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Abstract. The paper is concerned with the approximation properties of a modification
of Kantorovich-type of a general class of operators of discrete-type. Such a modification was
introduced by Agratini in 2015; in particular, we focus on extending its approximation prop-
erties in several function spaces, including polynomial weighted spaces of any degree as well
as LP-spaces. Some estimates of the rate of convergence are also obtained.
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Introduction

As it is well known, the classical Kantorovich operators on [0, 1] are obtained
from Bernstein operators on [0, 1] by replacing the values of the given functions
on the knots k/n with their mean values on the intervals {%, nLH} (n>1,0<
kE<n).

Among other things, such modifications of Bernstein operators give rise to
the possibility of expanding the space of functions which can be constructively
approximated by polynomials by including, in particular, LP-spaces (1 < p <
+00).

Over the years, many other approximation processes of discrete-type have
been introduced, for functions acting both on compact and non compact inter-
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vals (for example, see [4, Section 5.3] and the reference quoted therein). Along
with them, Kantorovich-type modifications were also introduced. As a matter
of fact, there is a large literature on Kantorovich-type modifications of discrete
operators, which have been studied on a case-by-case basis.

The possibility to study the properties of Kantorovich-type modifications
starting from a rather general class of discrete operators was explored in [2].
In that paper, Agratini presented a general way to construct Kantorovich-type
operators starting from an approximation process of discrete-type defined as

BN = Y ans(@f (1) nz10€) )

kely

where J is a real interval, (b, )n>1 is a sequence of strictly increasing real numbers
such that b, > 1 for every n € N and lim,,_ .o, b, = +00, I, is a set of indices
such that {k/b, : k € I,} C J, ay are positive continuous functions on J,
(n,k) € Nx I, and, for every n > 1, >, -1 ay i (7) = 1 uniformly on compacts.
Here f € C(J) if the cardinality of I,, is finite, otherwise f belongs to the space of
all continuous functions on .J such that the series in (1) is absolutely convergent.

In order to consider a more general Kantorovich-type modification of the
operators B, Agratini fixed three sequences (an)n>1, (Bn)n>1 and (cn)n>1 of
positive real numbers such that 0 < a,, < ¢, < B, < 1, ayy # Bn, for every n > 1.
Then, for every n > 1 and « € J, the integral operators object of investigation
were defined as

by + Cn i
CulPa) = 95 S anata) [ s de ©)
noT ke, bnton

Here f is assumed to be integrable on J in the case where [I,, is a finite set;
otherwise, f is assumed to be a locally integrable function on J such that the
antiderivatives of f make the series in (2) absolutely convergent.

One of the possible advantages in considering such a general sequence of
operators lies in the fact that, by means of them, it is possible to reconstruct a
continuous or an integrable function by knowing its mean value on subintervals
of [0, +oo[ which do not need to be an equispaced subdivision of [0,4o0[, as
it happens in the context of Kantorovich operators. Similar results were also
considered in [5].

In [2] Agratini showed that it is possible to transfer some approximation
properties from the discrete class of operators to its integral counterpart. In
particular, he studied the approximation properties of the operators K,, in the
case of a compact interval and of an unbounded interval with a finite endpoint.
Among other things, a convergence result in E3 is established, E}, (m > 1)
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being the space of functions g € C([0, +o0[) such that lim,_ o0 g(z)(1 4+ 2™) !
exists and it is finite.

The main objective of the present paper is to deepen the study of such
Kantorovich-type modifications for those particular sequences of positive linear
operators of discrete-type By, on [0, 4o00[ such that the sequence (B,),>1 is an
approximation process in the space Cy([0,+00[) of all continuous functions in
[0, 400 which vanish at infinity.

Under such hypothesis, we are indeed able to extend Agratini’s investigation
by showing that the relevant modifications are an approximation process in
every weighted space E;, as well as in LP-spaces.

The paper is organized as follows. After fixing some notation, in Section 2
we recall the definition of the Kantorovich-type modifications C,, on the positive
real axis, object of our study, collecting some concrete examples and showing
some of their properties. In Sections 3 and 4 we investigate some approxima-
tion properties of the operators C),, such as convergence results in continuous
function spaces and in polynomial weighted spaces, respectively. In Section 5
we get approximation results in LP-spaces. Estimates of the rate of convergence
are also established.

1 Notation

Throughout the paper, the symbol C([0,4o00[) (resp., Cy([0, +00[)) stands
for the space of all real valued continuous (resp., continuous and bounded) func-
tions on [0, +00[. The space Cp(]0, +00[), endowed with the natural (pointwise)
order and the sup-norm || - ||, is a Banach lattice.

