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Department of Mathematics, Gazi University, Faculty of Science, Ankara, Turkey
basakoznur@gazi.edu.tr

Yelda Aygar
Department of Mathematics, Ankara University, Faculty of Science, Ankara, Turkey
yaygar@ankara.edu.tr

Received: 12.12.2022; accepted: 11.1.2023.

Abstract. In this article, we present some spectral properties of a difference equation with
interface (discontinuity) conditions and hyperbolic parameter on the whole axis. The purpose
of this paper is to introduce the solutions and to investigate the qualitative properties of this
equation such as finiteness of eigenvalues and spectral singularities. The analysis based on find-
ing resolvent operator, Green function, continuous spectrum and some asymptotic equations.

Keywords: Difference equations; Interface condition; Eigenvalues; Hyperbolic eigenparame-
ter; Spectral analysis; Spectral singularities

MSC 2022 classification: primary 34B37, secondary 34L05, 47A75, 58C40

1 Introduction

Difference equations with interface conditions involve discontinuties at one
or more than one point in an interval and are a tool for mathematically ex-
plaining processes that are subject to sudden changes. These sudden changes
depend on external factors and are negligibly short compared to the whole time.
The conditions at discontinuity points are called interface conditions, impulsive
conditions, jump conditions or transmission conditions in literature. Interface
actions have important consequences for mathematical theory. Firstly, Myshkis
and Mil’man studied that kinds of problems for systems of differential equations
with interface conditions [22]. Then, these equations were examined in detail by
Samoilenko and Perestyuk [26], Perestyuk et al [25] and Lakshmikantham et
al [19]. Recently, such problems arise in many areas of mathematical modeling
including population dynamics, infectious diseases, control problems, economic
problems, biotechnology, industrial robotics, ecology, optimal control, industrial
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robotics, medicine, control theory and so forth [15, 17, 18, 20, 24]. Although the
theory of difference equations with interface conditions has many applications,
there are insufficient studies examining the spectral analysis of these problems.
One can find many books and studies consisting the examination of the spectral
analysis of Sturm-Liouville, Dirac, Klein Gordon and other types of operators
and equations in the literature [1, 2, 5, 6, 7, 8, 4], there are few studies about
interface cases of such equations [3, 12, 23, 27]. Differently from these works,
we present spectral properties of a difference equation with interface conditions
and hyperbolic parameter on the whole axis in this study. The purpose of this
paper is to introduce the solutions and to investigate the qualitative properties
of this equation such as finiteness of eigenvalues and spectral singularities. The
analysis bases on finding resolvent operator, Green function, continuous spec-
trum and some asymptotic equations. Let us consider the following second-order
difference equation

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ Z \ {−1, 0, 1} (1.1)

with the interface conditions {
y1 = ζ1y−1

y2 = ζ2y−2,
(1.2)

here λ = 2 cosh z is a spectral parameter, ζ1 and ζ2 are complex numbers such
that ζ1ζ2 ̸= 0, {an}n∈Z and {bn}n∈Z are complex sequences satisfying the fol-
lowing condition ∑

n∈Z
| n | (|1− an|+ |bn|) <∞. (1.3)

Throughout the remainder of the paper, we assume that an ̸= 0 for all n ∈ Z.
In this work, we investigate the spectral analysis of (1.1)-(1.2). Differently from
[10, 11], this paper includes hyperbolic parameter. Hence, the analytical region
of the Jost solution changes and the regions of the problem are renewed. This
gives a different perspective to researchers working on these topics.
This study is organized as follows:

• Firstly, we give some basic definitions and Jost solutions of difference
equation without the interface conditions given by (1.2) for use in other
chapters.

• Later, we obtain the solutions of (1.1)-(1.2).

• Next, we find resolvent operator and Green function of the problem (1.1)-
(1.2). Furthermore, by using the poles of the resolvent operator’s kernel,
we define the sets of eigenvalues and spectral singularities of this problem.
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• At last, we present a condition that guarantees finiteness of the multiplic-
ities of the eigenvalues and spectral singularities of (1.1)-(1.2).

