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Abstract. The paper is concerned with the approximation properties of a modification
of Kantorovich-type of a general class of operators of discrete-type. Such a modification was
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Introduction

As it is well known, the classical Kantorovich operators on [0, 1] are obtained
from Bernstein operators on [0, 1] by replacing the values of the given functions

on the knots k/n with their mean values on the intervals
[
k
n ,

k
n+1

]
(n ≥ 1, 0 ≤

k ≤ n).
Among other things, such modifications of Bernstein operators give rise to

the possibility of expanding the space of functions which can be constructively
approximated by polynomials by including, in particular, Lp-spaces (1 ≤ p <
+∞).

Over the years, many other approximation processes of discrete-type have
been introduced, for functions acting both on compact and non compact inter-
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vals (for example, see [4, Section 5.3] and the reference quoted therein). Along
with them, Kantorovich-type modifications were also introduced. As a matter
of fact, there is a large literature on Kantorovich-type modifications of discrete
operators, which have been studied on a case-by-case basis.

The possibility to study the properties of Kantorovich-type modifications
starting from a rather general class of discrete operators was explored in [2].
In that paper, Agratini presented a general way to construct Kantorovich-type
operators starting from an approximation process of discrete-type defined as

Bn(f)(x) =
∑
k∈In

αn,k(x)f

(
k

bn

)
(n ≥ 1, x ∈ J), (1)

where J is a real interval, (bn)n≥1 is a sequence of strictly increasing real numbers
such that bn ≥ 1 for every n ∈ N and limn→∞ bn = +∞, In is a set of indices
such that {k/bn : k ∈ In} ⊂ J , αn,k are positive continuous functions on J ,
(n, k) ∈ N×In, and, for every n ≥ 1,

∑
k∈In αn,k(x) = 1 uniformly on compacts.

Here f ∈ C(J) if the cardinality of In is finite, otherwise f belongs to the space of
all continuous functions on J such that the series in (1) is absolutely convergent.

In order to consider a more general Kantorovich-type modification of the
operators Bn, Agratini fixed three sequences (αn)n≥1, (βn)n≥1 and (cn)n≥1 of
positive real numbers such that 0 ≤ αn ≤ cn ≤ βn ≤ 1, αn ̸= βn, for every n ≥ 1.
Then, for every n ≥ 1 and x ∈ J , the integral operators object of investigation
were defined as

Cn(f)(x) =
bn + cn
βn − αn

∑
k∈In

αn,k(x)

∫ k+βn
bn+cn

k+αn
bn+cn

f(ξ) dξ. (2)

Here f is assumed to be integrable on J in the case where In is a finite set;
otherwise, f is assumed to be a locally integrable function on J such that the
antiderivatives of f make the series in (2) absolutely convergent.

One of the possible advantages in considering such a general sequence of
operators lies in the fact that, by means of them, it is possible to reconstruct a
continuous or an integrable function by knowing its mean value on subintervals
of [0,+∞[ which do not need to be an equispaced subdivision of [0,+∞[, as
it happens in the context of Kantorovich operators. Similar results were also
considered in [5].

In [2] Agratini showed that it is possible to transfer some approximation
properties from the discrete class of operators to its integral counterpart. In
particular, he studied the approximation properties of the operators Kn in the
case of a compact interval and of an unbounded interval with a finite endpoint.
Among other things, a convergence result in E∗

2 is established, E∗
m (m ≥ 1)
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being the space of functions g ∈ C([0,+∞[) such that limx→+∞ g(x)(1+xm)−1

exists and it is finite.

The main objective of the present paper is to deepen the study of such
Kantorovich-type modifications for those particular sequences of positive linear
operators of discrete-type Bn on [0,+∞[ such that the sequence (Bn)n≥1 is an
approximation process in the space C0([0,+∞[) of all continuous functions in
[0,+∞[ which vanish at infinity.

Under such hypothesis, we are indeed able to extend Agratini’s investigation
by showing that the relevant modifications are an approximation process in
every weighted space E∗

m as well as in Lp-spaces.

The paper is organized as follows. After fixing some notation, in Section 2
we recall the definition of the Kantorovich-type modifications Cn on the positive
real axis, object of our study, collecting some concrete examples and showing
some of their properties. In Sections 3 and 4 we investigate some approxima-
tion properties of the operators Cn, such as convergence results in continuous
function spaces and in polynomial weighted spaces, respectively. In Section 5
we get approximation results in Lp-spaces. Estimates of the rate of convergence
are also established.

1 Notation

Throughout the paper, the symbol C([0,+∞[) (resp., Cb([0,+∞[)) stands
for the space of all real valued continuous (resp., continuous and bounded) func-
tions on [0,+∞[. The space Cb([0,+∞[), endowed with the natural (pointwise)
order and the sup-norm ∥ · ∥∞, is a Banach lattice.

We shall also consider the (closed) subspaces of Cb([0,+∞[)

C0([0,+∞[) := {f ∈ C([0,+∞[)| lim
x→+∞

f(x) = 0}

and

C∗([0,+∞[) := {f ∈ C([0,+∞[)| lim
x→+∞

f(x) ∈ R}.

From now on, for m ≥ 1, we consider the weight wm(x) =
1

1+xm (x ≥ 0) and
the relevant Banach lattice

Em := {f ∈ C([0,+∞[) : sup
x≥0

wm(x)|f(x)| ∈ R}

endowed with the pointwise ordering and the weighted norm

∥f∥m := ∥wmf∥∞ = sup
x≥0

wm(x)|f(x)| (f ∈ Em) .
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Further, we shall consider the following Banach sublattices of Em:

E∗
m := {f ∈ Em : lim

x→+∞
wm(x)f(x) ∈ R}

and

E0
m := {f ∈ E∗

m : lim
x→+∞

wm(x)f(x) = 0} .

Note that, by Stone-Weierstrass theorem, C0([0,+∞[) is dense in each E0
m,

m > 1.

As usual, if 1 ≤ p < +∞, we shall denote by Lp([0,+∞[) the space of all
(equivalence classes of) Borel measurable functions on [0,+∞[ such that

∥f∥p :=
(∫ +∞

0
|f(t)|p dt

)1/p

< +∞.

2 Kantorovich-type modifications of discrete-type op-
erators on the positive real axis

Let (αn,k)n,k≥1 be a sequence of positive continuous functions on [0,+∞[
such that, for every n ≥ 1,

∞∑
k=0

αn,k(x) = 1 (x ≥ 0) (2.1)

and the convergence is assumed to be uniform on each compact subinterval of
[0,+∞[.

Moreover, let (bn)n≥1 be a sequence of strictly increasing real numbers such
that

bn ≥ 1 for every n ∈ N and lim
n→∞

bn = +∞. (2.2)

Following Agratini [2], consider the positive linear operators of discrete-type
defined as

Bn(f)(x) =

∞∑
k=0

αn,k(x)f

(
k

bn

)
(n ≥ 1, x ≥ 0) (2.3)

for all f : [0,+∞[→ R for which the series at the right-hand side is absolutely
convergent. Let us denote such a space by Ca([0,+∞[). Note that Cb([0,+∞[) ⊂
Ca([0,+∞[).

