mu\Big| = \Big|\int_X \xi(x)\left\langle\omega_x|\bar{f}\right\rangle d\mu\Big| \le \sup_{f\in\mathcal{M}}\Big|\int_X \xi(x)\left\langle\omega_x|f\right\rangle d\mu\Big|.$$

Sufficiency: if the condition (2.8) holds, consider the subspace  $\mathcal{E} \subset \mathcal{D}^{\times}$  defined by the set of elements  $F \in \mathcal{D}^{\times}$  such that there exists  $\xi \in L^2(X,\mu)$ :  $F = \int_X \xi(x) \omega_x d\mu$ , and let us define the linear functional  $\nu$  on  $\mathcal{E}$  by:

$$\nu(F) = \nu\Big(\int_X \xi(x)\omega_x d\mu\Big) := \int_X \xi(x)\overline{h(x)}d\mu$$

It follows immediately from hypothesis that  $\nu$  is defined unambiguously. Furthermore, from (2.8) one has:

$$\left|\nu(F)\right| = \left|\int_{X} \xi(x)\overline{h(x)}d\mu\right| \le \sup_{f\in\mathcal{M}} \left|\int_{X} \xi(x)\left\langle\omega_{x}|f\right\rangle d\mu\right| = \sup_{f\in\mathcal{M}} \left|\left\langle f|F\right\rangle\right|, \forall F\in\mathcal{E}$$

i.e.  $\nu(F)$  is bounded by a seminorm of  $\mathcal{D}^{\times}[t^{\times}]$ . By Hahn-Banach theorem, there exists an extension  $\tilde{\nu}$  of  $\nu$  to  $\mathcal{D}^{\times}$ . Since  $\mathcal{D}$  is reflexive, there exists  $\bar{f} \in \mathcal{D}$  such that:  $\tilde{\nu}(F) = \langle F | \bar{f} \rangle$ . Since:

$$\int_{X} \xi(x) [\langle \omega_{x} | \bar{f} \rangle - \overline{h(x)}] d\mu = \nu(F) - \int_{X} \xi(x) \overline{h(x)} d\mu = 0, \quad \forall \xi \in L^{2}(X, \mu)$$

then  $\langle f | \omega_x \rangle = h(x) \mu$ -a.e.

As consequence, we have the following:

**Corollary 2.**  $\omega$  is a Riesz-Fischer map if, and only if, there exists a bounded subset  $\mathcal{M} \subset \mathcal{D}$  such that:

$$\|\xi\|_{2} \leq \sup_{f \in \mathcal{M}} \Big| \int_{X} \xi(x) \langle f | \omega_{x} \rangle \, d\mu \Big|, \tag{2.9}$$

for all  $\xi(x) \in L^2(X,\mu)$  such that  $\int_X \xi(x) \omega_x d\mu$  is convergent in  $\mathcal{D}^{\times}$ .

*Proof.* Sufficiency: if the condition (2.9) holds, consider  $h(x) \in L^2(X, \mu)$  with  $||h(x)||_2 \leq 1$ , then:

$$\Big|\int_X \xi(x)\overline{h(x)}d\mu\Big| \le \|\xi\|_2 \le \sup_{f\in\mathcal{M}}\Big|\int_X \xi(x)\langle f|\omega_x\rangle\,d\mu\Big|.$$

Then, for the previous proposition,  $\omega$  is a Riesz-Fischer map. Necessity: lete  $\omega$  be a Riesz-Fischer map and put  $\frac{\xi(x)}{\|\xi(x)\|_2} = h(x)$  (for  $\xi \neq 0$ ), by Proposition 2 there exists a bounded subset  $\mathcal{M} \subset \mathcal{D}$  such that:

$$\|\xi\|_{2} = \int_{X} \xi(x) \frac{\overline{\xi(x)}}{\|\xi(x)\|_{2}} d\mu \leq \sup_{f \in \mathcal{M}} \Big| \int_{X} \xi(x) \langle f|\omega_{x} \rangle \, d\mu \Big|.$$
QED

The previous Corollary can be rephrased as:

**Corollary 3.**  $\omega$  is a Riesz-Fischer map if, and only if, the synthesis operator  $D_{\omega}$  is invertible and the inverse  $D_{\omega}^{-1} : Ran(D_{\omega}) \to L^2(X, \mu)$  is continuous.

Riesz-Fischer maps in rigged Hilbert spaces

#### 3 Conclusions

The inequalities in Proposition 1(iii) and in Corollary 2 are an extension to the rigged Hilbert spaces respectively of the inequalities (0.2), and (0.1) for sequences in Hilbert spaces (see [22, Ch. 4, Sec. 2, Th. 2, Th. 3]). In the case of sequences, it follows immediately that: if  $\{e_n\}_{n\in\mathbb{N}}$  is an orthonormal basis of  $\mathcal{H}$ , then  $\{f_n\}_{n\in\mathbb{N}}$  is a Bessel sequence if, and only if, there exists a bounded operator  $T: \mathcal{H} \to \mathcal{H}$  such that  $f_n = Te_n$ ;  $\{f_n\}_{n\in\mathbb{N}}$  is a Riesz-Fischer sequence if, and only if, there exists a bounded operator  $V: \mathcal{H} \to \mathcal{H}$  such that  $Vf_n = e_n$ (for frames and Riesz-bases see also [5, Proposition 4.6]). Since in the spaces of distributions the orthonormality is not defined, a sort of "orthonormal basis" is played by the *Gel'fand basis*: see [20] and [21, Definition 5.3]. So, it would be appropriate to carry on a further study, started in [20], about the transformations between Gal'fand basis, Bessel, Riesz-Fischer maps, distribution frames, and Riesz distribution basis.