2 Statement of the problem

In this part, we give some auxiliary definition and lemmas. We introduce
the solutions of (1.1)-(1.2) with the help of the solutions of (1.1) and we give
an important asymptotic equation which is necessary to get the main results.
Related the (1.1)-(1.2), let us introduce a difference operator L in the Hilbert
space ℓ2 (Z) such that

ℓ2 (Z) :=

{
y = {yn}n∈Z , yn ∈ C, ||y||2 :=

∑
n∈Z

|yn|2 <∞

}
,

created by the following difference expression

l(y) := an−1yn−1 + bnyn + anyn+1, n ∈ Z \ {−1, 0, 1}

and the interface conditions (1.2). Equation (1.1) has the bounded solutions
f+n (z) and f−n (z) which are represented by

f+n (z) = ρ+n e
nz

(
1 +

∞∑
m=1

A+
n,me

mz

)
, n ∈ Z (2.4)

and

f−n (z) = ρ−n e
−nz

(
1 +

m=−1∑
−∞

A−
n,me

−mz

)
, n ∈ Z, (2.5)

where

ρ+n =

{ ∞∏
k=n

ak

}−1

, ρ−n =

{
k=n−1∏
−∞

ak

}−1

for z ∈ C− := {z ∈ C : Re z ≤ 0} [16]. Furthermore, A
±
n,m are expressed in

terms of the sequences {an}n∈Z, {bn}n∈Z and satisfy

∣∣A+
n,m

∣∣ ≤ v1

∞∑
k=n+

[∣∣∣∣m2
∣∣∣∣]
(|1− ak|+ |bk|) , (2.6)

∣∣A−
n,m

∣∣ ≤ v2

k=n+

[∣∣∣∣m2
∣∣∣∣]+1∑

−∞
(|1− ak|+ |bk|) , (2.7)
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here
[∣∣∣m

2

∣∣∣] denotes the integer part of m
2

and v1, v2 are positive constants. The

solutions f+(z) := {f+n (z)}n∈Z and f−(z) := {f−n (z)}n∈Z which are called the
Jost solutions of (1.1) are analytic with respect to z in C− := {z ∈ C : Re z < 0},
continuous in C− and provide the following asymptotic equations

f±n (z) = e±nz [1 + o(1)] , z ∈ C−, n→ ±∞, (2.8)

f±n (z) = p±n e
±nz [1 + o(1)] , n ∈ Z, z = x+ iy, x→ −∞. (2.9)

Definition 1. The Wronskian of two solutions y = {yn}n∈Z and
u = {un}n∈Z of (1.1) is defined by

W [y, u] := an [yn(z)un+1(z)− yn+1(z)un(z)] .

It follows from the Definition 1 that

W
[
f±n (z), f±n (−z)

]
= ∓2 sinh z, z ∈ C∗ := C \ {z : z = kπi, k ∈ Z} .

Now, we’ll consider the equation (1.1) with the interface conditions (1.2). Firstly,
we define two solutions of (1.1)-(1.2) as follows

E+
n (z) =

{
β1(z)f

−
n (z) + β2(z)f

−
n (−z); n ∈ Z−

f+n (z); n ∈ Z+
(2.10)

and

E−
n (z) =

{
f−n (z); n ∈ Z−

β3(z)f
+
n (z) + β4(z)f

+
n (−z); n ∈ Z+

(2.11)

for λ = 2 cosh z, z ∈ C∗, where βi are arbitrary coefficients for i = 1, 2, 3, 4
depending on z. By the help of interface conditions (1.2) and Definition 1, we
find uniquely

β1(z) = − a−2

2 sinh zζ1ζ2

[
ζ2f

+
1 (z)f−−2(−z)− ζ1f

+
2 (z)f−−1(−z)

]
(2.12)

β2(z) =
a−2

2 sinh zζ1ζ2

[
ζ2f

+
1 (z)f−−2(z)− ζ1f

+
2 (z)f−−1(z)

]
(2.13)

β3(z) = − a1
2 sinh z

[
ζ1f

−
−1(z)f

+
2 (−z)− ζ2f

−
−2(z)f

+
1 (−z)

]
(2.14)

β4(z) =
a1

2 sinh z

[
ζ1f

−
−1(z)f

+
2 (z)− ζ2f

−
−2(z)f

+
1 (z)

]
(2.15)

for all z ∈ C∗.
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Corollary 1. There is a following relation between the coefficients β2(z)
and β4(z)

β4(z) = − a1
a−2

ζ1ζ2β2(z), z ∈ C∗,

where ζ1, ζ2 are complex numbers and a1, a−2 are also complex numbers obtain-
ing from the terms of an.

