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Abstract. This note concerns a further study about Riesz-Fischer maps, already introduced
by the author in a recent work, that is a notion that extends to the spaces of distributions the
sequences that are known as Riesz-Fischer sequences. In particular it is proved a characterizing
inequality that has as consequence the existence of the continuous inverse of the synthesis
operator.
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Introduction

As it is known, given an element f € H and a sequence of elements { f,, }nen
in a Hilbert space H endowed of the inner product (-|-), the sequence a, : N —
C, ayn = (f|fn) is called moment sequence -briefly moments- of f € H. The
problem to find a solution f € H of the equations:

<f’fn>:an7 neN

given {fn}nen C H and {a,}nen C C, is known as moment problem.

In particular, the sequence {f,}nen is called Riesz-Fischer sequence if, for
every {an}nen € €2 (i.e. such that >"7°|as|? < o0), there exists a solution f of
the moment problem.

On the other hand, the sequence { fy, }nen is called Bessel sequence if, for all

f € H, one has {{f|fn)}nen € £2.
We have the well-known characterization results [22, Ch. 4, Sec. 2,Th. 3]:

o {fn}tnen is a Riesz-Fischer sequence if, and only if, there exists A > 0 such

that:
A el < 1D entall? (0.1)

for all finite scalar sequences {c,} C C;
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o {fu}nen is a Bessel sequence if, and only if, there exists B > 0 such that:

I3 cadull® < BY feal (0.2)

for all finite scalar sequences {c,} C C.

Bessel and Riesz-Fischer sequences play an important role in the theory of
frames and, in particular, in the study of Riesz bases [22, 8]. Roughly speaking,
a frame is an extension of a basis in a Hilbert space, in the sense that every
vector of H can be decomposed in terms of elements of a frame, but this decom-
position is not unique. This “loss of constraints” or “more leeway” allows several
applications in many branches of mathematical sciences and technology.

More precisely, a sequence {fy, }nen in H is a frame if there exist A, B > 0
such that:

AFIZ <D 1{f 1) P < BIFIP VS €.

neN

A frame {f, }nen that is also a basis for H, is called Riesz basis. One has that
Bessel, Riesz-Fischer sequences and Riesz basis are related via linear operators
to orthonormal basis (see [22, 8, 5]). Furthermore, if {f,}nen is complete or
total (i.e. the set of its linear span is dense in H), then it is a Riesz basis if, and
only if, it is both Bessel and Riesz-Fischer sequence [22].

If it is not diversely specified, a frame is intended as discrete. However, a
notion of continuous frame have been introduced by S. T. Ali, J. P. Antoine, J.
P. Gazeau in [1, 2] in order to study coherent states, and, independently, by G.
Kaiser in [17]. Instead of a sequence, it is considered a map F from a measure
space (X, p) (u is a positive measure) to a Hilbert space H, i.e.: F: X — H,
F : 2z — F,. The map F is called continuous frame with respect to (X, u) if:

e F is weakly measurable, i.e. that is x — (f|F},) is u-measurable for every

[ €H;

e there exist A, B > 0 such that:
Allf|? < /X [(fIF) [2du < BIFIP. Vf e,

In [20], C. Trapani, S. Triolo and the author have extended the notion of frame,
and related topics as Bessel, bases, Riesz basis, etc., to the spaces of distribu-
tions; in [21] and [10] a further study has been done respectively for Riesz-Fischer
sequences and multipliers.

An appropriate framework for the spaces of distributions is given by the
rigged Hilbert space i.e. a triple D C H C D> where D is a locally convex space,
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D* the conjugate dual to D, and where the inclusions have to be intended
as continuous and dense embedding. They have been introduced by Gel’fand
in [13, 14] with the aim to define the generalized eigenvectors of an essential
self-adjoint operator on D and to prove the theorem known as Gel’fand-Maurin
theorem, on the existence of a complete system of generalized eigenvector (see
also [15]). For that it is called also Gel’fand triple, also denoted by (D, H, D).

However Gel’fand triple play a relevant role also in other branches of math-
ematics, such as Gabor Analysis: see for example [9, 11, 12]. More exhaustive
references, papers and talks can be found on: www.nuhag.eu/talks .