We shall also consider the (closed) subspaces of Cy([0, +00l)

Co([0, +-00[) := {f € C([0, +o0])| lim f(z) =0}

T—r+00
and
Cu([0, +o]) = { € C([0, +ooD| lim_f(x) € B).
From now on, for m > 1, we consider the weight wy,(z) = ﬁ (x> 0) and

the relevant Banach lattice

Ep :=A{f € C([0, +00]) iglgwm(x)!f(ﬂf)! € R}

endowed with the pointwise ordering and the weighted norm

[ fllm = lwm flloo = ig%wm(x)‘f(x)‘ (f € En).
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Further, we shall consider the following Banach sublattices of F,,:

E. ={fekE,: xll}r_{loowm(a:)f(z) € R}
and
ES .= {f€E}, : xll)rlloowm(a:)f(as) =0}.

Note that, by Stone-Weierstrass theorem, Cy([0,+oc[) is dense in each E%,
m > 1.

As usual, if 1 < p < 400, we shall denote by LP([0,4o00[) the space of all
(equivalence classes of) Borel measurable functions on [0, +oo[ such that

400 1/p
1l = (/0 If(t)pdt> <o

2 Kantorovich-type modifications of discrete-type op-
erators on the positive real axis

Let (o k)nk>1 be a sequence of positive continuous functions on [0, +oo]
such that, for every n > 1,

D app(z) =1 (x>0) (2.1)
k=0

and the convergence is assumed to be uniform on each compact subinterval of
[0, +o0f.
Moreover, let (by,)n>1 be a sequence of strictly increasing real numbers such
that
by, > 1 for every n € N and lim b, = +o0. (2.2)
n—oo

Following Agratini [2], consider the positive linear operators of discrete-type
defined as

BN =S ana@)f () (n=1.220 (2.3
k=0 "

for all f : [0, +oo[— R for which the series at the right-hand side is absolutely
convergent. Let us denote such a space by Cy([0, +00[). Note that Cy([0, +o0]) C
Ca([0, +00]).

As showed in [2], it is possible to construct an integral extension of the op-
erators (2.3) that generalize the classical Kantorovich modification of such op-
erators. More precisely, consider three sequences (o )n>1, (Bn)n>1 and (¢n)n>1
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of positive real numbers such that 0 < a, < ¢, < Bn < 1, a, # B, for every
n > 1. Then, for every n > 1 and x > 0, we consider the integral operators

k+Bn

bn n > bn+cn
CulD@) = 35S o) [ 16 as (24)
n n k=0 bn+c”;

defined for all functions f belonging to the space L,([0,+oo[) consisting of
all locally integrable functions f on [0,+oo[ whose antiderivatives belong to
Co(]0, +00[). Observe that L, ([0, +o00[) contains Cy([0, +00[) as well.

Clearly, if 5, =1, ap, = ¢, = 0 and b, = n for every n > 1, we obtain the
natural Kantorovich-type modification of operators (2.3).

In what follows we present some examples of operators (2.3) and (2.4). Other
examples might be found in [2].

Examples 1. 1. Assume that b, =n, ¢, =0, oy (z) = e‘”””(nki,)k (n>1,

k € N). Then the operators (2.3) turn into the classical Szdsz-Mirakjan opera-
tors, defined by setting

M) = e S el g (),

k=0

whereas the operators (2.4) become a generalization of Szdsz-Mirakjan-Kantoro-
vich operators first introduced in [5]. More precisely,

k+Bn

n > nl‘k n
Culpa) =S [ g (25)

- k! k+ap
Bn Ca— no‘

Clearly, for a,, = 0 and B, = 1 for all n > 1, we obtain the classical Szasz-
Mirakjan-Kantorovich operators (see [9]).

Other generalizations of Szasz-Mirakjan and Szasz-Mirakjan-Kantorovich
operators can be also seen as particular cases of (2.3) and (2.4). For example,
set

o -1, —(«
wa(k,a) = H(a—i—kﬁ)k Le—( +Bk),

(ke N, a>0,p€]0,1]) and consider the operators
PR @) =S wptkn)f (£) @20
n k:() ) n -

Such a class of operators was introduced in [13] and, clearly, for 8 = 0, they
become the classical Szasz-Mirakjan operators.
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Their Kantorovich-type generalization (see [16]) is given by

k41

- _nngknx/n ft)ydt (z>0),

and, for 8 = 0, we obviously obtain the Szasz-Mirakjan-Kantorovich operators.
2. Assume that b, =n, ¢, =0, oy () = (n+£7l)mk(1+x)_”_k (n>1,keN).
Then the operators (2.3) turn into the classical Baskakov operators, defined by

setting e o
BN =3 ("7 et (1)),

k=0
whereas the operators (2.4) become a generalization of Baskakov-Kantorovich
operators in the same spirit of [5]. More precisely,

@) =53 (" et [T e 2o

k=0

In the literature many further generalizations of Baskakov and Baskakov-
Kantorovich operators are available and some of them can be recovered in the
more general framework of operators (2.3) and (2.4), respectively.