## Acknowledgments

This work has been realized within of the activities of Gruppo UMI Teoria del l'Approssimazione e Applicazioni and Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

#### References

- S. T. ALI, J. P. ANTOINE, J. P. GAZEAU: Coherent states, Wavelets and their Generalizations, Springer, II ed. 2014.
- [2] S. T. ALI, J. P. ANTOINE, J. P. GAZEAU: Continuous frames in Hilbert spaces, Annals of Physics 222 (1993), 1–37.
- [3] J.-P. ANTOINE, A. INOUE, C. TRAPANI: Partial \*-Algebras and their Operator Realizations, Kluwer, Dordrecht, 2002.
- [4] J.-P. ANTOINE, P. BALAZS: Frames and semi-frames, J. Phys. A: Math. Theor. 44 205201, 2011.
- [5] P. BALAZS, D. T. STOEVA, J.-P. ANTOINE Classification of general sequences by framerelated operators, Sampl. Theory Signal Image Process. 10 (2011), no. 2, 151–170.
- [6] P. CASAZZA, O. CHRISTENSEN, S. LI, A. LINDNER: Riesz-Fischer Sequences and Lower Frame Bounds, Zeitschr. Anal. Anwen. 21 (2002), no. 2, 305–314.
- [7] O. CHRISTENSEN: Frames and Bases-An Introductory Course, Birkhäuser, 2008.
- [8] O. CHRISTENSEN: An Introduction to Frames and Riesz Bases, Boston, BirkhaÅjuser, 2016.

#### F. Tschinke

- [9] E. CORDERO, H. FEICHTINGER, F. LUEF: Banach Gelfand Triples for Gabor Analysis, In Pseudo-Differential operators, 1-33, Lecture Notes in Math., 1949, Springer, Berlin, 2008.
- [10] R. CORSO, F. TSCHINKE: Some notes about distribution frame multipliers, in: Landscapes of Time-Frequency Analysis, vol. 2, P. Boggiatto, T. Bruno, E. Cordero, H. G. Feichtinger, F. Nicola, A. Oliaro, A. Tabacco, M. Vallarino (Ed.), Applied and Numerical Harmonic Analysis Series, Springer, 2020.
- [11] H.G. FEICHTINGER, K. GRÖCHENIG: Gabor Frames and Time-Frequency Analysis of Distributions, J. Functional Anal. 146 (1997), 464–495.
- [12] H.G. FEICHTINGER, G. ZIMMERMANN: A Banach space of test functions for Gabor analysis in H.G. Feichtinger and T. Strohmer, editors, Gabor analysis and Algorithms - Theory and Applications, Birkähäuser Boston, 1998.
- [13] I.M. GEL'FAND, G.E. SHILOV, E. SALETAN: Generalized Functions, Vol. III, Academic Press, New York, 1967.
- [14] I. M. GEL'FAND, N. YA. VILENKIN: Generalized Functions, Vol. IV, Academic Press, New York, 1964.
- [15] G.G. GOULD: The Spectral Representation of Normal Operators on a Rigged Hilbert Space, J. London Math. Soc. 43 (1968), 745–754.
- [16] J. HORVATH: Topological Vector Spaces and Distributions, Addison-Wesley, 1966.
- [17] G. KAISER: A friendly guide to wavelets, Birkhäuser, Boston, 1994.
- [18] M. REED, B. SIMON: Methods of modern mathematical physics, Vol.I, II, Academic Press, New York, 1980.
- [19] A. RAHIMI, A. NAJATI, N. DEHGHAN: Continuous frame in Hilbert spaces, Methods of Funct. Anal. and Topology 12 (2006), no. 2, 170–182
- [20] C. TRAPANI, S. TRIOLO, F. TSCHINKE: Distribution Frames and Bases, J. Fourier Anal. and Appl. 25 (2019), 2109–2140.
- [21] F. TSCHINKE: Riesz-Fischer maps semiframes and frames in rigged Hilbert spaces, in Operathor Theory, Functional Analysis and Applications, 625-645; Operator Theory: Advances an Applications 282; Bastos, M.A., Castro, L., Karlovich, A.Y., Eds.; Birkäuser: Cham, Switzerland, 2021.
- [22] R. M. YOUNG: An Introduction to Non-Harmonic Fourier Series, Revised Edition, 2nd Edition, Academic Press, 2001.

90