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Abstract. This note concerns a further study about Riesz-Fischer maps, already introduced
by the author in a recent work, that is a notion that extends to the spaces of distributions the
sequences that are known as Riesz-Fischer sequences. In particular it is proved a characterizing
inequality that has as consequence the existence of the continuous inverse of the synthesis
operator.
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Introduction

As it is known, given an element f ∈ H and a sequence of elements {fn}n∈N
in a Hilbert space H endowed of the inner product ⟨·|·⟩, the sequence an : N →
C, an := ⟨f |fn⟩ is called moment sequence -briefly moments- of f ∈ H. The
problem to find a solution f ∈ H of the equations:

⟨f |fn⟩ = an, n ∈ N

given {fn}n∈N ⊂ H and {an}n∈N ⊂ C, is known as moment problem.
In particular, the sequence {fn}n∈N is called Riesz-Fischer sequence if, for

every {an}n∈N ∈ ℓ2 (i.e. such that
∑∞

1 |an|2 < ∞), there exists a solution f of
the moment problem.

On the other hand, the sequence {fn}n∈N is called Bessel sequence if, for all
f ∈ H, one has {⟨f |fn⟩}n∈N ∈ ℓ2.

We have the well-known characterization results [22, Ch. 4, Sec. 2,Th. 3]:

• {fn}n∈N is a Riesz-Fischer sequence if, and only if, there exists A > 0 such
that:

A
∑

|cn|2 ≤ ∥
∑

cnfn∥2 (0.1)

for all finite scalar sequences {cn} ⊂ C;
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• {fn}n∈N is a Bessel sequence if, and only if, there exists B > 0 such that:

∥
∑

cnfn∥2 ≤ B
∑

|cn|2 (0.2)

for all finite scalar sequences {cn} ⊂ C.

Bessel and Riesz-Fischer sequences play an important role in the theory of
frames and, in particular, in the study of Riesz bases [22, 8]. Roughly speaking,
a frame is an extension of a basis in a Hilbert space, in the sense that every
vector of H can be decomposed in terms of elements of a frame, but this decom-
position is not unique. This “loss of constraints” or“more leeway” allows several
applications in many branches of mathematical sciences and technology.

More precisely, a sequence {fn}n∈N in H is a frame if there exist A,B > 0
such that:

A∥f∥2 ≤
∑
n∈N

| ⟨f |fn⟩ |2 ≤ B∥f∥2, ∀f ∈ H.

A frame {fn}n∈N that is also a basis for H, is called Riesz basis. One has that
Bessel, Riesz-Fischer sequences and Riesz basis are related via linear operators
to orthonormal basis (see [22, 8, 5]). Furthermore, if {fn}n∈N is complete or
total (i.e. the set of its linear span is dense in H), then it is a Riesz basis if, and
only if, it is both Bessel and Riesz-Fischer sequence [22].

If it is not diversely specified, a frame is intended as discrete. However, a
notion of continuous frame have been introduced by S. T. Ali, J. P. Antoine, J.
P. Gazeau in [1, 2] in order to study coherent states, and, independently, by G.
Kaiser in [17]. Instead of a sequence, it is considered a map F from a measure
space (X,µ) (µ is a positive measure) to a Hilbert space H, i.e.: F : X → H,
F : x 7→ Fx. The map F is called continuous frame with respect to (X,µ) if:

• F is weakly measurable, i.e. that is x→ ⟨f |Fx⟩ is µ-measurable for every
f ∈ H;

• there exist A,B > 0 such that:

A∥f∥2 ≤
∫
X
| ⟨f |Fx⟩ |2dµ ≤ B∥f∥2, ∀f ∈ H.

In [20], C. Trapani, S. Triolo and the author have extended the notion of frame,
and related topics as Bessel, bases, Riesz basis, etc., to the spaces of distribu-
tions; in [21] and [10] a further study has been done respectively for Riesz-Fischer
sequences and multipliers.

