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1 Introduction

In a rectangular domain D = {(ξ, t) : 0 < ξ < 1, −α < t < β}, we consider
the following parabolic-hyperbolic type equation

LU ≡
{
Ut − Uξξ = 0, t > 0
Utt − Uξξ = 0, t < 0

where α, β are positive real numbers. In the domain D we find the solution
U = U(ξ, t) that satisfies the conditions

U(ξ, t) ∈ Ω = C(D) ∩ C1(D) ∩ C1
ξ (D) ∩ C2(D−) ∩ C2

ξ (D+),

LU(ξ, t) = 0, (ξ, t) ∈ D+ ∪D−, (1.1)

U(ξ,−α) = φ(ξ), 0 ≤ ξ ≤ 1, (1.2)∫ 1

0
U(ξ, t)dξ = 0, −α ≤ t ≤ β, (1.3)∫ 1

0
ξU(ξ, t)dξ = 0, −α ≤ t ≤ β, (1.4)
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where D− = D ∩ {t < 0}, D+ = D ∩ {t > 0} and φ(ξ) is a given sufficiently
smooth function such that∫ 1

0
φ(ξ)dξ = 0,

∫ 1

0
ξφ(ξ)dξ = 0.

The application of mixed type partial differential equations was first men-
tioned by Chaplygin [1]. It is well-known that the mixed type equations have
many interesting applications in gas dynamics, in electromagnetic and fluid me-
chanics and others fields (see, e.g. [2]-[10]). The integral boundary conditions
show that the physical process affects not only the point but also the entire ob-
ject. This type of boundary conditions arise in plasma physics, in heat transfer
[11], [12] and other fields. The integral boundary conditions of type (1.3), (1.4)
may occur in econometric problems. Theory of boundary problems for various
mixed type equations is one of the continuously and intensively developing the-
ories of modern mathematics. These problems are generally solved using the
maximum principle or integral equations for mixed type boundary problems.

In this study, we prove a theorem for the unique solvability of problem
(1.1)-(1.4). The solution of this problem is constructed as the sum of a series of
eigenfunctions corresponding to the spectral problems.

Firstly, in equation (1.1) fixing the variable t, then integrating with respect
to ξ in the interval [ϵ, 1 − ϵ] such that ϵ > 0 is a sufficiently small number, we
get ∫ 1−ε

ε

∂U

∂t
dξ −

∫ 1−ε

ε

∂2U

∂ξ2
dξ = 0, t > 0,∫ 1−ε

ε

∂2U

∂t2
dξ −

∫ 1−ε

ε

∂2U

∂ξ2
dξ = 0, t < 0.

Here, when ϵ→ 0+ and keeping in mind (1.3), we have the pointwise boundary
condition:

Uξ(0, t)− Uξ(1, t) = 0 (1.5)

that is the integral condition (1.3) is reduced to the nonlocal condition (1.5).
In a similar way, from (1.4) we have the nonlocal condition

Uξ(1, t)− U(1, t) + U(0, t) = 0. (1.6)

Therefore, in this paper we investigate the solution of equation (1.1) satis-
fying the initial condition (1.2) and boundary conditions (1.5), (1.6) in domain
Ω.

Let’s apply the Fourier method to the boundary value problem (1.1), (1.2),
(1.5), (1.6) and look for the solution in the form U(ξ, t) = y(ξ)ω(t) ̸= 0. Substi-
tuting the expression in equation (1.1) under conditions (1.5), (1.6), we obtain

y′′(ξ) + λy(ξ) = 0, (1.7)
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y′(0)− y′(1) = 0, (1.8)

y′(1) + y(0)− y(1) = 0, (1.9)

and differential equations for ω(t),

ω′(t) + λω(t) = 0, 0 < t < α, (1.10)

ω′′(t) + λω(t) = 0 − α < t < 0. (1.11)

Here λ is a complex parameter. As known the boundary conditions (1.8), (1.9)
are regular in the sense of Birkhoff and also strongly regular (see [13]).

In this case, all eigenvalues are simple except for a finite number of eigenval-
ues λn and the system of root functions {yn(ξ)} forms a Riesz basis in L2(0, 1)
(see [13]).

Lemma 1. The boundary value problem (1.7)-(1.9) is self-adjoint.

Proof of the lemma follows from the general theory of linear differential
operators (see [13]).

We note that the characteristic equation of boundary value problem (1.7)-
(1.9) is

∆(µ) = −4i(2 cosµ+ µ sinµ− 2)

[
1 +O

(
1

µ

)]
= 0,

where λ = µ2. From this it follows that the eigenvalues of the boundary value
problem (1.7)-(1.9) form two series λn1, λn2:

λn1 = (2nπ)2 , n = 0, 1, 2, ...

λn2 = [(2n+ 1)π]2
(
1 +O

(
1

n

))
, n→ ∞. (see [13])

The corresponding eigenvalues have the following form

yn1(ξ) = cos 2nπξ, n = 0, 1, 2, ...,

yn2(ξ) = cos(2n+ 1)πξ +O

(
1

n

)
n→ ∞.