As showed in [2], it is possible to construct an integral extension of the op-
erators (2.3) that generalize the classical Kantorovich modification of such op-
erators. More precisely, consider three sequences (αn)n≥1, (βn)n≥1 and (cn)n≥1
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of positive real numbers such that 0 ≤ αn ≤ cn ≤ βn ≤ 1, αn ̸= βn, for every
n ≥ 1. Then, for every n ≥ 1 and x ≥ 0, we consider the integral operators

Cn(f)(x) =
bn + cn
βn − αn

∞∑
k=0

αn,k(x)

∫ k+βn
bn+cn

k+αn
bn+cn

f(ξ) dξ (2.4)

defined for all functions f belonging to the space La([0,+∞[) consisting of
all locally integrable functions f on [0,+∞[ whose antiderivatives belong to
Ca([0,+∞[). Observe that La([0,+∞[) contains Cb([0,+∞[) as well.

Clearly, if βn = 1, αn = cn = 0 and bn = n for every n ≥ 1, we obtain the
natural Kantorovich-type modification of operators (2.3).

In what follows we present some examples of operators (2.3) and (2.4). Other
examples might be found in [2].

Examples 1. 1. Assume that bn = n, cn = 0, αn,k(x) = e−nx (nx)k

k! (n ≥ 1,
k ∈ N). Then the operators (2.3) turn into the classical Szász-Mirakjan opera-
tors, defined by setting

Mn(f)(x) := e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
,

whereas the operators (2.4) become a generalization of Szász-Mirakjan-Kantoro-
vich operators first introduced in [5]. More precisely,

Cn(f)(x) = e−nx
n

βn − αn

∞∑
k=0

(nx)k

k!

∫ k+βn
n

k+αn
n

f(t) dt. (2.5)

Clearly, for αn = 0 and βn = 1 for all n ≥ 1, we obtain the classical Szász-
Mirakjan-Kantorovich operators (see [9]).

Other generalizations of Szász-Mirakjan and Szász-Mirakjan-Kantorovich
operators can be also seen as particular cases of (2.3) and (2.4). For example,
set

wβ(k, α) =
α

k!
(α+ kβ)k−1e−(α+βk),

(k ∈ N, α > 0, β ∈ [0, 1[) and consider the operators

P [β]
n (f)(x) =

∞∑
k=0

wβ(k, nx)f

(
k

n

)
(x ≥ 0).

Such a class of operators was introduced in [13] and, clearly, for β = 0, they
become the classical Szász-Mirakjan operators.
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Their Kantorovich-type generalization (see [16]) is given by

P̃ [β]
n (f)(x) = n

∞∑
k=0

wβ(k, nx)

∫ k+1
n

k
n

f(t) dt (x ≥ 0),

and, for β = 0, we obviously obtain the Szász-Mirakjan-Kantorovich operators.
2. Assume that bn = n, cn = 0, αn,k(x) =

(
n+k−1

k

)
xk(1+x)−n−k (n ≥ 1, k ∈ N).

Then the operators (2.3) turn into the classical Baskakov operators, defined by
setting

Bn(f)(x) :=

∞∑
k=0

(
n+ k − 1

k

)
xk(1 + x)−n−kf

(
k

n

)
,

whereas the operators (2.4) become a generalization of Baskakov-Kantorovich
operators in the same spirit of [5]. More precisely,

Cn(f)(x) =
n

βn − αn

∞∑
k=0

(
n+ k − 1

k

)
xk(1 + x)−n−k

∫ k+βn
n

k+αn
n

f(ξ) dξ. (2.6)

In the literature many further generalizations of Baskakov and Baskakov-
Kantorovich operators are available and some of them can be recovered in the
more general framework of operators (2.3) and (2.4), respectively.

For example, consider the operators

Ln(f)(x) = e−
anx
1+x

∞∑
k=0

f

(
k

bn

)
Pk(n, an)

k!
xk(1 + x)−n−k,

where (an)n≥1, (bn)n≥1 are two sequences of positive real numbers such that

lim
n→∞

n

bn
= 1, lim

n→∞

an
bn

= 0, lim
n→∞

bn = +∞,

and, for any a ≥ 0,

Pk(n, a) =
k∑
i=0

(
k

i

)
(n)ia

k−i,

with (n)0 = 1, (n)i = n(n+ 1) . . . (n+ i− 1), i ≥ 1 (see [11]).
In [12] the following Kantorovich-type modification was proposed:

Cn(f)(x) =
bn

βn − αn
e−

anx
1+x

∞∑
k=0

Pk(n, an)

k!
xk(1 + x)−n−k

∫ k+βn
bn

k+αn
bn

f(t) dt;

clearly, it is a particular case of operators (2.4).
3. Let (λn)n≥1 be a strictly decreasing positive sequence such that limn→∞ λn =
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0 and limn→∞ nλn = +∞. Moreover, assume that bn = nλn and αn,k(x) =(
n
k

)
(λnx)

k(1 + λnx)
−n for every n ≥ 1, h = 0, . . . , n, and x ≥ 0. Then the

operators (2.3) become the positive linear operators of discrete-type introduced
and studied by Agratini in [3], namely

Bn(f)(x) =
1

(1 + λnx)n

n∑
k=0

(
n

k

)
(λnx)

kf

(
k

nλn

)
(n ≥ 1 , x ≥ 0) . (2.7)

Note that, for λn = nβ−1 (n ≥ 1, 0 < β < 1), the above operators are the ones
studied by Balázs and Szabados in [8] (for β = 2/3 see [7]).
Then, for every n ≥ 1 and x ≥ 0, we can define the relevant integral modification
of type (2.4) as follows:

Cn(f)(x) =
nλn + cn
βn − αn

(1 + λnx)
−n

n∑
k=0

(
n

k

)
(λnx)

k

∫ k+βn
nλn+cn

k+αn
nλn+cn

f(ξ) dξ.

As a particular case of the above operators we can obtain the Kantorovich-
Balázs-Szabados ones considered in [1].

From now on, for every λ > 0, we denote by eλ the function

eλ(t) = tλ (t ≥ 0) (2.8)

and, for a fixed x ≥ 0, by ψx the function defined as ψx(t) = t− x (t ≥ 0).
Coming back to the general framework of operators (2.4), it is easy to see

that Cn(e0) = e0 for every n ≥ 1. As showed in [2, Lemma 1],

Cn(e1) =
bn

bn + cn
Bn(e1) +

αn + βn
2(bn + cn)

(2.9)

and

Cn(e2) =

(
bn

bn + cn

)2

Bn(e2) +
bn(αn + βn)

(bn + cn)2
Bn(e1) +

α2
n + β2n + αnβn
3(bn + cn)2

. (2.10)

In the next result we evaluate Cn(em) for every n,m ≥ 1.