Lemma 1. For all z ∈ C∗, the Wronskian of the solutions E+
n (z) and E

−
n (z)

is given by

W [E+
n (z), E

−
n (z)] =


−2 sinh zβ2(z); n ∈ Z−

2 sinh z
a1
a−2

ζ1ζ2β2(z); n ∈ Z+.

Theorem 1. Assume (1.3). Then the function β2 has the following asymp-
totic equation for n ∈ Z

β2(z) = a−2e
4z

(
p−−1p

+
2

ζ2
−
p+1 p

−
−2

ζ1

)
[1 + o(1)] , Re z → −∞.

Proof. By using (2.9), if we write equation (2.13) in limit form, we find

β2(z) = −e
4za−2

ζ1ζ2

(
ζ2p

+
1 p

−
−2 − ζ1p

+
2 p

−
−1

)
[1 + o(1)]

for Re z → −∞, where

ρ+1 =

{ ∞∏
k=1

ak

}−1

, ρ−−1 =

{
k=−2∏
−∞

ak

}−1

,

ρ−−2 =

{
k=−3∏
−∞

ak

}−1

, ρ+2 =

{ ∞∏
k=2

ak

}−1

.

It completes the proof of Theorem 1. QED

3 Resolvent operator and continuous spectrum of L

In this section, we give resolvent operator and continuous spectrum of L.
Now, we will define two semi-strips

T0 :=

{
z ∈ C : Re z < 0,−π

2
≤ Im z ≤ 3π

2

}
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and

T := T0 ∪
{
z ∈ C : Re z = 0, Im z ∈

[
−π
2
,
3π

2

]}
.

Throughout this work, we will show the set

{
z ∈ C : Re z = 0, Im z ∈

[
−π
2
,
3π

2

]}
by

[
−π
2
i,
3π

2
i

]
shortly. To find the resolvent operator of L, we consider other

solutions of (1.1)-(1.2) as

U+
n (z) =

{
β̂1(z)f

−
n (z) + β2(z)f̂

−
n (z); n ∈ Z−

f+n (z); n ∈ Z+
(3.16)

and

V −
n (z) =

{
f−n (z); n ∈ Z−

β̂3(z)f
+
n (z) + β4(z)f̂

+
n (z); n ∈ Z+

(3.17)

for λ = 2 cosh z and z ∈ T \{0, πi}, where f̂±(z) :=
{
f̂±n (z)

}
n∈Z

are unbounded

solutions of equation (1.1) fulfilling the asymptotic equations

f̂±n (z) = e∓nz [1 + o(1)] , z ∈ C−, n→ ±∞.

To get the coefficients β̂1(z) and β̂3(z), we will use the same way as finding
β1(z) and β3(z). We obtain

β̂1(z) = − a−2

2 sinh zζ1ζ2

[
ζ2f

+
1 (z)f̂−−2(z)− ζ1f

+
2 (z)f̂−−1(z)

]
β̂3(z) = − a1

2 sinh z

[
ζ1f

−
−1(z)f̂

+
2 (z)− ζ2f

−
−2(z)f̂

+
1 (z)

]
,

respectively. Similar to Lemma 1, for all z ∈ T \ {0, πi}, we conclude that

W [U+
n (z), V −

n (z)] =


−2 sinh zβ2(z); n ∈ Z−

2 sinh z
a1
a−2

ζ1ζ2β2(z); n ∈ Z+.

Theorem 2. For all z ∈ T \ {0, πi}, β2(z) ̸= 0 and k, n ̸= 0, the resolvent
operator of L is defined by

(Rλ (L) g)n :=
∑
k∈Z

Gn,k(z)g(k), g := {gk} ∈ ℓ2(Z),
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where

Gn,k(z) =


−
U+
n (z)V −

k (z)

W [U+, V −](z)
; k = n− 1, n− 2, ...

−
V −
n (z)U+

k (z)

W [U+, V −](z)
; k = n, n+ 1, ...

(3.18)

is the Green function of (1.1)-(1.2).