An appropriate framework for the spaces of distributions is given by the
rigged Hilbert space i.e. a triple D ⊂ H ⊂ D× where D is a locally convex space,
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D× the conjugate dual to D, and where the inclusions have to be intended
as continuous and dense embedding. They have been introduced by Gel’fand
in [13, 14] with the aim to define the generalized eigenvectors of an essential
self-adjoint operator on D and to prove the theorem known as Gel’fand-Maurin
theorem, on the existence of a complete system of generalized eigenvector (see
also [15]). For that it is called also Gel’fand triple, also denoted by (D,H,D).

However Gel’fand triple play a relevant role also in other branches of math-
ematics, such as Gabor Analysis: see for example [9, 11, 12]. More exhaustive
references, papers and talks can be found on: www.nuhag.eu/talks .

Reconsidering Riesz-Fischer maps introduced in [21], the aim of this paper
is to continue the study, proving characterizing conditions, analogously to (0.1)
for the Riesz-Fischer sequences. The paper is organized as follows. In Section 2
are recalled some preliminaries, definitions and previous results. In Section 3 are
proved some characterizations of Riesz-Fischer maps in term of lower bounds
properties.

1 Preliminary definitions and facts

As usual, let us denote by H a Hilbert space, ⟨·|·⟩ its inner product and
∥ · ∥ the Hilbert norm. Let D be a dense subspace of H endowed with a locally
convex topology t stronger than the topology induced by the Hilbert norm. The
embedding of D in H is continuous and dense, and it is denoted by D ↪→ H.
The space of conjugate linear continuous forms on D is called conjugate dual
of D and it is denoted by D×. Unless otherwise stated, the value of F ∈ D×

on f ∈ D is denoted by ⟨f |F ⟩. The space D× is endowed with the strong dual
topology t× = β(D×,D) defined by the set of seminorms:

pM(F ) = sup
g∈M

| ⟨g|F ⟩ |, F ∈ D×, (1.3)

where M is a bounded subset of D[t]. In this way, the Hilbert space H can
be continuously embedded as subspace of D× (see [16]). If D is reflexive, i.e.
D×× = D, the embedding is dense and the Gel’fand triple is obtained:

D[t] ↪→ H ↪→ D×[t×], (1.4)

where ↪→ denotes a continuous and dense embedding. The sesquilinear form ⟨·|·⟩
that puts D and D× in duality is an extension of the inner product of H and
has the same notation. We put: ⟨F |f⟩ := ⟨f |F ⟩.

Throughout the paper, (X,µ) will be measure space, where µ is a σ-finite
positive measure. By L1(X,µ), L2(X,µ), · · · we mean the usual spaces of mea-
surable functions; if X = R, and µ is the Lebesgue measure, we denote them as
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Lp(R). Furthermore, S stands for the Schwartz space, i.e. the space of infinitely
differentiable and rapidly decreasing functions on R. The conjugate dual of S,
denoted by S×, is known as the space of tempered distributions (see [18] for
more accurate definitions). An usual example of rigged Hilbert space is given
by:

S ↪→ L2(R) ↪→ S×.

The vector space of all continuous linear maps from D[t] into D×[t×] will be
denoted by L(D,D×). If D[t] is barreled (e.g. reflexive), an involution can be
introduced in L(D,D×), X 7→ X†, by:〈

X†η|ξ
〉
= ⟨Xξ|η⟩, ∀ξ, η ∈ D. (1.5)

Hence, in this case, L(D,D×) is a †-invariant vector space. For a detailed study,
see [3].

In this paper we consider maps with values in a distribution space, defined
in [20] as weakly measurable maps, and here denoted by ω. The definition ex-
tends the notion, previously recalled in the introduction, of weakly measurable
functions considered for continuous frames (see [2]).

Definition 1. The correspondence ω : X → D×, x 7→ ωx is called weakly
measurable map if the complex valued function x 7→ ⟨f |ωx⟩ ∈ C is µ-measurable
for all f ∈ D.

In particular, the notions of completeness and independence of sequences in
the Hilbert space is extended to the spaces of distributions by the following:

Definition 2. Let ω : x ∈ X → ωx ∈ D× be a weakly measurable map,
then:

i) ω is total or complete if, f ∈ D and ⟨f |ωx⟩ = 0 µ-a.e. x ∈ X implies f = 0;

ii) ω is µ-independent if the unique measurable function ξ : X → C such that∫
X ξ(x) ⟨g|ωx⟩ dµ = 0 for every g ∈ D, is ξ(x) = 0 µ-a.e.