2 Uniqueness of the solution

Substituting λk = µ2k (Reµk ≥ 0) in equations (1.10),(1.11) we obtain

ωk(t) =

{
ake

−µ2kt, t > 0,
bk sinµkt+ ck cosµkt, t < 0,

(2.12)
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where λk are complex parameters for k ≥ 0 and ak, bk, ck are arbitrary constants.

Let’s take the special solution of the problem in the Ω region in the form
Uk(ξ, t) = yk(ξ)ωk(t) and choose the constants ak, bk, ck so that the matching
conditions

ωk(0+) = ωk(0−), ω′
k(0+) = ω′

k(0−) (2.13)

are satisfied. The function (2.12) satisfies conditions (2.13) if and only if ak = ck,
bk = −akµk. In view of the last equalities the functions (2.12) take the form

ωk(t) =

{
cke

−µ2kt, t > 0,
ck cosµkt− ckµk sinµkt, t < 0.

(2.14)

Let us consider the functions

υk(t) =

∫ 1

0
U(ξ, t)yk(ξ)dξ, k = 0, 1, 2, ... (2.15)

where U(ξ, t) ∈ Ω. According to the conditions (1.8), (1.9) we find the following
equations

υ′k(t) + µ2kυk(t) = 0, t > 0, (2.16)

υ′′k(t) + µ2kυk(t) = 0, t < 0. (2.17)

Therefore, the equations (2.16), (2.17) coincide with the equations (1.10), (1.11))
for λ = µ2k and ωk(t) ≡ υk(t) for −α < t < β i.e. υk(t) defined by formula (2.14):

υk(t) =

{
cke

−µ2kt, t > 0,
ck cosµkt− ckµk sinµkt, t < 0.

(2.18)

Now, to find the constants ck, we use the initial condition (1.2):

υk(−α) =
∫ 1

0
U(ξ,−α)yk(ξ)dξ =

∫ 1

0
φ(ξ)yk(ξ)dξ = φk. (2.19)

Then, from (2.18) and (2.19) we obtain

ck[cosµkα+ µk sinµkα] = φk. (2.20)

From relation (2.20), when

d(k) = cosµkα+ µk sinµkα ̸= 0, (2.21)

we have

ck =
φk

cosµkα+ µk sinµkα
=

φk
d(k)

. (2.22)
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Substituting (2.22) into the (2.18), the final form of the function

υk(t) =

{
φk
d(k)e

−µ2kt, t > 0,
cosµkt−µk sinµkt

d(k) φk, t < 0,
(2.23)

is obtained. Suppose that φ(ξ) ≡ 0, then φk = 0 and it follows from formulas
(2.15) and (2.18) that∫ 1

0
U(ξ, t)yk(ξ)dξ = 0, (k = 0, 1, 2, ...).

Since the system {yk(ξ)} forms a basis in L2 (0, 1), it follows that it is also
a complete system i.e. U(ξ, t) ≡ 0 almost everywhere for any t ∈ [−α, β]. Since
U(ξ, t) is continuous in the closed D region, it follows that U(ξ, t) ≡ 0 in D.

Assume that for some α and k = p numbers, condition (2.21) doesn’t hold:
d(p) = 0. The homogeneous problem (1.1)-(1.4) (where φ(ξ) ≡ 0) has the non-
trivial solution

Up(ξ, t) =

{
cpe

−µ2ptyp(ξ), t > 0,
cp(cosµpt− µp sinµpt)yp(ξ), t < 0,

(2.24)

where cp ̸= 0 is an arbitrary constant.
Thus, the following uniqueness theorem is proved.

Theorem 1. If the solution of the boundary value problem (1.1)-(1.4) exists
this solution is unique if and only if the condition (2.21) holds.

3 Existence of the solution

We assume that d(k) ̸= 0 and that there exists c0 such that |d(k)| ≥ c0 > 0
holds. The solution of (1.1)-(1.4) can be written as

U(ξ, t) =
∞∑
k=1

υk(t)yk(ξ). (3.25)

It is obvious that Uk(ξ, t) = υk(t)yk(ξ) fulfils the equation (1.1). To show that
the series (3.25) is the solution of the boundary value problem (1.1)-(1.4), it is
necessary to prove that this series converges uniformly in the region D and that
it is differentiable term by term once with respect to ξ when t < 0 and twice
with respect to ξ and t when t > 0.

Lemma 2. ∀k ∈ N+ the following inequalities are true:

|υk(t)| ≤ A1k |φk| ,
∣∣υ′k(t)∣∣ ≤ A2k

2 |φk| , (3.26)
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for t ∈ [−α, β] and ∣∣υ′′k(t)∣∣ ≤ A3k
3 |φk| , (3.27)

for t ∈ [−α, 0].