For example, consider the operators

Lo(f)(w) = e 155 Zf( )P’“ M) k(g 4 gy,

where (an)n>1, (bn)n>1 are two sequences of positive real numbers such that

. n (079 .
lim — =1, lim — =0, lim b, =400,
n—oo n n—oo n n—o0

and, for any a > 0,

k
k .
P = ) k_l7
o) = 3 () e
with (n)o =1, (n);=n(n+1)...(n+i—1),i>1 (see [11]).
In [12] the following Kantorovich-type modification was proposed:

k+Bn
bn

Cula) = 5 S B kg gyt [y an

k;' ktan
bn

clearly, it is a particular case of operators (2.4).
3. Let (An)n>1 be a strictly decreasing positive sequence such that lim,, oo Ay =
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0 and limy,_o nA, = +00. Moreover, assume that b, = n\, and o, ;(z) =
(1) (Anz)*(1 4+ Apz)™™ for every n > 1, h = 0,...,n, and > 0. Then the
operators (2.3) become the positive linear operators of discrete-type introduced
and studied by Agratini in [3], namely

Bu(f) (@) = éi (”)(A o)k f (’“) n>1,0>0). (27

" (14 Apx)™ = \k " nAn - '

Note that, for A, =n%~1 (n > 1, 0 < 8 < 1), the above operators are the ones
studied by Baldzs and Szabados in [8] (for 5 = 2/3 see [7]).
Then, for every n > 1 and = > 0, we can define the relevant integral modification
of type (2.4) as follows:

k+PBn

>‘n n _ - nin+cn
G =5 a3 () [T (e de
n n k=0 n)\nﬁjcln

As a particular case of the above operators we can obtain the Kantorovich-
Baldzs-Szabados ones considered in [1].

From now on, for every A > 0, we denote by ey the function
ex(t) =t (t>0) (2.8)

and, for a fixed = > 0, by 1, the function defined as ¢, (t) =t —z (¢t > 0).
Coming back to the general framework of operators (2.4), it is easy to see
that Cp(eg) = eg for every n > 1. As showed in [2, Lemma 1],

b an"’ﬁn

Cn(el) = mBn(el) + 2(bn T Cn) (29)
and
bn 2 bn n n 1% TQL nr~n
Cules) = (bn Hn) Bu(er) + S S (o) 4 S TS 10

In the next result we evaluate C,(ey,) for every n,m > 1.

Proposition 1. Fiz m > 1 and assume that ey, € Co([0,400[) for every
h=0,...m. Then ey, € Ly([0, +00[) and

_ 1 RS A=
Cnlem) = (m+1)(b, + cp)™ ;bn( h ) pzo fron™ " Bn(en). - (211)

Moreover, for everyn > 1 and x > 0,

2 1
24— (2.12)

Co(2) () < Bo(42)() + ;anwm)(x) b
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Proof. We begin to prove formula (2.11). For every n > 1 and x > 0,

k+fBn

b + cn bn+cn
Culen)(w) = 5 > onste) [ e
" k=0 brten
1

= CES T TSRS ;ank [ ) | (k+ Bn)" T — (I{;+an)m+1:|

1

~ (m+ 1)(bp + )™ (B — o) ZO‘”’“ th<m+ >

[(Bn)m-i-l—h . (an)m—i—l—h} (Zi)h

X
m m+ 1 m—~h
= ~h=rp,
Do L H("Y) X et o) @)
h= p=0
Finally, for every n > 1 and = > 0,
b 2 2
2 _ n 2 n
Cuud)e) = (2 ) Bulu)(o)+ 2 (2 ) Bulen))
— on TPV,
(bn +Cn> R o A
a2 + B2 4 a3 b an + B 5
n n n~n _ n B _ n n
T S )2 Ton + o n(e1)(@) T e, T

< Bo(¥2)(z) — QIL‘ani:CHBn(el)($) (1 - b,ﬁc) +a” (1 - <bnb+"cn>2)

e+ S R
< BalWd)(a) + 4ot 5 Balba)(a) + -
and hence (2.12). GED
For a given A > 0, set
fi(z)=e ™ (z>0) (2.13)

and note that f) € L, ([0, +00]) N Cy(]0, +00[). We have the following result.
Lemma 1. For everyn > 1 and A > 0,
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Hence, if Bnt1(f) < Bu(f) for every n > 1 and for every convex function
[ € Cy([0,400]), then

Culf) < Bu(f o ) By (fon ) <Bi(F 0 ) <Bi(fy).  (219)

bn+cn bn+cn l+cn

Proof. Formula (2.14) follows by direct calculations.