Proof. It is necessary to solve the equation in order to find resolvent operator
and Green function of (1.1)-(1.2)

an−1yn−1 + bnyn + anyn+1 − λyn = gn, n ∈ Z \ {−1, 0, 1} , (3.19)

where gn ∈ ℓ2(Z). Because of the fact that U+
n (z) and V −

n (z) are the fundamental
solutions of (1.1)-(1.2), we write the general solution of (3.19) as

yn(z) = hnU
+
n (z) + tnV

−
n (z), (3.20)

where hn, tn are coefficients and different from zero. By the help of variation of
parameters method, hn and tn are obtained as follows

hn − hn−1 = − gnV
−
n (z)

W [U+, V −](z)
, k, n ̸= 0 (3.21)

tn − tn−1 =
gnU

+
n (z)

W [U+, V −](z)
, k, n ̸= 0, (3.22)

respectively. In accordance with (3.20)-(3.22), we easily find Green function and
resolvent operator of L given in Theorem (2). QED

Theorem 3. Under the condition (1.3), the continuous spectrum of the
operator L is [−2, 2], i.e., σc (L) = [−2, 2] .

Proof. Let L1 and L2 denote difference operators in ℓ2 (Z) by the following
difference expressions

(l0y)n = yn−1 + yn+1, n ∈ Z \ {−1, 1} ,

(l1y)n = (an−1 − 1) yn−1 + bnyn + (an − 1) yn+1, n ∈ Z \ {−1, 0, 1} ,

respectively. It is obvious that L = L0 + L1 and L1 is a compact operator in
ℓ2 (Z) under the condition (1.3) [21]. We also say that L0 is a selfadjoint operator
with σc (L0) = [−2, 2] . From the Weyl theorem of a compact perturbation [14],
it is easy to write σc (L0) = σc (L) = [−2, 2] . QED
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4 Main results

In this section, we will investigate the finiteness of eigenvalues, spectral
singularities and their multiplicities under some special cases. Theorem 2 and
equation (3.18) point us that in order to examine the quantitative properties
of impulsive boundary value problem (1.1)-(1.2), it is necessary to obtain the
quantitative properties of zeros of the function β2. So the sets of eigenvalues
and spectral singularities of the operator L are defined by

σd (L) = {λ = 2 cosh z : z ∈ T0, β2(z) = 0}

and

σss (L) =

{
λ = 2 cosh z : z = ix, x ∈

[
−π
2
,
3π

2

]
, β2(z) = 0

}
\ {0, πi} .

LetD1 andD2 denote the set of all zeros of the function β2 in T0 and

[
−π
2
i,
3π

2
i

]
,

respectively. It is easily seen that

D1 := {z : z ∈ T0, β2(z) = 0} , (4.23)

D2 :=

{
z : z ∈

[
−π
2
i,
3π

2
i

]
, β2(z) = 0

}
. (4.24)

Lemma 2. Assume the condition (1.3). Then
i) The set D1 is bounded, has at most countable many elements and its limit

points can lie only in

[
−π
2
i,
3π

2
i

]
.

ii) The set D2 is compact and its linear Lebesgue measure is zero.

Proof. i) Since ζ1ζ2 ̸= 0, by using Theorem 1, we can say that the setsD1 andD2

are bounded. In addition, it follows from (2.13) that the function β2 is analytic

in T0. So the limit points of zeros of β2 in T0 can only lie in

[
−π
2
i,
3π

2
i

]
.

ii) Because of the fact that we have shown that the set D2 is bounded, in
order to prove the compactness of D2, we need to show its closeness. Using the
uniqueness theorem of analytic functions and Privalov Theorem [13], we get
that D2 is a closed set and its linear Lebesgue measure is zero. QED

From (4.23) and (4.24), the sets of eigenvalues and spectral singularities of
L can be rewritten as

σd (L) := {λ : λ = 2 cosh z, z ∈ D1} (4.25)
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and

σss (L) := {λ : λ = 2 cosh z, z ∈ D2} \ {0, πi} , (4.26)

respectively. Now, we give the following theorem as a result of (4.25), (4.26)
and Lemma 2.

Theorem 4. Assume (1.3). Then we have the following results.
i) The set of eigenvalues of L is bounded and countable, its limit points can lie
only in [−2, 2] .
ii) The set of spectral singularities of L is compact and its linear Lebesgue mea-
sure is zero.

Definition 2. The multiplicity of the corresponding eigenvalue or spectral
singularity of the operator L is called the multiplicity of a zero of the function
β2 in T.

We give the following definition and lemma to get the next results.

Definition 3. The convolution of the sequences {cn} and {dn} is defined
by

cn ∗ dn :=
∑
n∈Z

cndn−m, (4.27)

here “∗” denotes the convolution operation.