Proof. From (2.24) for t ∈ [0, β]

|υk(t)| =

∣∣∣∣∣e−µ
2
ktφk

d(k)

∣∣∣∣∣ ≤ 1

c0
|φk| ≤ Ã1k |φk| ,

∣∣υ′k(t)∣∣ =
∣∣∣∣∣−µ2ke−µ

2
ktφk

d(k)

∣∣∣∣∣ ≤ µ2k
c0

|φk| ≤ Ã2k
2 |φk|

is found. Similarly, for t ∈ [−α, 0]

|υk(t)| =
∣∣∣∣cosµkt− µk sinµkt

d(k)
φk

∣∣∣∣ ≤
√

1 + µ2k

c0
|φk| ≤ Ã3k |φk| ,

∣∣υ′k(t)∣∣ = ∣∣∣∣sinµkt+ µk cosµkt

d(k)
µkφk

∣∣∣∣ ≤
√
1 + µ2k

c0
µk |φk| ≤ Ã4k

2 |φk| ,

∣∣υ′′k(t)∣∣ = ∣∣∣∣cosµkt− µk sinµkt

d(k)
µ2kφk

∣∣∣∣ ≤ µ2k|υk(t)| ≤ Ã3k
3 |φk| ,

is obtained. Here, Ãj (j = 1, 2, 3, 4) are positive constants. Then the equalities
(3.26) and (3.27) are proved. QED

Using inequalities (3.26), (3.27), the series (3.25), first order derivative of
the series (3.25) in D and second order derivative of the series (3.25) in D+ and
D− are majorized by the numerical series:

A4

∞∑
k=1

k3 |φk| . (3.28)

Lemma 3. If φ(ξ) ∈ C4 [0, 1] and φ(1+i)(1)−φ(i)(1)+φ(i)(0) = 0 φ(1+i)(0)−
φ(1+i)(1) = 0, i = 0, 2 then,

φk =
φ
(4)
k

µ4k
, k ∈ Z+, (3.29)

where

φ
(4)
k =

∫ 1

0
φ(4)(ξ)yk(ξ)dξ,

∞∑
k=1

∣∣∣φ(4)
k

∣∣∣2 ≤ ∥∥∥φ(4)
∥∥∥
L2(0,1)

. (3.30)
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Proof. Taking the integral (2.15) into account, we have

υk(−α) =
∫ 1

0
U(ξ,−α)yk(ξ)dξ =

∫ 1

0
φ(ξ)yk(ξ)dξ = φk.

According to the (1.7), we get

φk =

∫ 1

0
φ(ξ)yk(ξ)dξ = − 1

µ2k

∫ 1

0
φ(ξ)y′′k(ξ)dξ.

By integrating twice successively and taking into account the conditions of the
lemma, we find

φk = − 1

µ2k

∫ 1

0
φ′′(ξ)yk(ξ)dξ = − 1

µ2k
φ
(2)
k . (3.31)

As a result of the following similar process we obtain

φ
(4)
k = − 1

µ4k

∫ 1

0
φ(4)(ξ)yk(ξ)dξ = − 1

µ4k
φ
(4)
k . (3.32)

Then we obtain formula (3.29). The validity of estimates (3.30) follows from
the theory of Fourier series for the function φ(ξ) and from the Bessel inequality
with to eigenfunctions system {yn(ξ)}. Then Lemma 3 is proved. QED

From Lemma 3, the series (3.28) is bounded by the following numerical series

A5

∞∑
k=1

1

k

∣∣∣φ(4)
k

∣∣∣ . (3.33)

So, as usual, it is proved the uniform convergence of the series (3.25) in D
and differentiable term by term once with respect to ξ when t < 0 and twice
with respect to ξ and t when t > 0.

We note that, if dα(p) = 0 for some α and k = p = k1,k2, ..., km, where
1 ≤ k1 < k2 < ... < km ≤ k0, ki, i = 1, 2, ...,m, m being a fixed natural
number, then to solve the boundary value problem (1.1)-(1.4), it is necessary
and sufficient condition that

φk =

∫ 1

0
φ(ξ)yk(ξ)dξ = 0, (3.34)

where k = k1, k2, ..., km. In that case the solution is defined by the following
form:

U(ξ, t) =

k1−1∑
k=1

+...

km−1∑
k=km−1+1

+

∞∑
k=km+1

 υk(t)yk(ξ) +
∑
p

BpUp(ξ, t). (3.35)
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In the last term the number p takes the values k1, k2, ..., km, Bp is an arbi-
trary constant, Up(ξ, t) is expressed as in formula (2.24) such as if at the left
side of the (3.35) upper bounds are less than lower bounds, this term is equal
to zero.

Theorem 2. Assume that α is a rational number and φ(ξ) satisfies the
conditions of Lemma 3. If dα(k) ̸= 0 for k = 1, k0, then the boundary value
problem (1.1)-(1.4) has a unique solution, which is defined by series (3.25). If
dα(k) = 0 for some k = k1, k2, ..., km ≤ k0, the boundary value problem (1.1)-
(1.4) is solvable only if the condition (3.34) holds and the solution is defined by
series (3.25).

Theorem 3. Let U(ξ, t) ∈ Ω be the solution of the boundary value problem
(1.1)-(1.4). Then the following inequality holds:

∥U(ξ, t)∥C(D) ≤M
∥∥φ′′(ξ)

∥∥
C[0,1]

,

where M > 0 does not depend on φ(ξ).

Proof is similar to Theorem 3 in [14].
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