Proposition 1. Fix m ≥ 1 and assume that eh ∈ Ca([0,+∞[) for every
h = 0, . . .m. Then em ∈ La([0,+∞[) and

Cn(em) =
1

(m+ 1)(bn + cn)m

m∑
h=0

bhn

(
m+ 1

h

)m−h∑
p=0

βpnα
m−h−p
n Bn (eh) . (2.11)

Moreover, for every n ≥ 1 and x ≥ 0,

Cn(ψ
2
x)(x) ≤ Bn(ψ

2
x)(x) +

2

bn
|Bn(ψx)(x)|+

2

bn
x2 +

1

bn
. (2.12)
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Proof. We begin to prove formula (2.11). For every n ≥ 1 and x ≥ 0,

Cn(em)(x) =
bn + cn
βn − αn

∞∑
k=0

αn,k(x)

∫ k+βn
bn+cn

k+αn
bn+cn

ξm dξ

=
1

(m+ 1)(bn + cn)m(βn − αn)

∞∑
k=0

αn,k(x)
[
(k + βn)

m+1 − (k + αn)
m+1

]
=

1

(m+ 1)(bn + cn)m(βn − αn)

∞∑
k=0

αn,k(x)

m∑
h=0

bhn

(
m+ 1

h

)

×
[
(βn)

m+1−h − (αn)
m+1−h

]( k

bn

)h
=

1

(m+ 1)(bn + cn)m

m∑
h=0

bhn

(
m+ 1

h

)m−h∑
p=0

βpnα
m−h−p
n Bn (eh) (x)

Finally, for every n ≥ 1 and x ≥ 0,

Cn(ψ
2
x)(x) =

(
bn

bn + cn

)2

Bn(ψ
2
x)(x) + 2x

(
bn

bn + cn

)2

Bn(e1)(x)

−
(

bn
bn + cn

)2

x2 +
bn(αn + βn)

(bn + cn)2
Bn(e1)(x)

+
α2
n + β2n + αnβn
3(bn + cn)2

− 2x
bn

bn + cn
Bn(e1)(x)− x

αn + βn
bn + cn

+ x2

≤ Bn(ψ
2
x)(x)− 2x

bn
bn + cn

Bn(e1)(x)

(
1− bn

bn + cn

)
+ x2

(
1−

(
bn

bn + cn

)2
)

+
αn + βn
bn + cn

Bn(ψx)(x) +
α2
n + β2n + αnβn
3(bn + cn)2

≤ Bn(ψ
2
x)(x) +

2

bn
x2 +

2

bn
Bn(ψx)(x) +

1

bn
,

and hence (2.12). QED

For a given λ > 0, set

fλ(x) = e−λx (x ≥ 0) (2.13)

and note that fλ ∈ La([0,+∞[) ∩ Ca([0,+∞[). We have the following result.

Lemma 1. For every n ≥ 1 and λ > 0,

Cn(fλ) =
bn + cn

λ(βn − αn)

(
e−

λαn
bn+cn − e−

λβn
bn+cn

)
Bn

(
f bnλ

bn+cn

)
. (2.14)
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Hence, if Bn+1(f) ≤ Bn(f) for every n ≥ 1 and for every convex function
f ∈ Ca([0,+∞[), then

Cn(fλ) ≤ Bn

(
f bnλ

bn+cn

)
≤ B1

(
f bnλ

bn+cn

)
≤ B1

(
f λ

1+cn

)
≤ B1

(
fλ

2

)
. (2.15)

Proof. Formula (2.14) follows by direct calculations.

By using the well known inequality 1 − e−x ≤ x (x ≥ 0), we get the first
inequality in (2.15).

The second inequality in (2.15) is a consequence of the assumption on the
behaviour of the operators Bn on convex functions.

Since the function g(x) = x
x+cn

is increasing, bn ≥ 1, cn ≤ 1 (n ≥ 1), we
have that fλ ≤ f bnλ

bn+cn

≤ f λ
1+cn

≤ fλ
2
; given the positivity of the operators Bn,

we easily get the last two inequalities in (2.15). QED

3 Approximation results in continuous function spaces

In this section we investigate the approximation properties of operators
(Cn)n≥1 defined by (2.4) in certain continuous function spaces.

As a matter of fact, for every n ≥ 1, we have that Cn is a positive continuous
operator from Cb([0,+∞[) into itself and ∥Cn∥Cb([0,+∞[) = 1 (see [2, p. 684]). In
[2, Theorem 2] it was also proved that, if ei ∈ Ca([0,+∞[), i = 1, 2, and for every
i = 0, 1, 2, limn→∞Bn(ei) = ei uniformly on compact subsets of [0,+∞[, then
limn→∞Cn(f) = f for every f ∈ Cb([0,+∞[) uniformly on compact subsets of
[0,+∞[.

Agratini also presented some estimates of the rate of convergence (see [2,
Theorem 4]).

In this section we study the approximation properties of the operators Cn
on C0([0,+∞[) and C∗([0,+∞[). We begin by stating the following result.

Proposition 2. Consider the operators (Cn)n≥1 defined by (2.4). Further,
for every n, k ≥ 1, assume that αn,k ∈ C0([0,+∞[). Then, for every n ≥ 1,
Cn(C0([0,+∞[)) ⊂ C0([0,+∞[) and Cn(C∗([0,+∞[)) ⊂ C∗([0,+∞[).

Proof. Fix n ≥ 1, f ∈ C0([0,+∞[)), and ε > 0. Then there exists x1 > 0 such
that |f(x)| ≤ ε for every x > x1. Moreover, there exists x2 > x1 such that, for
every x > x2,

|αn,k(x)| ≤
ε

2∥f∥∞(n[x1] + 1)

for any k = 0, . . . , n[x1], [x1] being the integer part of x1.
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Then, for every x > x2,

|Cn(f)(x)| ≤
bn + cn
βn − αn

∞∑
k=0

αn,k(x)

∫ k+βn
bn+cn

k+αn
bn+cn

|f(ξ)| dξ

=
bn + cn
βn − αn

n[x1]∑
k=0

αn,k(x)

∫ k+βn
bn+cn

k+αn
bn+cn

|f(ξ)| dξ

+
bn + cn
βn − αn

∞∑
k=n[x1]+1

αn,k(x)

∫ k+βn
bn+cn

k+αn
bn+cn

|f(ξ)| dξ

≤ ε

2
+
ε

2

∞∑
k=n[x1]+1

αn,k(x) ≤ ε .

This completes the proof of the first part of the statement. The second one
derives from the fact that Cn(e0) = e0 for every n ≥ 1. QED

In order to state the next approximation results, we first prove the following
inequality: for every λ > 0, n ≥ 1,

0 ≤ 1− 1

λ

bn + cn
βn − αn

(
e−

λαn
bn+cn − e−

λβn
bn+cn

)
≤ λ

bn
. (3.16)

In fact, by using the very well known inequalities 1 − e−x ≤ x, 1 − e−x ≥
x− x2/2 (x ≥ 0), we obtain

0 ≤ 1− bn + cn
λ(βn − αn)

(
e−

λαn
bn+cn − e−

λβn
bn+cn

)
= 1− bn + cn

λ(βn − αn)
e−

λαn
bn+cn

(
1− e−

λ(βn−αn)
bn+cn

)
≤ 1− bn + cn

λ(βn − αn)
e−

λαn
bn+cn

(
λ
βn − αn
bn + cn

− λ2(βn − αn)
2

2(bn + cn)2

)
= 1− e−

λαn
bn+cn +

λ(βn − αn)

2(bn + cn)
≤ λ(αn + βn)

2(bn + cn)
≤ λ

bn
.