Lemma 3. The following equation is satisfied for all λ ∈ C∑
n∈Z

(cn ∗ dn) eλn =
∑
n∈Z

cne
λn
∑
n∈Z

dne
λn. (4.28)

Now, we suppose that the complex sequences {an}n∈Z and {bn}n∈Z satisfy
the following inequality

sup
n∈Z

{
eϵ|n|(|1− an|+ |bn|)

}
<∞, ε > 0. (4.29)

Theorem 5. If the condition (4.29) holds, then the operator L has a finite
number of eigenvalues and spectral singularities, and each of them is of finite
multiplicity.

Proof. By the help of (2.6), (2.7) and (4.29), it can be easily shown that

∣∣A+
n,m

∣∣ ≤ v̂1e
−
ε

2

∣∣∣∣m2
∣∣∣∣
, n = 1, 2; m = 1, 2, ..., (4.30)

∣∣A−
n,m

∣∣ ≤ v̂2e
−
ε

2

∣∣∣∣m2
∣∣∣∣
, n = −1,−2; m = −1,−2, ..., (4.31)
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where v̂1 and v̂2 are arbitrary constants. In addition, by the help of (4.27)-(4.31),
we calculate

∣∣∣A−
n,−m ∗A+

2,m

∣∣∣ , ∣∣∣A−
n,−m ∗A+

1,m

∣∣∣ ≤ v̂3e
−
ε

2

∣∣∣∣m2
∣∣∣∣

n = −1,−2; m ∈ N. (4.32)

From (2.4), (2.5) and (2.13), the function β2 can be rewritten as follows

β2(z) =
a−2

2ζ1ζ2 sinh z

{
ζ2p

+
1 p

−
−1e

3z

(
1 +

∞∑
m=1

A+
1,me

mz

)(
1 +

m=−1∑
−∞

A−
−2,me

−mz

)

−ζ1p+2 p
−
−1e

3z

(
1 +

∞∑
m=1

A+
2,me

mz

)(
1 +

m=−1∑
−∞

A−
−1,me

−mz

)}
.

By means of (4.30)-(4.32), the last equation shows that the function β2 has

analytical continuation for
ε

4
> Rez. So, the limit points of all zeros of the

function β2 in T0 can not lie in

[
−π
2
i,
3π

2
i

]
. Thus, we say that the bounded

sets σd (L) and σss (L) have no limit points using Theorem 4, in other words,

these sets have a finite number of elements. Analyticity of β2 in
ε

4
> Rez proves

that all zeros of β2 in T have a finite multiplicity. Consequently, we obtain the
finiteness of eigenvalues and spectral singularities of (1.1)-(1.2). QED

Let us assume that the following condition, which is weaker than (4.29), is
satisfied

sup
n∈Z

{
eε|n|

γ

(|1− an|+ |bn|)
}
<∞ (4.33)

for ε > 0 and
1

2
≤ γ < 1.

Under the condition (4.33), the function β2 is still analytic in C− and has infinite
derivatives by (2.6), (2.7) and (4.33). To examine the finiteness of eigenvalues
and spectral singularities under condition (4.33), we need some notations.
We denote the sets of all limit points of D1 and D2 by D3 and D4, respectively
and the set of all zeros of β2 with infinite multiplicity in T by D5.

Lemma 4. Under the condition (1.3), we have
i) D3 ⊂ D2, D4 ⊂ D2, D5 ⊂ D2, D3 ⊂ D5, D4 ⊂ D5,
ii) µ (D3) = µ (D4) = µ (D5) = 0.

Proof. Using the boundary uniqueness theorems of analytic functions [13], the
proof of Lemma 4 is easily completed. QED
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For the sake of simplicity, let us consider the following function

H(z) := β2(z)e
−3z2 sinh z. (4.34)

It is evident that the function H is analytic in C− and infinitely differentiable
on imaginary axis.
In order to give our main result, we need two lemmas.

Lemma 5. Assume (4.33). Then the following inequality holds∣∣∣H(k)(z)
∣∣∣ ≤ ηk, z ∈ T, k = 0, 1, ...,

where

ηk ≤ BD̂dkk!k
k

(
1− γ

γ

)
,

B, D̂ and d are positive constants depending on ϵ and γ.