Reconsidering Riesz-Fischer maps introduced in [21], the aim of this paper
is to continue the study, proving characterizing conditions, analogously to (0.1)
for the Riesz-Fischer sequences. The paper is organized as follows. In Section 2
are recalled some preliminaries, definitions and previous results. In Section 3 are
proved some characterizations of Riesz-Fischer maps in term of lower bounds
properties.

1 Preliminary definitions and facts

As usual, let us denote by H a Hilbert space, (-|-) its inner product and
| - || the Hilbert norm. Let D be a dense subspace of H endowed with a locally
convex topology t stronger than the topology induced by the Hilbert norm. The
embedding of D in H is continuous and dense, and it is denoted by D — H.
The space of conjugate linear continuous forms on D is called conjugate dual
of D and it is denoted by D*. Unless otherwise stated, the value of F € D*
on f € D is denoted by (f|F). The space D* is endowed with the strong dual
topology t* = (D>, D) defined by the set of seminorms:

pm(F) = sup | (g|F)|, F €D, (1.3)
geM

where M is a bounded subset of D[t]. In this way, the Hilbert space H can
be continuously embedded as subspace of D* (see [16]). If D is reflexive, i.e.
D** =D, the embedding is dense and the Gel’fand triple is obtained:

D[t] — H — D*[t™], (1.4)

where — denotes a continuous and dense embedding. The sesquilinear form (-|-)
that puts D and D* in duality is an extension of the inner product of H and
has the same notation. We put: (F|f) := (f|F).

Throughout the paper, (X, 1) will be measure space, where p is a o-finite
positive measure. By L'(X, i), L?(X, i), - -- we mean the usual spaces of mea-

surable functions; if X = R, and p is the Lebesgue measure, we denote them as
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LP(R). Furthermore, S stands for the Schwartz space, i.e. the space of infinitely
differentiable and rapidly decreasing functions on R. The conjugate dual of S,
denoted by S§*, is known as the space of tempered distributions (see [18] for
more accurate definitions). An usual example of rigged Hilbert space is given
by:

S — L*(R) — S*.
The vector space of all continuous linear maps from D[t] into D*[t*] will be

denoted by L(D,D*). If D[t] is barreled (e.g. reflexive), an involution can be
introduced in £(D,D*), X ~ X1, by:

(Xtnle) = (Xeln), ¥em e D. (1.5)

Hence, in this case, £L(D,D*) is a f-invariant vector space. For a detailed study,
see [3].

In this paper we consider maps with values in a distribution space, defined
in [20] as weakly measurable maps, and here denoted by w. The definition ex-
tends the notion, previously recalled in the introduction, of weakly measurable
functions considered for continuous frames (see [2]).

Definition 1. The correspondence w : X — D*, x +— w, is called weakly
measurable map if the complex valued function z — (f|w,) € C is y-measurable
for all f € D.

In particular, the notions of completeness and independence of sequences in
the Hilbert space is extended to the spaces of distributions by the following:

Definition 2. Let w : € X — w, € D* be a weakly measurable map,
then:

i) w is total or complete if, f € D and (f|wy) = 0 p-a.e. z € X implies f = 0;

i) wis p-independent if the unique measurable function £ : X — C such that
Jx &(z) (glws) dpp = 0 for every g € D, is £(z) = 0 p-ace.
Let us recall the notion of Bessel map:

Definition 3. [20, Definition 3.2] A weakly measurable map w is a Bessel
distribution map (briefly: Bessel map) if for every f € D, [y |(flwz) [*dp < oo.

As a consequence of the closed graph theorem, if D is a Fréchet space, for
the Bessel maps one has the following characterization result:

Proposition 1. [20, Proposition 3.1] Let D[t] be a Fréchet space, and w :
z € X = w, € D* be a weakly measurable map. The following statements are
equivalent.

(i) w is a Bessel map;
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(ii) there exists a continuous seminorm p on D[t] such that:

1/2
([ 10l Pan)  <atr). vre.
(iii) for every bounded subset M of D there exists Cpq > 0 such that:

sup | [ &) (wrlf) dn] < Canlles v¢ € LX),
femM'JXx

The previous proposition has the following consequences [20]:

e If ¢ € L*(X, ), then the conjugate linear functional A% on D defined by:
(1108) = | €@ (fluryan, vreD (16)

is defined and continuous, i.e. AS, € DX[t*];

e the synthesis operator D, : L*(X, ) — D*[t*] weakly defined by D,, :
& Aé, i.e. such that:

(f1Du€) = /X £(x) (flwa) dp, V€D

is continuous;

e the analysis operator C,, : D[t] — L?(X, i) defined by (C,f)(x) = (f|wz)
is continuous;

e the frame operator S, : D — D*, S,, := D,C,, is continuous, i.e. S, €
L(D,D*).