From now on, we assume that the sequence (Bn)n≥1 is an approximation
process in C0([0,+∞[), i.e., Bn(C0([0,+∞[)) ⊂ C0([0,+∞[) and, for every f ∈
C0([0,+∞[),

lim
n→∞

Bn(f) = f (3.17)

uniformly on [0,+∞[.



Kantorovich-type modifications of certain discrete-type operators 25

According to [4, Proposition 4.2.5, Part 2], (3.17) holds true if there exists
0 < λ1 < λ2 < λ3 such that

lim
n→∞

Bn(fλi) = fλi (3.18)

uniformly on [0,+∞[, for every i = 1, 2, 3.
We point out that, since Bn(e0) = e0, then from (3.17) it follows that for

every f ∈ C∗([0,+∞[)
lim
n→∞

Bn(f) = f (3.19)

uniformly on [0,+∞[.

Examples 2. 1. Szász-Mirakjan operators and Baskakov operators (see Ex-
ample 1, 1 and 2) satisfy (3.18). For a proof, see [4, pp. 340–341 and p. 344],
respectively.
2. For every n ≥ 1, let Bn be the operators defined by (2.7) and considered in
Example 1, 3. By simply calculations it is easy to see that, for a given λ > 0,

Bn(fλ)(x) =

(
1 + λnxe

−λ/(nλn)

1 + λnx

)n
=

(
1 +

λnx

1 + λnx
(e−λ/(nλn) − 1)

)n
,

and from this formula we immediately infer that these operators satisfy (3.18).

After these preliminaries, we are ready to prove the following approximation
theorem.

Theorem 1. Suppose that αn,k ∈ C0([0,+∞[) for any n, k ≥ 1. Under
assumption (3.17), limn→∞Cn(f) = f uniformly on [0,+∞[ for every f ∈
C∗([0,+∞[).

Proof. In order to show the statement, it sufficies to show it in C0[(0,+∞[)
and, in particular, for each function fλ(x) = e−λx, λ > 0, since the subspace
generated by (fλ)λ>0 is dense in C0([0,+∞[) and the sequence (Cn)n≥1 is equi-
bounded on C0([0,+∞[).

By means of (2.14) and (3.16), for every x ≥ 0 and n ≥ 1, we have

|Cn(fλ)(x)− fλ(x)| ≤
∣∣∣∣ bn + cn
λ(βn − αn)

(
e−

λαn
bn+cn − e−

λβn
bn+cn

)
− 1

∣∣∣∣Bn (f bnλ
bn+cn

)
(x)

+
∣∣∣Bn (f bnλ

bn+cn

)
(x)−Bn(fλ)(x)

∣∣∣+ |Bn(fλ)(x)− fλ(x)|

≤ λ

bn
+ ∥Bn∥e−λx

∣∣∣∣e(− λbn
bn+cn

+λ
)
x − 1

∣∣∣∣+ ∥Bn(fλ)− fλ||∞

≤ λ

bn
+ e−λx

(
e

λcn
bn+cn

x − 1
)
+ ||Bn(fλ)− fλ||∞ ≤ λ+ 1

bn
+ ||Bn(fλ)− fλ||∞

and this completes the proof. QED
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We now provide estimates of the rate of convergence, by means of the first
and second modulus of continuity ω(f, δ) and ω2(f, δ) (for a definition see,
e.g. [14]). These estimates are based on a similarity technique which consists in
introducing a suitable isometric isomorphism between C∗([0,+∞[) and C([0, 1]).

In general, let X and Y be two different Banach spaces and let Φ : X →
Y be an isometric isomorphism. Moreover, consider an approximation process
(Ln)n≥1 in X. Then the operators L∗

n defined by L∗
n := Φ ◦ Ln ◦ Φ−1 (n ≥ 1)

form an approximation process on Y and we have that

∥Ln(u)− u∥X = ∥L∗
n(Φ(u))− Φ(u)∥Y . (3.20)

The above equality is the key to transfer the problem of estimating the rate
of convergence for (Ln)n≥1 in X to the sequence (L∗

n)n≥1 in Y .
Coming back to the operators Cn, let us assume, for the sake of simplicity,

that bn = n and cn = 0.
Consider the isometric isomorphism Φ : C∗([0,+∞[) → C([0, 1]) defined by

setting

Φ(f)(t) =

{
f (− log t) if 0 < t ≤ 1,
lim

x→+∞
f(x) if t = 0, for every f ∈ C∗([0,+∞[). (3.21)

We observe that Φ−1 : C([0, 1]) → C∗([0,+∞[) is defined as Φ−1(g)(t) := g(e−t)
for every g ∈ C([0, 1]) and t ≥ 0.

Moreover, for every n ≥ 1 and g ∈ C([0, 1]), set

C∗
n(g) := Φ(Cn(Φ

−1(g))). (3.22)

In what follows, the next lemma will be useful.

Lemma 2. For every λ > 0, x ∈]0, 1], and n ≥ 1,

|C∗
n(eλ)(x)− xλ| = |Cn(fλ)(− log x)− xλ| ≤ ∥B∗

n(eλ)− eλ∥∞ +
λ

n
, (3.23)

where B∗
n = Φ◦Bn◦Φ−1, eλ and Φ are defined, respectively, by (2.8) and (3.21).

Proof. Indeed, for a given λ > 0, x ∈]0, 1], and n ≥ 1, we have that

|C∗
n(eλ)(x)− xλ| = |Cn(fλ)(− log x)− xλ|

=

∣∣∣∣ n

λ(βn − αn)

(
e−

λαn
n − e−

λβn
n

)
Bn(fλ)(− log x)− xλ

∣∣∣∣
≤ n

λ(βn − αn)

(
e−

λαn
n − e−

λβn
n

)
|Bn(fλ)(− log x)− xλ|

+

(
1− n

λ(βn − αn)

(
e−

λαn
n − e−

λβn
n

))
xλ ≤ ∥B∗

n(eλ)− eλ∥∞ +
λ

n
,

because of (3.16). QED
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Remark 1. We observe that if (Bn)n≥1 is an approximation process in
C∗([0,+∞[), then for every λ > 0,

lim
n→∞

∥B∗
n(eλ)− eλ∥∞ = 0.

We have the following result.

Proposition 3. Under the same assumptions of Theorem 1, for n ≥ 1 and
f ∈ C∗([0,+∞[),

∥Cn(f)− f∥∞ ≤ ω(Φ(f), δn) +
3

2
ω2(Φ(f), δn), (3.24)

where δn =
√
∥B∗

n(e2)− e2∥∞ + ∥B∗
n(e1)− e1∥∞ + 4

n and B∗
n = Φ ◦Bn ◦ Φ−1.

Proof. According to (3.20) it eas enough to show (3.24) for ∥C∗
n(Φ(f))−Φ(f)∥∞.