Let us recall the notion of Bessel map:

Definition 3. [20, Definition 3.2] A weakly measurable map ω is a Bessel
distribution map (briefly: Bessel map) if for every f ∈ D,

∫
X | ⟨f |ωx⟩ |2dµ <∞.

As a consequence of the closed graph theorem, if D is a Frèchet space, for
the Bessel maps one has the following characterization result:

Proposition 1. [20, Proposition 3.1] Let D[t] be a Frèchet space, and ω :
x ∈ X → ωx ∈ D× be a weakly measurable map. The following statements are
equivalent.

(i) ω is a Bessel map;
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(ii) there exists a continuous seminorm p on D[t] such that:(∫
X
| ⟨f |ωx⟩ |2dµ

)1/2

≤ p(f), ∀f ∈ D.

(iii) for every bounded subset M of D there exists CM > 0 such that:

sup
f∈M

∣∣∣ ∫
X
ξ(x) ⟨ωx|f⟩ dµ

∣∣∣ ≤ CM∥ξ∥2, ∀ξ ∈ L2(X,µ).

The previous proposition has the following consequences [20]:

• If ξ ∈ L2(X,µ), then the conjugate linear functional Λξω on D defined by:〈
f |Λξω

〉
:=

∫
X
ξ(x) ⟨f |ωx⟩ dµ, ∀f ∈ D (1.6)

is defined and continuous, i.e. Λξω ∈ D×[t×];

• the synthesis operator Dω : L2(X,µ) → D×[t×] weakly defined by Dω :

ξ 7→ Λξω, i.e. such that:

⟨f |Dωξ⟩ :=
∫
X
ξ(x) ⟨f |ωx⟩ dµ, ∀f ∈ D

is continuous;

• the analysis operator Cω : D[t] → L2(X,µ) defined by (Cωf)(x) = ⟨f |ωx⟩
is continuous;

• the frame operator Sω : D → D×, Sω := DωCω is continuous, i.e. Sω ∈
L(D,D×).

Remark 1. If D is a Frèchet space, a Bessel map ω is bounded from above
by a continuous seminorm on D, but, in general, is not bounded from above by
the Hilbert norm. An example, considered in [21], is the system of derivative
of Dirac deltas on S ↪→ L2(R) ↪→ S× denoted by {δ′x}x∈R, and defined by:
⟨f |δ′x⟩ := −f ′(x) . Then δ′x is a Bessel map but is not bounded from above by
the Hilbert norm. In [20] the notion of bounded Bessel map is defined, i.e. a
Bessel map ω such that there exists B > 0 such that:

∫
X | ⟨f |ωx⟩ |2dµ ≤ B∥f∥2

for all f ∈ D. In particular, if ω is also total and if there exists B > 0 such that
0 <

∫
X | ⟨f |ωx⟩ |2dµ ≤ B∥f∥2 forall f ̸= 0, then ω is called distribution upper

semiframe [21], as extension to the space of distributions of the corresponding
notion of continuous upper semiframe introduced in [4].
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If a bounded Bessel map ω is also bounded from below by the Hilbert norm, we
have the definition of distribution frame:

Definition 4. [20, Definition 3.6] Let D[t] ↪→ H ↪→ D×[t×] be a rigged
Hilbert space, with D[t] a reflexive space and ω is a Bessel map. We say that ω
is a distribution frame if there exist A,B > 0 such that:

A∥f∥2 ≤
∫
X
| ⟨f |ωx⟩ |2dµ ≤ B∥f∥2, ∀f ∈ D.

We have that (see [20] for details): Λξω is bounded in (D, ∥ · ∥) and the bounded

extension to H is denoted by Λ̃ξω; the synthesis operator Dω has range in H and
it is bounded; the Hilbert adjointD∗

ω extends Cω toH; the operator S̃ω = DωD
∗
ω

is bounded and extends the frame operator Sω.

If ω is a distribution frame, then the frame operator Ŝω satisfies the inequal-
ity:

A∥f∥ ≤ ∥Ŝωf∥ ≤ B∥f∥, ∀f ∈ H,
with A,B > 0 frame bounds for ω. Since Ŝω is symmetric, this implies that Ŝω
has a bounded inverse Ŝ−1

ω everywhere defined in H.
In [21] are defined the Riesz-Fischer maps in the space of distributions.