Remark 1. If D is a Frechet space, a Bessel map w is bounded from above
by a continuous seminorm on D, but, in general, is not bounded from above by
the Hilbert norm. An example, considered in [21], is the system of derivative
of Dirac deltas on & — L?(R) — S denoted by {d.}.cr, and defined by:
(floL) := —f"(x) . Then ¢’, is a Bessel map but is not bounded from above by
the Hilbert norm. In [20] the notion of bounded Bessel map is defined, i.e. a
Bessel map w such that there exists B > 0 such that: [ | (f|ws) [*du < BJ|f|?
for all f € D. In particular, if w is also total and if there exists B > 0 such that
0 < [x | {flwz) [Pdp < B f||* forall f # 0, then w is called distribution upper
semiframe [21], as extension to the space of distributions of the corresponding
notion of continuous upper semiframe introduced in [4].
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If a bounded Bessel map w is also bounded from below by the Hilbert norm, we
have the definition of distribution frame:

Definition 4. [20, Definition 3.6] Let D[t] — H — D*[t*] be a rigged
Hilbert space, with D[t] a reflexive space and w is a Bessel map. We say that w
is a distribution frame if there exist A, B > 0 such that:

AllfI? < /X | (flws) P < BIIfIP. Vf €D.

We have that (see [20] for details): AS is bounded in (D, || - ||) and the bounded
extension to ‘H is denoted by /~X§J, the synthesis operator D, has range in H and
it is bounded; the Hilbert adjoint D} extends C,, to H; the operator gw = D,D},
is bounded and extends the frame operator S,,.

If w is a distribution frame, then the frame operator S,, satisfies the inequal-

ity: R

AllfIF< IS fll < BllfIl, Vf e™H,
with A, B > 0 frame bounds for w. Since S, is symmetric, this implies that S,
has a bounded inverse S’; ! everywhere defined in .

In [21] are defined the Riesz-Fischer maps in the space of distributions.
They are the analogous of that notion in Hilbert spaces whose extension to the
continuous case is given in [19].

Definition 5. [21, Definition 3.4] Let D[t] be a locally convex space. A
weakly measurable map w : x € X — w, € D* is called a Riesz-Fischer
distribution map (briefly: Riesz-Fischer map) if, for every h € L?(X, ), there
exists f € D such that:

(flwz) = h(xz) p-ae. (1.7)
In this case, we say that f is a solution of equation (f|w,) = h(x).

Clearly, if f; and f, are solutions of (1.7), then f; — fo € wt := {g € D :
(glwz) =0, p—a.e.}. If wis total, the solution is unique.

The analysis operator C,, is defined on dom(C,) := {f € D : (flwz) €
L*(X,p)} as C,, : f € dom(Cy) v (flws) € L*(X, u). Clearly, w is a Riesz-
Fischer map if and only if C,, : dom(C,,) — L*(X, ) is surjective. If w is total,
it is injective too, so, in this case, C,, is invertible.

To define the synthesis operator D, we consider the following subset of
L*(X, p):

dom(Dy,) := {€ € L*(X, p),s.t. / &(x)wydpis convergent in D™ }.
b'e

Where convergent in D* means that: [, &(x) (f|ws)dp is convergent for all
f € D and the conjugate functional on D defined in (1.6) by AS, is continuous,
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SO Afd € D*. Then the synthesis operator D, : dom(D,) — D* is weakly
defined by:

Dy : € AS = / &(x)wzdp.
X
The range of D, is denoted by Ran(D,,):

Ran(D,,) = {F e DX :3¢ € dom(D,,) : Vf € D, {f|F) := /Xg(g;) (f|ws) dﬂ}.