To this end we apply [14, Theorem 2.2.1] from which, for every n ≥ 1, f ∈
C∗([0,+∞[), 0 ≤ x ≤ 1 and δ > 0,

|C∗
n(Φ(f))(x)− Φ(f)(x)| ≤ |C∗

n(e0)(x)− 1||Φ(f)(x)|

+
1

δ
|C∗
n(ψx)(x)|ω(Φ(f), δ) +

(
C∗
n(e0)(x) +

1

2δ2
C∗
n(ψ

2
x)(x)

)
ω2(Φ(f), δ).

It is easy to prove that C∗
n(e0) = e0,

C∗
n(ψx)(x) =

{
Cn(f1 − xe0)(− log x) if 0 < x ≤ 1,
0 if x = 0

and

C∗
n(ψ

2
x)(x) =

{
Cn(f2 − 2xf1 + x2e0)(− log x) if 0 < x ≤ 1
0 if x = 0,

(3.25)

where fλ, λ = 1, 2, is defined by (2.13).
First of all, taking (3.23) into account, we notice that, for every 0 < x ≤ 1,

|C∗
n(ψx)(x)| = |Cn(f1)(− log x)− x| ≤ ∥B∗

n(e1)− e1∥∞ +
1

n
.

Analogously,

C∗
n(ψ

2
x)(x) = Cn(f2)(− log x)− x2 − 2x(Cn(f1)(− log x)− x)

≤ ∥B∗
n(e2)− e2∥∞ + ∥B∗

n(e1)− e1∥∞ +
4

n
.

We note that, by means of the Cauchy-Schwarz inequality,

|C∗
n(ψx)(x)| ≤

√
C∗
n(ψ

2
x)(x).

Now, set δ = δn; then we get the result. QED
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4 Approximation properties in polynomial weighted
function spaces

We pass now to study the approximation properties of the sequence (Cn)n≥1

in polynomial weighted spaces of continuous functions.

Proposition 4. Consider the operators (Cn)n≥1 defined by (2.4). Further
assume that Bn(Em) ⊂ Em for every n,m ≥ 1. Then Cn is a positive continuous
operator from Em into itself and

∥Cn(f)∥m ≤ ∥f∥m(1 + ∥Cn(em)∥m).

Proof. First of all observe that eh ∈ Em, and hence Bn(eh) ∈ Em for every
h = 0, . . . ,m, thanks to the assumption on the Bn’s. Hence, Cn(em) ∈ Em (see
(2.11)). Fix now f ∈ Em; then

wm(x)|Cn(f)(x)| ≤ ∥f∥mwm(x)Cn(e0 + em)(x) = ∥f∥mwm(x)(1 + Cn(em)(x)) .

From this and formula (1) the claim follows. QED

From now on we assume that

sup
x≥0,n≥1

wm(x)Bn(em)(x) < +∞. (4.26)

We note that (4.26) implies that, for every k = 0, . . . ,m,

sup
x≥0,n≥1

wm(x)Bn(ek)(x) < +∞, (4.27)

since |eh| ≤ e0 + ek, for every 1 ≤ h ≤ k. Hence, on account of Proposition 1,
(4.26), and (4.27),

M := sup
x≥0,n≥1

wm(x)Cn(e0 + em)(x) < +∞

and, in particular, for every n ≥ 1,

∥Cn∥m ≤M (4.28)

(see Proposition 4).

Proposition 5. Consider the operators (Cn)n≥1 defined by (2.4). Further
assume that, for every n, k ≥ 1, αn,k ∈ C0([0,+∞[). Then, for every n,m ≥ 1,
Cn(E

0
m) ⊂ E0

m.
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Proof. Let D be the subspace generated by the family (fλ)λ>0 . By Stone–
Weierstrass theorem D is dense in C0([0,+∞[) and hence in E0

m. In order to
get the claim it is sufficient to note that Cn(D) ⊂ C0([0,+∞[) ⊂ E0

m. QED

Theorem 2. Assume that αn,k ∈ C0([0,+∞[) for any n, k ≥ 1. Moreover,
suppose that (3.17) and (4.26) hold true. For a given m ≥ 1, if f ∈ E∗

m (and,
in particular, if f ∈ E0

m), then

lim
n→∞

Cn(f) = f with respect to ∥ · ∥m.

Moreover, for every f ∈ Em,

lim
n→∞

Cn(f) = f (4.29)

uniformly on compact subsets of [0,+∞[.

Proof. By means of Theorem 1, limn→∞Cn(fλ) = fλ with respect to ∥ · ∥∞ and
hence with respect to ∥ · ∥m. Since the sequence (Cn)n≥1 is equibounded on E0

m

(see (4.28)) and the linear subspace generated by (fλ)λ>0 is dense in E
0
m, we have

that limn→∞Cn(f) = f with respect to ∥ · ∥m for f ∈ E0
m. On the other hand,

if f ∈ E∗
m, then f = g + αm(e0 + em), where αm := limx→+∞wm(x)f(x) ∈ R

and g = f − αm(e0 + em) ∈ E0
m. This completes the proof.

Taking that into account, since Em ⊂ E0
m+1 and the weight wm is bounded

from below, we get (4.29); in fact, if K is a compact subset of [0,+∞[, then

wm(x)|Cn(f)(x)− f(x)| ≤ N∥Cn(f)− f∥m+1

for every x ∈ K, where N := supx∈J
wm(x)
wm+1(x)

. QED

We now want to provide some estimates of the rate of convergence in The-
orem 2.

Proposition 6. Under the same hypotheses of Theorem 2, assume that
there exists m0 ≥ 1 such that

lim
n→∞

√
Bn(ψ2

x)(x)

1 + xm0
= 0

uniformly on [0,+∞[. Then, for every f ∈ E0
m, m ≥ m0, n ≥ 1,

∥Cn(f)− f∥m ≤ 2ω(f, σn),

where σn = supx≥0

√
Bn(ψ2

x)(x)

1+xm +
√
2√
bn

supx≥0

√
|Bn(ψx)(x)|
1+xm +

√
2+1√
bn

.
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Proof. It is known that (see [4, Theorem 5.1.2]), for every n ≥ 1, x ≥ 0, f ∈ E0
m

(m > m0) and δ > 0,

|Cn(f)(x)− f(x)| ≤
(
1 +

1

δ

√
Cn(ψ2

x)(x)

)
ω(f, δ) .

Then

∥Cn(f)− f∥m ≤

(
1 +

1

δ
sup
x≥0

√
Cn(ψ2

x)(x)

1 + xm

)
ω(f, δ) ,

from which the desired uniform weighted estimate could be derived, since, on
account of (2.12),

sup
x≥0

√
Cn(ψ2

x)(x)

1 + xm
≤ sup

x≥0

√
Bn(ψ2

x)(x)

1 + xm
+

√
2√
bn

sup
x≥0

√
|Bn(ψx)(x)|
1 + xm

+

√
2 + 1√
bn

.

QED

The previous result applies, for example, in the context of Example 1, 1,
since the classical Szász-Mirakjan operators Mn satisfy Mn(ψx)(x) = 0 and
Mn(ψ

2
x)(x) = x/n.