By using the well known inequality 1 — e™® < z (z > 0), we get the first
inequality in (2.15).

The second inequality in (2.15) is a consequence of the assumption on the
behaviour of the operators B,, on convex functions.

Since the function g(z) = 7%~ is increasing, b, > 1, ¢, < 1 (n > 1), we

have that f\ < f sua < f_x < fa; given the positivity of the operators B,
bntcn Tten 2
we easily get the last two inequalities in (2.15). QED

3 Approximation results in continuous function spaces

In this section we investigate the approximation properties of operators
(Cn)n>1 defined by (2.4) in certain continuous function spaces.

As a matter of fact, for every n > 1, we have that C), is a positive continuous
operator from Cj([0, +oc[) into itself and [|Cy || g, (j0,400)) = 1 (see [2, p. 684]). In
[2, Theorem 2] it was also proved that, if e; € Cy([0, +00][), i = 1,2, and for every
i =0,1,2, lim,_, By(e;) = e; uniformly on compact subsets of [0, +o0[, then
lim;, 00 C(f) = f for every f € Cy([0,+00]) uniformly on compact subsets of
[0, +ool.

Agratini also presented some estimates of the rate of convergence (see [2,
Theorem 4]).

In this section we study the approximation properties of the operators C,
on Cyp(]0, +oo[) and C4([0,+00]). We begin by stating the following result.

Proposition 2. Consider the operators (Cy)n>1 defined by (2.4). Further,
for every n,k > 1, assume that oy, € Co([0,+00[). Then, for every n > 1,
Crn(Co(]0, +00[)) C Co(]0, +00[) and Cy(Cx([0, +00[)) C Cx(]0, +00]).

Proof. Fix n > 1, f € Cy([0,400[)), and € > 0. Then there exists z1 > 0 such
that |f(z)| < e for every x > x;. Moreover, there exists x2 > x; such that, for

every r > xo,
€

lon i@ < S A ] 1)

for any k = 0,...,n[z1], [z1] being the integer part of z;.
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Then, for every x > xo,
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k+Bn_
b +Cn bn+cn
Cola)] < S Zank NG
n " = bn“rCn
nlz1] k+Bn
b + Cn bn+cn
= S o) [ 1) ag
" k=0 bnton
b, +c > bt
D S / £©)]de
" " k—n[x1]+1 bn+c7:1
< g+g Z ank <e.

=nlz1

This completes the proof of the first part of the statement. The second one

derives from the fact that C),(eg) = eg for every n > 1.

QED

In order to state the next approximation results, we first prove the following

inequality: for every A >0, n > 1,

1 b +cp
0<1— ot (
)\ﬁn Qp ‘

In fact, by using the very well known inequalities 1 —e ™ <z, 1 — e

x —2%/2 (z > 0), we obtain

_ _Jdan

_ _ABn
bn+en — e bn+cn

)g%. (3.16)

-z >

b, + ¢ _ Jan _ _ABn
0 S 1 — (e bnt+cn — e bn+0n>
)‘(/Bn - an)
by +cpn  __2on < _ MBn—on)
= 1 _—_— bn+cn 1 — e bn+tcn
)\(ﬁn - an)

2 2
<1— bn"‘cn 7b:ircln Bn_ (7% o A (Bn—Oén)
- (Bn - an) bn +cn 2(bn + Cn)2
=1—¢" bn+cn+ A(Bn — am) )\(a”+ﬁn)<i'

2(bp, +cn) T 2(bptcn) T by

From now on, we assume that the sequence (By),>1 is an approximation

process in Cp(][0,
CO([O7 +OOD7

lim B, (f)

n—oo

uniformly on [0, +o0].

+00[), i.e., Bp(Co(]0,+00])) C Cp([0,+00[) and, for every f €

= f (3.17)
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According to [4, Proposition 4.2.5, Part 2], (3.17) holds true if there exists
0 < A1 < A2 < A3 such that

n—oo

uniformly on [0, +oc[, for every i = 1,2, 3.
We point out that, since By,(eg) = eg, then from (3.17) it follows that for
every f € C.([0,+0o0])
lim B,(f)=f (3.19)

uniformly on [0, 4+o00].