If D is a Frechet space, as a consequence of the closed graph theorem one has,
for a total Riesz-Fischer map w, the following inequality:

Corollary 1. [21, Corollary 3.7] Assume that DIt] is a Fréchet space. If
the map w : x € X — w, € D* is a total Riesz-Fischer map, then for every
continuous seminorm p on D, there exists a constant C' > 0 such that, for the
solution f of (1.7):

p(f) < Cl (flwa) [|2-

It follows that, if w is a total Riesz-Fischer map, the inverse of the analysis
operator O : L2(X, ) — dom(C,) is continuous.

2 Main results

In this section are proved some characterization properties of Riesz-Fischer
maps. We have the following;:

Proposition 2. Let (X, u) be a measure space, h(z) € L*(X,p) and w :
X 3z — w; € D* a weakly measurable map. Then w is a Riesz-Fischer map
if, and only if, there exists a bounded subset M C D such that:

)/é W] < sup \/5 (wal £) dp (2.8)

for all §(z) € L*(X, p) such that [y &(x)wydp is convergent in D*.

Pmof Necessity is obvious: let f be a solution of (1.7), then, for all £(x), one
has

| [ s@R@an] = [ €@ (@elfran| < sup | [ €6@) s do

Sufficiency: if the condition (2.8) holds, consider the subspace & C D* defined
by the set of elements I € DX such that there exists ¢ € L?(X,u): F =
3 + {(z)wzdp, and let us define the linear functional v on & by:

—V/é Yol /s



88 F. Tschinke

It follows immediately from hypothesis that v is defined unambiguously. Fur-
thermore, from (2.8) one has:

W) =| [ cwh@ian] < sup | [ €@ wlh) o] = sup 1717} 9F € €

i.e. v(F') is bounded by a seminorm of D*[t*]. By Hahn-Banach theorem, there
exists an extension v of v to D*. Since D is reflexive, there exists f € D such

that: 7(F) = (F|f). Since:

/5 {wal F) = B(@)lds = v(F /s h(@)dp =0, V¢ e L¥(X, )

then (flwgy) = h(z) p-a.e. QED

As consequence, we have the following:

Corollary 2. w is a Riesz-Fischer map if, and only if, there exists a bounded
subset M C D such that:

lella < sup | [ €(a) (fluw) . (29)
fem'Jx

for all &(z) € L*(X, p) such that [y &(x)wydp is convergent in D*.

Proof. Sufficiency: if the condition (2.9) holds, consider h(z) € L?(X, ) with
Ilh(x)|l2 < 1, then:

| [ @] < 6te < sup | [ @) (e da

Then, for the previous proposition, w is a Riesz-Fischer map.
Necessity: lete w be a Riesz-Fischer map and put 0 5((“73)” = h(z) (for £ #0), by
Proposition 2 there exists a bounded subset M C D such that:

.’13
Hé\lz—/ﬁ He du<1§é1ﬁ’/xé(w)<fwx>du-

QED

The previous Corollary can be rephrased as:

Corollary 3. w is a Riesz-Fischer map if, and only if, the synthesis operator
D, is invertible and the inverse D' : Ran(Dy) — L?(X, u) is continuous.
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3 Conclusions

The inequalities in Proposition 1(iii) and in Corollary 2 are an extension
to the rigged Hilbert spaces respectively of the inequalities (0.2), and (0.1) for
sequences in Hilbert spaces (see [22, Ch. 4, Sec. 2, Th. 2, Th. 3]). In the case
of sequences, it follows immediately that: if {e,},en is an orthonormal basis
of H, then {f,}nen is a Bessel sequence if, and only if, there exists a bounded
operator T : H — H such that f, = Ten; {fn}nen is a Riesz-Fischer sequence
if, and only if, there exists a bounded operator V : H — H such that V f,, = e,
(for frames and Riesz-bases see also [5, Proposition 4.6]). Since in the spaces of
distributions the orthonormality is not defined, a sort of “orthonormal basis” is
played by the Gel’fand basis: see [20] and [21, Definition 5.3]. So, it would be
appropriate to carry on a further study, started in [20], about the transforma-
tions between Gal’fand basis, Bessel, Riesz-Fischer maps, distribution frames,
and Riesz distribution basis.

Acknowledgments

This work has been realized within of the activities of Gruppo UMI Teo-
ria del I’Approssimazione e Applicazioni and Gruppo Nazionale per 1’Analisi
Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of the Istituto
Nazionale di Alta Matematica (INdAM).