They are the analogous of that notion in Hilbert spaces whose extension to the
continuous case is given in [19].

Definition 5. [21, Definition 3.4] Let D[t] be a locally convex space. A
weakly measurable map ω : x ∈ X 7→ ωx ∈ D× is called a Riesz-Fischer
distribution map (briefly: Riesz-Fischer map) if, for every h ∈ L2(X,µ), there
exists f ∈ D such that:

⟨f |ωx⟩ = h(x) µ-a.e. (1.7)

In this case, we say that f is a solution of equation ⟨f |ωx⟩ = h(x).

Clearly, if f1 and f2 are solutions of (1.7), then f1 − f2 ∈ ω⊥ := {g ∈ D :
⟨g|ωx⟩ = 0, µ− a.e.}. If ω is total, the solution is unique.

The analysis operator Cω is defined on dom(Cω) := {f ∈ D : ⟨f |ωx⟩ ∈
L2(X,µ)} as Cω : f ∈ dom(Cω) 7→ ⟨f |ωx⟩ ∈ L2(X,µ). Clearly, ω is a Riesz-
Fischer map if and only if Cω : dom(Cω) → L2(X,µ) is surjective. If ω is total,
it is injective too, so, in this case, Cω is invertible.

To define the synthesis operator Dω we consider the following subset of
L2(X,µ):

dom(Dω) := {ξ ∈ L2(X,µ), s.t.

∫
X
ξ(x)ωxdµ is convergent in D×}.

Where convergent in D× means that:
∫
X ξ(x) ⟨f |ωx⟩ dµ is convergent for all

f ∈ D and the conjugate functional on D defined in (1.6) by Λξω, is continuous,
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so Λξω ∈ D×. Then the synthesis operator Dω : dom(Dω) → D× is weakly
defined by:

Dω : ξ 7→ Λξω :=

∫
X
ξ(x)ωxdµ.

The range of Dω is denoted by Ran(Dω):

Ran(Dω) :=
{
F ∈ D× : ∃ ξ ∈ dom(Dω) : ∀f ∈ D, ⟨f |F ⟩ :=

∫
X
ξ(x) ⟨f |ωx⟩ dµ

}
.

If D is a Frèchet space, as a consequence of the closed graph theorem one has,
for a total Riesz-Fischer map ω, the following inequality:

Corollary 1. [21, Corollary 3.7] Assume that D[t] is a Frèchet space. If
the map ω : x ∈ X → ωx ∈ D× is a total Riesz-Fischer map, then for every
continuous seminorm p on D, there exists a constant C > 0 such that, for the
solution f of (1.7):

p(f) ≤ C∥ ⟨f |ωx⟩ ∥2.
It follows that, if ω is a total Riesz-Fischer map, the inverse of the analysis

operator C−1
ω : L2(X,µ) → dom(Cω) is continuous.

2 Main results

In this section are proved some characterization properties of Riesz-Fischer
maps. We have the following:

Proposition 2. Let (X,µ) be a measure space, h(x) ∈ L2(X,µ) and ω :
X ∋ x 7→ ωx ∈ D× a weakly measurable map. Then ω is a Riesz-Fischer map
if, and only if, there exists a bounded subset M ⊂ D such that:∣∣∣ ∫

X
ξ(x)h(x)dµ

∣∣∣ ≤ sup
f∈M

∣∣∣ ∫
X
ξ(x) ⟨ωx|f⟩ dµ

∣∣∣ (2.8)

for all ξ(x) ∈ L2(X,µ) such that
∫
X ξ(x)ωxdµ is convergent in D×.