We now proceed to present some estimates of the rate of convergence in E∗
m

by using again the similarity technique illustrated at page 26.
From now on, for the sake of simplicity, we assume that bn = n and cn = 0

for all n ≥ 1. Moreover, we assume that, for all n, h ≥ 1,

Bn(Ph) ⊂ Ph, (4.30)

where Ph is the space of all polynomials of degree at most h; we also assume
that, for every h, n ≥ 1,

Bn(eh) = eh +
1

n
ph−1, (4.31)

where ph−1 is a polynomial of degree h− 1.
Under these assumptions, Cn(Ph) ⊂ Ph for every h ≥ 1 and (see (2.11))

Cn(eh) = eh +
1

n
qh−1, (4.32)

where qh−1 is a polynomial of degree h− 1.
We now consider the isometric isomorphism Φm : E∗

m → C([0, 1]) defined by
setting

Φm(f)(t) =

{
(wmf) (− log t) if 0 < t ≤ 1,
lim

x→+∞
(wmf)(x) if t = 0 for every f ∈ E∗

m. (4.33)
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Note that Φ−1
m : C([0, 1]) → E∗

m is defined as Φ−1
m (g)(t) := w−1

m (t)g(e−t) for
every g ∈ C([0, 1]) and t ≥ 0.

Moreover, for every n ≥ 1, we consider the similar positive linear operator
W ∗
n : C([0, 1]) → C([0, 1]) defined by setting, for any g ∈ C([0, 1]),

W ∗
n(g) := Φm(Cn(Φ

−1
m (g))). (4.34)

We have the following result.

Theorem 3. Suppose that (4.30) and (4.31) hold true. Then, under the
same assumptions of Theorem 2, for every n ≥ 1 and f ∈ E∗

m,

∥Cn(f)− f∥m ≤ H1,m

n
||Φm(f)||∞ +H2,mω (Φm(f), σn) +H3,mω2 (Φm(f), σn) ,

where

σn = (∥B∗
n(e4)− e4∥∞ + 4∥B∗

n(e3)− e3∥∞ + 6∥B∗
n(e2)− e2∥∞

+4 ∥B∗
n(e1)− e1∥∞ + 32/n)1/4 ,

B∗
n = Φ ◦ Bn ◦ Φ−1 (see (3.21)), and H1,m, H2,m, H3,m are suitable positive

constants which depend on m, only.

Proof. We now establish a uniform estimate for ∥W ∗
n(Φm(f))−Φm(f)∥∞, using

again [14, Theorem 2.2.1]; in particular, for every n ≥ 1, f ∈ E∗
m, 0 ≤ x ≤ 1

and δ > 0, we get

|W ∗
n(Φm(f))(x)− Φm(f)(x)| ≤ |W ∗

n(e0)(x)− 1||Φm(f)(x)|

+
1

δ
|W ∗

n(ψx)(x)|ω(Φm(f), δ) +
(
W ∗
n(e0)(x) +

1

2δ2
W ∗
n(ψ

2
x)(x)

)
ω2(Φm(f), δ).

From (4.33) and (4.34) it easily follows that

W ∗
n(e0)(x) =

{
(wmCn(e0 + em))(− log x) if 0 < x ≤ 1,
1 if x = 0,

W ∗
n(ψx)(x) =

{
(wmCn((1 + em)(f1 − xe0)))(− log x) if 0 < x ≤ 1,
0 if x = 0

and

W ∗
n(ψ

2
x)(x) =

{
(wmCn((1 + em)(f2 − 2xf1 + x2e0)))(− log x) if 0 < x ≤ 1,
0 if x = 0,

with fλ, λ = 1, 2, defined by (2.13).
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In particular, for all n ≥ 1 and x ∈]0, 1],

|W ∗
n(e0)(x)− 1| = |wm(− log x)Cn(e0 + em)(− log x)− 1| ≤ H1,m

n

because of (4.30), (4.31), and (4.32).
Moreover, taking (3.22), (3.25), (4.32) and the Cauchy-Schwartz inequality

into account,

|W ∗
n(ψx)(x)| = |(wmCn((1 + em)(f1 − xe0))(− log x)|

= wm(− log x)
√
Cn((e0 + em)2)(− log x)

√
Cn((f1 − xe0)2)(− log x)

≤ H2,m

√
C∗
n(ψ

2
x)(x) ≤ H2,m

4
√
C∗
n(ψ

4
x)(x).

Arguing in the same way,

W ∗
n(ψ

2
x)(x) = (wmCn((1 + em)(f1 − xe0)

2)(− log x)

= wm(− log x)
√
Cn((e0 + em)2)(− log x)

√
Cn((f1 − xe0)4)(− log x)

≤ H2,m

√
C∗
n(ψ

4
x)(x),

where C∗
n is defined by (3.22).

We now note that, by virtue of (3.23),

C∗
n(ψ

4
x)(x) = Cn(f4)(− log x)− x4 − 4x(Cn(f3)(− log x)− x3)

+ 6x2(Cn(f2)(− log x)− x2)− 4x3(Cn(f1)(− log x)− x)

≤ ∥B∗
n(e4)− e4∥∞ +

4

n
+ 4∥B∗

n(e3)− e3∥∞ +
12

n

+ 6∥B∗
n(e2)− e2∥∞ +

12

n
+ 4∥B∗

n(e1)− e1∥∞ +
4

n
.

Setting δ = σn we get the desired result. QED

5 Approximation properties in Lp-spaces

We now prove that, under suitable assumptions on αn,k, the operators Cn
are well defined and are an approximation process on Lp-spaces, p ≥ 1.

We first prove under which conditions the sequence (Cn)n≥1 is well defined
and equibounded from Lp([0,+∞[) into Lp([0,+∞[).

Lemma 3. Let us assume that, for every n ≥ 1,

Mn := sup
k≥1

∫ +∞

0
αn,k(x) dx < +∞.
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Then Cn(L
p([0,+∞[)) ⊂ Lp([0,+∞[) and

∥Cn∥Lp,Lp ≤Mn
bn + cn
βn − αn

.

In particular, if there exists M ≥ 0 such that Mn
bn+cn
βn−αn

≤M for any n ≥ 1,
then the sequence (Cn)n≥1 is equibounded in Lp([0,+∞[).

Proof. Fix n ≥ 1, x ≥ 0 and f ∈ Lp([0,+∞[). By applying twice Jensen’s
inequality we get

|Cn(f)(x)|p ≤
bn + cn
βn − αn

∞∑
k=0

αn,k(x)

∫ k+βn
bn+cn

k+αn
bn+cn

|f(ξ)|p dξ.