Examples 2. 1. Szdsz-Mirakjan operators and Baskakov operators (see Ex-
ample 1, 1 and 2) satisfy (3.18). For a proof, see [4, pp. 340-341 and p. 344],
respectively.

2. For every n > 1, let B,, be the operators defined by (2.7) and considered in
Example 1, 3. By simply calculations it is easy to see that, for a given A > 0,

“Aa)\ " n
Bn(f)\)(‘r) = (1 * >\n$€ ) = (1 -+ ﬂ(ef’\/(")‘n) — 1)) )

14+ Mz 1+ Az

and from this formula we immediately infer that these operators satisfy (3.18).

After these preliminaries, we are ready to prove the following approximation
theorem.

Theorem 1. Suppose that o), € Co([0,+00]) for any n,k > 1. Under
assumption (3.17), lim, o0 Cn(f) = f uniformly on [0,+o00] for every f €
Ci ([0, +o0]).

Proof. In order to show the statement, it sufficies to show it in Cy[(0, +o00[)
and, in particular, for each function fy(z) = e™**, XA > 0, since the subspace
generated by (f1)a>o is dense in Cy([0, +o0]) and the sequence (Cy,)n>1 is equi-
bounded on Cy([0, +00]).

By means of (2.14) and (3.16), for every z > 0 and n > 1, we have

b  Dom _ _ABn
n+Cn (6 b:L\JrCn —e bn+cn) —1'Bn <fM> (1")

|Crn(fa)(z) = fal2)] <

)‘(Bn - an) bn+cn
+|Bu (£, ) (@) = Bu(£) (@) + [Bul£)(@) — Fr(@)
L S | FY EATA RPN
A Aen A
< e (e - 1) 4 [Balfa) — fallee < 5+ 1Balh) — fille

and this completes the proof. QED
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We now provide estimates of the rate of convergence, by means of the first
and second modulus of continuity w(f,d) and we(f,d) (for a definition see,
e.g. [14]). These estimates are based on a similarity technique which consists in
introducing a suitable isometric isomorphism between C, ([0, +00() and C([0, 1]).

In general, let X and Y be two different Banach spaces and let & : X —
Y be an isometric isomorphism. Moreover, consider an approximation process
(Lyp)n>1 in X. Then the operators L defined by L} := ® o L, 0o ®~! (n > 1)
form an approximation process on Y and we have that

[n(u) — ullx = [[Ln(®(w) = 2(u)]ly - (3.20)

The above equality is the key to transfer the problem of estimating the rate
of convergence for (Ly),>1 in X to the sequence (L}),>; in Y.

Coming back to the operators C,,, let us assume, for the sake of simplicity,
that b, = n and ¢, = 0.

Consider the isometric isomorphism ® : C, ([0, 4+00[) — C([0,1]) defined by
setting

f(=logt) if0<t<1,
O(f)(t) = lim f(z) if¢=0, for every f € C.([0,+o0]). (3.21)
r—>+00

We observe that @1 : C([0, 1]) — C,([0, +00]) is defined as ®~1(g)(¢) := g(e™)
for every g € C([0,1]) and t > 0.
Moreover, for every n > 1 and g € C([0, 1]), set

Crilg) = D(Cu(@7(9)))- (3.22)
In what follows, the next lemma will be useful.
Lemma 2. For every A >0, x €]0,1], and n > 1,
* X A
(Cr(ex)(@) — 2| = |Cu(fr)(~logz) — 2*| < [|B)(exn) = exlloo + o (323
where B = ®oB,0®~! ey and ® are defined, respectively, by (2.8) and (3.21).

Proof. Indeed, for a given A > 0, = €]0, 1], and n > 1, we have that
|Cr(en)(@) = 2| = [Cul(fr) (= log ) — 2

‘)\(ﬁn—a) (e_MTn N 6_%> B (f)(=logz) — 2

n Aap ABn
<—— (e n —e"n | |B, 1 Y
~ A(Bn — o) (6 c ) | Ba(f2)(~log ) — a7
n _dan __ABn By N )\
v on 8 < B A
(1 ey (7% ) < el

because of (3.16). QED
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Remark 1. We observe that if (B,),>1 is an approximation process in
C ([0, +0o0]), then for every A > 0,

Tim [|Bi(ex) — exlloe = 0.

We have the following result.
Proposition 3. Under the same assumptions of Theorem 1, for n > 1 and
f € Ci(]0, +00]),
3

1C(f) = flloo < w(®(f),0n) + Sw2(P(f). dn), (3.24)

where 6, = \[ 1 Bi(e2) — eslloe + [ Bi(er) = erlloc + £ and By = B o Byod~!.