Proof. From (2.13), we can regulate H(z) as∣∣∣H(k) (z)
∣∣∣ ≤

K̃

{
L̃

(
m=−1∑
−∞

∣∣∣A−
−2,m

∣∣∣ |m|k +
∞∑
m=1

∣∣∣A+
1,m

∣∣∣ |m|k +
∞∑
m=1

∣∣∣A+
1,m ∗A−

−2,−m

∣∣∣ |m|k
)

+M̃

( ∞∑
m=1

∣∣∣A+
2,m

∣∣∣ |m|k +
m=−1∑
−∞

∣∣∣A−
−1,m

∣∣∣ |m|k +
∞∑
m=1

∣∣∣A+
2,m ∗A−

−1,−m

∣∣∣ |m|k
)}

,

(4.35)

where K̃ =
∣∣∣ a−2

ζ1ζ2

∣∣∣ , L̃ =
∣∣ζ2p+1 p−−2

∣∣ and M̃ =
∣∣ζ1p+2 p−−1

∣∣ .
By means of (2.6), (2.7) and (4.33), the following inequalities can be easily found

∣∣A+
n,m

∣∣ ≤ v̂4e
−
ε

2

∣∣∣∣m2
∣∣∣∣γ
, n = 1, 2; m = 1, 2, ..., (4.36)

∣∣A−
n,m

∣∣ ≤ v̂5e
−
ε

2

∣∣∣∣m2
∣∣∣∣γ
, n = −1,−2; m = −1−, 2, ..., (4.37)

here v̂4 and v̂5 are arbitrary constants. Using Lemma 3, it is evident that

∣∣∣A−
n,−m ∗A+

2,m

∣∣∣ , ∣∣∣A−
n,−m ∗A+

1,m

∣∣∣ ≤ v̂6e
−
ε

2

∣∣∣∣m2
∣∣∣∣γ
, n = −1,−2; m ∈ N. (4.38)
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If we use the inequalities (4.36)-(4.38) in (4.35), we find the following inequality∣∣∣H(k)(z)
∣∣∣ ≤ BV̂

∞∑
m=1

mke
−
ε

2

∣∣∣∣m2
∣∣∣∣γ
, (4.39)

where

B :=

∣∣∣∣ a−2

ζ1ζ2

∣∣∣∣ {∣∣ζ2p+1 p−−2

∣∣+ ∣∣ζ1p+2 p−−1

∣∣} .
In addition, we define

Dk := V̂

∞∑
m=1

mke
−
ε

2

(m
2

)γ

.

Using the last equation, we get the following inequality

Dk ≤ V̂

(
4

ε

)k + 1

γ 1

γ

∫ ∞

0
y

k + 1

γ
−1

e−ydy.

Then, using the gamma function, (1 + k)

1

γ
−1

< e

k

γ and kk < k!ek, we find

Dk ≤ D̂dkk!k
k

(
1− γ

γ

)
, k ∈ N,

where D̂ and d are positive constants depending on ε and γ. The proof is
completed. QED

Lemma 6. Assume that the 2π-periodic function φ is analytic in C−, all
of its derivatives are continuous in C− and

sup
z∈T

∣∣∣φ(k)(z)
∣∣∣ ≤ ηk, k ∈ N ∪ {0} .

The set A ⊂
[
−π
2
i,
3π

2
i

]
with linear Lebesgue measure zero is the set of all zeros

of the function φ with infinity multiplicity in T. If∫ w

0
lnt(s)dµ(As) = −∞,

where

t(s) = inf
k

ηks
k

k!
, k ∈ N ∪ {0}

and µ(As) is the linear Lebesgue measure of the s-neighborhood of A and w ∈
(0, 2π) is an arbitrary constant, then φ ≡ 0 [9].
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Theorem 6. Assume (4.33). Then D5 = ∅.

Proof. According to Lemma 6, we write∫ w

0
lnt(s)dµ(D5, s) > −∞, (4.40)

where µ(D5, s) is the Lebesgue measure of the s-neighborhood of D5, ηk is

defined by Lemma 5 and t(s) = infk
ηks

k

k!
. We have by substituting ηk into the

definition of

t(s) = BD̂exp

{
−1− γ

γ
e−1(ds)

− γ
1−γ

}
. (4.41)

So, we have by using (4.40) and (4.41)∫ w

0
s
− γ

1−γ dµ(D5, s) ≤ −
∫ w

0
lnt(s)dµ(D5, s) <∞.

The last inequality holds for arbitrary s if and only if µ(D5, s) = ∅, i.e., D5 = ∅.
It completes the proof. QED
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