Proof. Necessity is obvious: let f̄ be a solution of (1.7), then, for all ξ(x), one
has: ∣∣∣ ∫

X
ξ(x)h(x)dµ

∣∣∣ = ∣∣∣ ∫
X
ξ(x)

〈
ωx|f̄

〉
dµ
∣∣∣ ≤ sup

f∈M

∣∣∣ ∫
X
ξ(x) ⟨ωx|f⟩ dµ

∣∣∣.
Sufficiency: if the condition (2.8) holds, consider the subspace E ⊂ D× defined
by the set of elements F ∈ D× such that there exists ξ ∈ L2(X,µ): F =∫
X ξ(x)ωxdµ, and let us define the linear functional ν on E by:

ν(F ) = ν
(∫

X
ξ(x)ωxdµ

)
:=

∫
X
ξ(x)h(x)dµ.
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It follows immediately from hypothesis that ν is defined unambiguously. Fur-
thermore, from (2.8) one has:

∣∣ν(F )∣∣ = ∣∣∣ ∫
X
ξ(x)h(x)dµ

∣∣∣ ≤ sup
f∈M

∣∣∣ ∫
X
ξ(x) ⟨ωx|f⟩ dµ

∣∣∣ = sup
f∈M

| ⟨f |F ⟩ |,∀F ∈ E

i.e. ν(F ) is bounded by a seminorm of D×[t×]. By Hahn-Banach theorem, there
exists an extension ν̃ of ν to D×. Since D is reflexive, there exists f̄ ∈ D such
that: ν̃(F ) =

〈
F |f̄

〉
. Since:∫

X
ξ(x)[

〈
ωx|f̄

〉
− h(x)]dµ = ν(F )−

∫
X
ξ(x)h(x)dµ = 0, ∀ ξ ∈ L2(X,µ)

then
〈
f̄ |ωx

〉
= h(x) µ-a.e. QED

As consequence, we have the following:

Corollary 2. ω is a Riesz-Fischer map if, and only if, there exists a bounded
subset M ⊂ D such that:

∥ξ∥2 ≤ sup
f∈M

∣∣∣ ∫
X
ξ(x) ⟨f |ωx⟩ dµ

∣∣∣, (2.9)

for all ξ(x) ∈ L2(X,µ) such that
∫
X ξ(x)ωxdµ is convergent in D×.

Proof. Sufficiency: if the condition (2.9) holds, consider h(x) ∈ L2(X,µ) with
∥h(x)∥2 ≤ 1, then:∣∣∣ ∫

X
ξ(x)h(x)dµ

∣∣∣ ≤ ∥ξ∥2 ≤ sup
f∈M

∣∣∣ ∫
X
ξ(x) ⟨f |ωx⟩ dµ

∣∣∣.
Then, for the previous proposition, ω is a Riesz-Fischer map.
Necessity: lete ω be a Riesz-Fischer map and put ξ(x)

∥ξ(x)∥2 = h(x) (for ξ ̸= 0), by
Proposition 2 there exists a bounded subset M ⊂ D such that:

∥ξ∥2 =
∫
X
ξ(x)

ξ(x)

∥ξ(x∥2
dµ ≤ sup

f∈M

∣∣∣ ∫
X
ξ(x) ⟨f |ωx⟩ dµ

∣∣∣.
QED

The previous Corollary can be rephrased as:

Corollary 3. ω is a Riesz-Fischer map if, and only if, the synthesis operator
Dω is invertible and the inverse D−1

ω : Ran(Dω) → L2(X,µ) is continuous.
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3 Conclusions

The inequalities in Proposition 1(iii) and in Corollary 2 are an extension
to the rigged Hilbert spaces respectively of the inequalities (0.2), and (0.1) for
sequences in Hilbert spaces (see [22, Ch. 4, Sec. 2, Th. 2, Th. 3]). In the case
of sequences, it follows immediately that: if {en}n∈N is an orthonormal basis
of H, then {fn}n∈N is a Bessel sequence if, and only if, there exists a bounded
operator T : H → H such that fn = Ten; {fn}n∈N is a Riesz-Fischer sequence
if, and only if, there exists a bounded operator V : H → H such that V fn = en
(for frames and Riesz-bases see also [5, Proposition 4.6]). Since in the spaces of
distributions the orthonormality is not defined, a sort of “orthonormal basis” is
played by the Gel’fand basis: see [20] and [21, Definition 5.3]. So, it would be
appropriate to carry on a further study, started in [20], about the transforma-
tions between Gal’fand basis, Bessel, Riesz-Fischer maps, distribution frames,
and Riesz distribution basis.
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