Proof. According to (3.20) it eas enough to show (3.24) for [|C}(®(f))—P(f)]|co-
To this end we apply [14, Theorem 2.2.1] from which, for every n > 1, f €
Cy(]0,40]), 0 <z <1landd >0,

[Cr(@(f)) (@) = @(f)(2)] < |Cpleo)(x) — L[ D(f)()]

#3ICH0@(R(7).0) + (Cilen)(@) + GO @) wal@(1).0)

It is easy to prove that C}(eg) = ep,

Ci () (@) = { Calf —zeo)(—logz) 0 <a <1

and
CF (2)(z) = { (()Jn(fz — 22 fy + 22e0)(— log x) ﬁ 2 < g,é 1 (3.25)

where f\, A = 1,2, is defined by (2.13).
First of all, taking (3.23) into account, we notice that, for every 0 < x <1,

Cr(e)(@)] = [Cn(f1)(—logz) — x| < ||B;(e1) — e1lloo + %

Analogously,

Cr(W2)(@) = Cu(f2)(—~logx) — a? — 22(Cn(f1)(~logz) — )
4
< [[Bn(e2) = ezlloc + (1B (e1) — eafloo + .
We note that, by means of the Cauchy-Schwarz inequality,

|G () ()] < VO3 (12)(2)-

Now, set § = d,; then we get the result. QED
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4 Approximation properties in polynomial weighted
function spaces

We pass now to study the approximation properties of the sequence (Cy,)n>1
in polynomial weighted spaces of continuous functions.

Proposition 4. Consider the operators (Cy)n>1 defined by (2.4). Further
assume that By (Ey,) C Ey, for everyn,m > 1. Then C,, is a positive continuous
operator from E,, into itself and

1Cn (Pl < NS llm (1 4 [|Cr(€m) lm)-

Proof. First of all observe that e, € E,,, and hence B,(e}) € E,, for every
h =0,...,m, thanks to the assumption on the B,’s. Hence, Cy,(en,) € Ey, (see
(2.11)). Fix now f € E,,; then

W (%) |C () (@) < || fllmwm (@) Crleo + em)(@) = || fllmwm(2)(1 4+ Cnlen)(x)) -
From this and formula (1) the claim follows. QED

From now on we assume that

sup  wm(2)Br(em)(z) < +o00. (4.26)
z>0,n>1

We note that (4.26) implies that, for every k =0,...,m,

sup  wm () Br(er)(x) < 400, (4.27)
r>0,n>1

since |ep| < eg + ey, for every 1 < h < k. Hence, on account of Proposition 1,
(4.26), and (4.27),

M := sup wpn(z)Chleo + em)(x) < 400
r>0,n>1

and, in particular, for every n > 1,

1Cnllm < M (4.28)

(see Proposition 4).

Proposition 5. Consider the operators (Cp)n>1 defined by (2.4). Further
assume that, for every n,k > 1, ay € Co([0,400[). Then, for every n,m > 1,
Cn(EQ) C EV.
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Proof. Let D be the subspace generated by the family (fy)x>o . By Stone-
Weierstrass theorem D is dense in Cp([0, +o0o[) and hence in EY,. In order to
get the claim it is sufficient to note that C,, (D) C Co([0, +o0[) C ED,. QED

Theorem 2. Assume that oy, € Co([0,+00]) for any n,k > 1. Moreover,
suppose that (3.17) and (4.26) hold true. For a given m > 1, if f € EY, (and,
in particular, if f € E9 ), then

lim C,(f) = f with respect to || - ||m.

n—oo

Moreover, for every f € E,,

lim Cy(f) = f (4.29)

n—o0

uniformly on compact subsets of [0, 4o0].

Proof. By means of Theorem 1, lim,,_,o C,(f)) = f) with respect to || - ||cc and
hence with respect to || - ||;. Since the sequence (Cy,)n>1 is equibounded on EY,
(see (4.28)) and the linear subspace generated by (fi)a>o is dense in EY,, we have
that lim,, o, Cp,(f) = f with respect to || - ||, for f € EY,. On the other hand,
if f e E}, then f =g+ am(ey+ en), where auy, := limy 400 Wi (z) f(z) € R
and g = f — am(eo + en) € EY . This completes the proof.

Taking that into account, since E,, C EY, ., and the weight wy, is bounded
from below, we get (4.29); in fact, if K is a compact subset of [0, +-o00[, then

W (2)|Cn(f) (@) = f(2)] < NICh(f) = fllmta

for every x € K, where N := sup,¢; wt:i(j))' QED
We now want to provide some estimates of the rate of convergence in The-
orem 2.