References

[1] S. T. ALy, J. P. ANTOINE, J. P. GAZEAU: Coherent states, Wavelets and their General-
izations, Springer, II ed. 2014.

[2] S. T. ALL, J. P. ANTOINE, J. P. GAZEAU: Continuous frames in Hilbert spaces, Annals
of Physics 222 (1993), 1-37.

[3] J.-P. ANTOINE, A. INOUE, C. TRAPANI: Partial *-Algebras and their Operator Realiza-
tions, Kluwer, Dordrecht, 2002.

[4] J.-P. ANTOINE, P. BALAZS: Frames and semi-frames, J. Phys. A: Math. Theor. 44 205201,
2011.

[5] P. BaLazs, D. T. STOEVA, J.-P. ANTOINE Classification of general sequences by frame-
related operators, Sampl. Theory Signal Image Process. 10 (2011), no. 2, 151-170.

[6] P. Casazza, O. CHRISTENSEN, S. LI, A. LINDNER: Riesz-Fischer Sequences and Lower
Frame Bounds, Zeitschr. Anal. Anwen. 21 (2002), no. 2, 305-314.

[7] O. CHRISTENSEN: Frames and Bases-An Introductory Course, Birkhiuser, 2008.

[8] O. CHRISTENSEN: An Introduction to Frames and Riesz Bases, Boston, BirkhaAjuser,
2016.



90

[9]

(10]

F. Tschinke

E. COrRDERO, H. FEICHTINGER, F. LUEF: Banach Gelfand Triples for Gabor Analysis, In
Pseudo-Differential operators, 1-33, Lecture Notes in Math., 1949, Springer, Berlin, 2008.

R. CoRso0, F. TSCHINKE: Some notes about distribution frame multipliers, in: Landscapes
of Time-Frequency Analysis, vol. 2, P. Boggiatto, T. Bruno, E. Cordero, H. G. Feichtinger,
F. Nicola, A. Oliaro, A. Tabacco, M. Vallarino (Ed.), Applied and Numerical Harmonic
Analysis Series, Springer, 2020.

H.G. FEICHTINGER, K. GROCHENIG: Gabor Frames and Time-Frequency Analysis of Dis-
tributions, J. Functional Anal. 146 (1997), 464-495.

H.G. FEICHTINGER, G. ZIMMERMANN: A Banach space of test functions for Gabor analy-
sis in H.G. Feichtinger and T. Strohmer, editors, Gabor analysis and Algorithms - Theory
and Applications, Birkdhduser Boston, 1998.

I.M. GEL'FAND, G.E. SHILOV, E. SALETAN: Generalized Functions, Vol. ITI, Academic
Press, New York, 1967.

I. M. GEL’FAND, N. YA. VILENKIN: Generalized Functions, Vol. IV, Academic Press, New
York, 1964.

G.G. GouLD: The Spectral Representation of Normal Operators on a Rigged Hilbert Space,
J. London Math. Soc. 43 (1968), 745-754.

J. HorvATH: Topological Vector Spaces and Distributions, Addison-Wesley, 1966.
G. KAISER: A friendly guide to wavelets, Birkhduser, Boston, 1994.

M. REED, B. SIMON: Methods of modern mathematical physics, Vol.I, II, Academic Press,
New York, 1980.

A. Rammi, A. NAJATI, N. DEHGHAN: Continuous frame in Hilbert spaces, Methods of
Funct. Anal. and Topology 12 (2006), no. 2, 170-182

C. TRAPANI, S. TRIOLO, F. TSCHINKE: Distribution Frames and Bases, J. Fourier Anal.
and Appl. 25 (2019), 2109-2140.

F. TSCHINKE: Riesz-Fischer maps semiframes and frames in rigged Hilbert spaces, in
Operathor Theory, Functional Analysis and Applications, 625-645; Operator Theory: Ad-
vances an Applications 282; Bastos, M.A., Castro, L., Karlovich,A.Y., Eds.;Birkduser:
Cham, Switzerland, 2021.

R. M. YOUNG: An Introduction to Non-Harmonic Fourier Series, Revised Edition, 2nd
Edition, Academic Press, 2001.