Hence,∫ +∞

0
|Cn(f)(x)|p dx ≤

∞∑
k=0

bn + cn
βn − αn

∫ k+βn
bn+cn

k+αn
bn+cn

|f(ξ)|p dξ
∫ +∞

0
αn,k(x) dx

≤Mn
bn + cn
βn − αn

∥f∥pp

and this completes the proof. QED

Examples 3. 1. Since, for every n ≥ 1,∫ +∞

0
e−nx

(nx)k

k!
dx =

1

n
,

if the operators Cn are defined as in (2.4), then

∥Cn∥Lp,Lp ≤ bn + cn
n(βn − αn)

,

so, in order for the sequence (Cn)n≥1 to be equibounded in Lp([0,+∞[), it
suffices that

bn + cn
βn − αn

≤M (n ≥ 1). (5.35)

Similar results were obtained in [5].
2. Since, for every n > 1,

sup
k≥0

∫ +∞

0

xk

(1 + x)n+k
dx =

1

n− 1
,

if the operators Cn are defined as in (2.4), then

∥Cn∥Lp,Lp ≤ bn + cn
(n− 1)(βn − αn)

,

so the sequence (Cn)n>1 is equibounded in Lp([0,+∞[) if (5.35) holds true.
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Remark 2. We point out that results similar to Lemma 3 hold true also if
J = [0, 1] and operators Cn are of the form

Cn(f)(x) =
bn + cn
βn − αn

n+ r

r

n∑
k=0

αn,k(x)

∫ k+βn
bn+cn

k+αn
bn+cn

f(ξ) dξ,

where, for every n ≥ 1
n∑
k=0

αn,k(x) = 1

and αn,k(x) ≥ 0 for every x ∈ [0, 1].
Those operators can be seen as a generalization of the ones treated in [6,

Section 5].

We can finally prove the following result.

Theorem 4. Assume that (3.17) holds true and αn,k ∈ C0([0,+∞[) for
every n, k ≥ 1. Further, suppose that, for every n ≥ 1, Bn+1(f) ≤ Bn(f) for
every convex function f ∈ Ca([0,+∞[) and that B1(fλ) ∈ Lp([0,+∞[) for every
λ > 0. Then, for every f ∈ Lp([0,+∞[)

lim
n→∞

Cn(f) = f in Lp([0,+∞[). (5.36)

Proof. For any given λ1, λ2, λ3 > 0, {fλ1 , fλ2 , fλ3} is a Korovkin subset in
Lp([0,+∞[) (see [4, Proposition 4.2.5]) so to get (5.36) it suffices to prove that,
for every λ > 0, Cn(fλ) → fλ in Lp([0,+∞[), where the function fλ are defined
by (2.13). Indeed, for every λ > 0, Cn(fλ) → fλ uniformly (see Theorem 1) and
hence pointwise. Moreover (see (2.15)), for every n ≥ 1,

Cn(fλ)
p ≤ B1

(
fλ/2

)p
.

By applying the dominated convergence theorem, we conclude the proof. QED

Examples 4. 1. LetMn be the n-th Szász-Mirakjan operator (see Example
1, 1). Then, for every x ≥ 0, n ≥ 1 and λ > 0,

Mn(fλ)(x) = exp
(
nx
(
e−

λ
n − 1

))
.

HenceMn(fλ) ∈ Lp([0,+∞[) for every n ≥ 1, p ≥ 1 and λ > 0 and Theorem
4 applies to the relevant operators (2.5).

These results can be compared with the ones proved in [5].
2. Let Bn be the Baskakov operators (see Example 1, 2). Then given x ≥ 0,
n ≥ 1 and λ > 0,

Bn(fλ)(x) =
1(

1 + x− xe−
λ
n

)n .
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Then, for every p > 1, B1(fλ) ∈ Lp([0,+∞[) and Theorem 4 can be used
to prove that the relevant operators Cn defined by (2.6) are an approximation
process in Lp([0,+∞[).

A way to get an estimate of the rate of convergence in Theorem 4 is to apply
a similarity technique that allows to derive it by means a suitable isometric
isomorphism between Lp([0,+∞[) and Lp([0, 1]), as done in Sections 3 and 4.

For the sake of simplicity, let us assume that bn = n and cn = 0.
Consider the isometric isomorphism Φp : Lp([0,+∞[) → Lp(]0, 1]) defined

by setting, for every f ∈ Lp([0,+∞[), and for every 0 < t ≤ 1,

Φp(f)(t) = t−1/pf(− log t). (5.37)

Its inverse Φ−1
p : Lp(]0, 1]) → Lp([0,+∞[) is defined by Φ−1

p (g)(t) = e−t/pg(e−t)
for every g ∈ Lp(]0, 1]) and t ≥ 0.

Now, for all n ≥ 1, define the operatorsWn : Lp(]0, 1]) → Lp(]0, 1]) as follows

Wn(g) = Φp(Cn(Φ
−1
p (g))) (g ∈ Lp(]0, 1])) ,

getting, as quoted before, an approximation process in Lp(]0, 1]).
We point out that, for any 0 < x ≤ 1,

Wn(e0 |]0,1])(x) = x
− 1

pCn

(
f 1

p

)
(− log x), (5.38)

Wn(ψx |]0,1])(x) = x
− 1

pCn

(
f 1

p
+1 − xf 1

p

)
(− log x) (5.39)

and

Wn(ψ
2
x |]0,1])(x) = x

− 1
pCn

(
f 1

p
+2 − 2xf 1

p
+1 + x2f 1

p

)
(− log x) (5.40)

(see (5.37)), where fλ is defined by (2.13).
Consider now the positive linear operator σ : Lp(]0, 1]) → Lp([0, 1]) defined

by setting, for every g ∈ Lp(]0, 1]),

σ(g)(t) =

{
g(t) 0 < t ≤ 1 ,
0 t = 0 .

(5.41)

Then ∥g∥p = ∥σ(g)∥p for all g ∈ Lp(]0, 1]).
Now, for any n ≥ 1, consider W ∗

n : Lp([0, 1]) → Lp([0, 1]) defined, for every
f ∈ Lp([0, 1]), by

W ∗
n(f) = σ(Wn(f |]0,1])).

We point out that, for any f ∈ Lp([0,+∞[) and n ≥ 1,

W ∗
n(σ(Φp(f))) = σ(Wn(σ(Φp(f)) |]0,1]) = σ(Wn(Φp(f))).
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Moreover, for every x ∈]0, 1] and i ≥ 0, we set

Vn(ei |]0,1])(x) = Φp(Bn(Φ
−1
p (ei |]0,1])))(x) = x

− 1
pBn

(
fi+ 1

p

)
(− log x).

From now on, we shall assume that

Vn(ei |]0,1]) ∈ Lp(]0, 1]) for every i = 0, 1, 2; (5.42)

moreover, we shall suppose that there exists M ≥ 0 such that, for every n ≥ 1
and i = 0, 1, 2,

∥Vn(ei |]0,1])∥p ≤M.

This implies that
∥V ∗

n (ei)∥p ≤M, (5.43)

where V ∗
n (ei) = σ(Vn(ei |]0,1])).

After these preliminaries, we recall that, in order to evaluate ∥Cn(f)− f∥p,
by using a similarity technique, we have at our disposal in Lp([0, 1]) a result
due to Swetits and Wood (see [15, Theorem 1]), which involves the second-
order integral modulus of smoothness in Lp([0, 1]), denoted by ω2(g, δ)p (see
[10, Chapter 2, Section 7]).