Proposition 6. Under the same hypotheses of Theorem 2, assume that
there exists mg > 1 such that

i VB D)

n—00 1+ xgmo

uniformly on [0, +oc[. Then, for every f € EO, m >mg, n > 1,
1Cn(f) = fllm < 2w(f,0n),

Bn(42)(z) VB (¥z)(z)|
Trzm T \/Lb% SUPy>0 = 1ygm T %1 :

where o, = sup,>g
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Proof. Tt is known that (see [4, Theorem 5.1.2]), for every n > 1,z > 0, f € EY,
(m >mg) and § > 0,

G~ 10 < (14 VOB ) ol ).
Then

Ch (Y2
ICnF) ~ fllm < (1 s m> w(f,9).

from which the desired uniform weighted estimate could be derived, since, on
account of (2.12),

qp YC D@ _ - VB@) | v2 VIBI@] | V2L

x>0 L+am N >0 I+am Vv bn >0 14 am V bn

QED

The previous result applies, for example, in the context of Example 1, 1,
since the classical Szdsz-Mirakjan operators M, satisfy M, (1,)(x) = 0 and
Mo (2)(2) = a/n.

We now proceed to present some estimates of the rate of convergence in E,
by using again the similarity technique illustrated at page 26.

From now on, for the sake of simplicity, we assume that b, =n and ¢, =0
for all n > 1. Moreover, we assume that, for all n,h > 1,

B (Py) C Py, (4.30)
where P}, is the space of all polynomials of degree at most h; we also assume
that, for every h,n > 1,

1
Bn(en) = en + —pn-1, (4.31)

where pp,_1 is a polynomial of degree h — 1.
Under these assumptions, Cy,(Pp) C Py, for every h > 1 and (see (2.11))

1
Cn(en) = en + - dh—1, (4.32)

where ¢j,_1 is a polynomial of degree h — 1.
We now consider the isometric isomorphism ®,, : E — C([0,1]) defined by
setting

wnf) (—logt) if0<t<1,
D, (f)(t) = { (limf)(q(um;;g(:r)) ft=0 for every f € E;,.  (4.33)

T—-+00
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Note that @1 : C([0,1]) — Ef, is defined as @} (g)(¢) := w;,}(t)g(e™?) for
every g € C([0,1]) and ¢ > 0.
Moreover, for every n > 1, we consider the similar positive linear operator

Wy C([0,1]) = C([0,1]) defined by setting, for any g € C(]0, 1]),
Wi (9) = @m(Cn(®7,'(9))). (4.34)

We have the following result.

Theorem 3. Suppose that (4.30) and (4.31) hold true. Then, under the
same assumptions of Theorem 2, for everyn > 1 and f € E},,

Hl,m
n

”@m(f)HOO + HQJYLW ((I)m(f), Un) + HS,mWQ ((I)m(f)7 Jn) s
where

o0 = (| Bi(ea) — ealloo + 4| Bi(e3) — e3]loo + 6] B (e2) — ealloo
+4||BE(e1) — e1]|o +32/n) "4,

B = ®o B, 0o® ! (see (3.21)), and Hi ym, Hom, H3 1, are suitable positive
constants which depend on m, only.

Proof. We now establish a uniform estimate for ||W(®,,(f)) — Pm(f)] oo, using
again [14, Theorem 2.2.1]; in particular, for every n > 1, f € E¥ /0 <z <1
and § > 0, we get

W2 (@n(£))(&) — B (@) < W (e0)(w) — 1@ ()(2)
S @ @), + (W) o) + 55 WD) ) al®n().0).

From (4.33) and (4.34) it easily follows that

N wmCreg +em))(—logx) if0<z <1,
Wn(eo)(x):{g (e )= log ) ifz=0

W () (x) = { éwmcn((l + em)(f1 — zeo)))(—logx) E giﬁ <1,

and

W (42)(z) = { (()wmcn((l +em)(fo — 22 f1 + 2%€)))(— log ) ﬁ?ﬁ;é .

with fx, A = 1,2, defined by (2.13).
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In particular, for all n > 1 and z €]0, 1],

Him
(W (eo)(x) — 1] = Jwm(=log z)Cnleo + em)(—logz) — 1| < %

because of (4.30), (4.31), and (4.32).