The result runs as follows: if Ln : Lp([0, 1]) → Lp([0, 1]) (n ≥ 1) is a positive
linear operator then, for every g ∈ Lp([0, 1]),

∥Ln(g)− g∥p ≤ Kp(µ
2
n,p∥g∥p + ω2(g, µn,p)p) (5.44)

with Kp > 0 is independent on g and n ≥ 1, provided that µn,p → 0 as n→ ∞,
where

µn,p :=

√
max{∥Ln(e0)− e0∥p , ∥αn∥p , ∥βn∥2p/(2p+1)

p } , (5.45)

αn(x) = Ln(ψx)(x) and βn(x) = Ln(ψ
2
x)(x) (0 ≤ x ≤ 1).

After these preliminaries, we are now ready to state the next result.

Proposition 7. Under the same assumptions of Theorem 4, let us assume
that (5.42) and (5.43) hold true. Moreover let us suppose that

lim
n→∞

∥V ∗
n (e0)− e0∥p = 0

and that, denoting by

an(x) = V ∗
n (ψx)(x) and bn(x) = V ∗

n (ψ
2
x)(x) (0 ≤ x ≤ 1),

we have
lim
n→∞

∥an∥p = lim
n→∞

∥bn∥2p/(2p+1)
p = 0.
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Then

lim
n→∞

µnp → 0

(see (5.45) where the.operators Ln are exactly the operators W ∗
n) and estimate

(5.44) applies to the operators Cn.

Proof. By using (5.45), we have that, for every f ∈ Lp([0,+∞[),

∥Cn(f)− f∥p = ∥Wn(Φp(f))− Φp(f)∥p = ∥σ(Wn(Φp(f))− Φp(f))∥p
= ∥σ(Wn(Φp(f)))− σ(Φp(f))∥p = ∥W ∗

n(σ(Φp(f)))− σ(Φp(f))∥p
≤ Kp(µ

2
n,p∥σ(Φp(f))∥p + ω2(σ(Φp(f)), µn,p)p)

= Kp(µ
2
n,p∥Φp(f)∥p + ω2(σ(Φp(f)), µn,p)p),

provided that limn→∞ µnp → 0.

We now proceed with some calculations.

First of all, for all 0 < x ≤ 1 and taking (2.14), (3.16) and (5.41) into
account,

|W ∗
n(e0)(x)− 1| = |Wn(e0 |]0,1])− 1|

=

∣∣∣∣ pn

βn − αn

(
e
−αn

pn − e
−βn

pn

)
x
− 1

pBn

(
f 1

p

)
(− log x)− 1

∣∣∣∣
≤ pn

βn − αn

(
e
−αn

pn − e
−βn

pn

) ∣∣∣x−1/pBn

(
f 1

p

)
(− log x)− 1

∣∣∣
+

∣∣∣∣ pn

βn − αn

(
e
−αn

pn − e
−βn

pn

)
− 1

∣∣∣∣
≤
∣∣∣x−1/pBn

(
f 1

p

)
(− log x)− 1

∣∣∣+ 1

pn

Hence,

|Wn(e0 |]0,1])(x)− 1|p ≤ 2p−1

(∣∣∣x−1/pBn

(
f 1

p

)
(− log x)− 1

∣∣∣p + 1

(pn)p

)
= 2p−1

(∣∣Vn(e0 |]0,1])(x)− 1
∣∣p + 1

(pn)p

)
;

accordingly,

∥W ∗
n(e0)− e0∥pp ≤ 2p−1

(
∥V ∗

n (e0)− e0∥pp +
1

(pn)p

)
. (5.46)
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Moreover, for a given 0 < x ≤ 1, taking again (2.14) and (3.16) into account,

|W ∗
n(ψx)(x)| = |Wn(ψx |]0,1])(x)|

= x−1/p

∣∣∣∣ n

(1 + 1/p)(βn − αn)

(
e−

(1+1/p)αn
n − e−

(1+1/p)βn
n

)
Bn
(
f1+1/p

)
(− log x)

−x pn

βn − αn

(
e
−αn

pn − e
−βn

pn

)
Bn
(
f1/p

)
(− log x)

∣∣∣∣
≤ x−1/p

[(
1− n

e−
(1+1/p)αn

n − e−
(1+1/p)βn

n

(1 + 1/p)(βn − αn)

)
Bn
(
f1+1/p

)
(− log x)

+
∣∣Bn (f1+1/p

)
(− log x)− xBn

(
f1/p

)
(− log x)

∣∣
+x

(
1− pn

βn − αn

(
e
−αn

pn − e
−βn

pn

))
Bn
(
f1/p

)
(− log x)

]
≤ x−1/p 1

n(1 + 1/p)
Bn
(
f1/p+1

)
(− log x) + |Vn(ψx |]0,1])(x)|

+ x−1/p 1

np
Bn
(
f1/p

)
(−log x)

=
1

n(1 + 1/p)
Vn(e1 |]0,1])(x) + |Vn(ψx |]0,1])(x)|+

1

np
Vn(e0 |]0,1])(x).

Then

|Wn(ψx)(x)|p ≤ 3p−1

((
1

n(1 + 1/p)
Vn(e1 |]0,1])(x)

)p
+

|Vn(ψx |]0,1])(x)|p +
(

1

np
Vn(e0 |]0,1])(x)

)p)
,

so that

∥αn∥pp ≤ 3p−1

(
1

np(1 + 1/p)p
Mp + ∥V ∗

n (ψx)∥pp +
1

(np)p
Mp

)
. (5.47)

Finally,

W ∗
n(ψ

2
x)(x) = x−1/p

[
Cn(f2+1/p)(− log x)

−x2Cn(f1/p)(− log x)− 2x
(
Cn(f1+1/p)(− log x)− xCn(f1/p)(− log x)

)]
≤ Vn(ψ

2
x |]0,1])(x)

+ x−1/p

[(
1− n

e−
(2+1/p)αn

n − e−
(2+1/p)βn

n

(2 + 1/p)(βn − αn)

)
Bn
(
f2+1/p

)
(− log x)

+ x2
(
1− pn

βn − αn

(
e
−αn

pn − e
−βn

pn

))
Bn
(
f1/p

)
(− log x)
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+2x

(
1− n

e−
(1+1/p)αn

n − e−
(1+1/p)βn

n

(1 + 1/p)(βn − αn)

)
Bn
(
f1+1/p

)
(− log x)

+ 2x2
(
1− pn

(βn − αn)

(
e
−αn

pn − e
−βn

pn

))
Bn
(
f1/p

)
(− log x)

]
≤ Vn(ψ

2
x |]0,1])(x) +

1

n(2 + 1/p)
Vn(e2 |]0,1])(x)

+
2

n(1 + 1/p)
Vn(e1 |]0,1])(x) +

3p

n
Vn(e0 |]0,1])(x),

so that

∥Wn(ψ
2
x)∥pp ≤ 4p−1

[
∥V ∗

n (ψ
2
x)∥pp +

(
1

n(2 + 1/p)
+

2

n(1 + 1/p)
+

3p

n

)p
Mp

]
.

(5.48)
The statement follows directly from (5.46), (5.47) and (5.48). QED
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