Moreover, taking (3.22), (3.25), (4.32) and the Cauchy-Schwartz inequality
into account,

W () ()] = |(wnCa((L+ em) (1 — eo))(~ log )
= win(—10g 2)v/Co((cq + em)?) (—log 2)v/Cu((fr — ze0)?)(~ log )
< Hyu/C(02)(@) < Hy Y/ T (00 (@),

Arguing in the same way,

W (42)(@) = (wnCal(1 + e) (f1 — we0)?)(~ log )
= win(~10g 2)v/Cr((eq + em)?) (—log 2)v/Co((fr — ze0)?)(~ log )

< H2,m C;(¢;l)($)>

where C} is defined by (3.22).
We now note that, by virtue of (3.23),

Cr1)(a) = Calfi)(~log) — a" — 4a(Cal f5)(~ log) — 2*)
+ 62%(Cp(f2)(—logz) — x?) — 423(Cp(f1)(— log z) — )

< IBi(en) — eallo + = + 41 Bi(es) — egllo +
+ 6B e2) — eall + o+ 4 Bylen) — ealloo +

Setting § = o0, we get the desired result. QED

5 Approximation properties in LP-spaces

We now prove that, under suitable assumptions on , k, the operators C,
are well defined and are an approximation process on LP-spaces, p > 1.

We first prove under which conditions the sequence (Cy,)n>1 is well defined
and equibounded from LP([0,4+o00[) into LP([0, +00]).

Lemma 3. Let us assume that, for everyn > 1,

o0
M, = sup/ ap k() de < +oo.
k>1Jo
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Then Cp(LP([0,400[)) C LP([0, +o0]) and
bn + cn
Brn — o’
In particular, if there exists M > 0 such that Mn% <M foranyn>1,
then the sequence (Cy)n>1 is equibounded in LP([0, +00]).

1Callze,re < M

Proof. Fix n > 1, x > 0 and f € LP([0,+o0[). By applying twice Jensen’s
inequality we get

k+Bn
by, + cn brten
Colf)a)l < zank ) [ e
" n = bn+¢n
Hence,
Foo b, + ¢ b +oo
Ch Pdr < n/ fgpdg/ an k(x) dx
| eun@ Z@n Sl ARG A
b, + ¢,
< Mg
I
and this completes the proof. QED

Examples 3. 1. Since, for every n > 1,
/+oo e " (n:c')k dx = lv
0 k! n
if the operators C), are defined as in (2.4), then
bn + cp,

n(/Bn - an)’
so, in order for the sequence (Cp)n>1 to be equibounded in LP(]0,+ool), it
suffices that

1Cnllzr,Lr <

b, + cn,
Bn — an
Similar results were obtained in [5].
2. Since, for every n > 1,

/+°° zk d — 1
wobJo A+a)yt T T
if the operators C), are defined as in (2.4), then
b, +c¢
1Cnllzr,r < e

T (n=1)(Bn—om)’
so the sequence (Cy,),>1 is equibounded in LP([0, +o0]) if (5.35) holds true.

<M (n>1). (5.35)
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Remark 2. We point out that results similar to Lemma 3 hold true also if
J = [0, 1] and operators C,, are of the form

Culf) () = LnFn RETSS ) [ e ae

— T
BTL n k=0 bn+cn

where, for every n > 1
n
Z anp(z) =1
k=0

and oy, k() > 0 for every x € [0,1].
Those operators can be seen as a generalization of the ones treated in [6,
Section 5.

We can finally prove the following result.

Theorem 4. Assume that (3.17) holds true and oy € Co([0,+oo[) for
every n,k > 1. Further, suppose that, for every n > 1, By11(f) < By(f) for
every convex function f € Cy([0,4+00]) and that B1(fx) € LP([0,+o0]) for every
A > 0. Then, for every f € LP([0,+o00[)

Tim Cy(f) = f  in LP(10,+00]). (5.36)

Proof. For any given A, A2,A3 > 0, {f),, /)., [} is a Korovkin subset in
LP([0,400]) (see [4, Proposition 4.2.5]) so to get (5.36) it suffices to prove that,
for every A > 0, Cp(fr) = fx in LP([0, 400]), where the function f) are defined
by (2.13). Indeed, for every A > 0, Cy,(f\) — fx uniformly (see Theorem 1) and
hence pointwise. Moreover (see (2.15)), for every n > 1,

Cn(A)P < By (fry2)"-

By applying the dominated convergence theorem, we conclude the proof. QED

Examples 4. 1. Let M, be the n-th Szdsz-Mirakjan operator (see Example
1, 1). Then, for every x >0, n > 1 and A > 0,

M, (fr)(z) = exp (nz (e*% - 1)) .

Hence M,,(fx) € LP([0,+4o0[) for every n > 1, p > 1 and A > 0 and Theorem
4 applies to the relevant operators (2.5).

These results can be compared with the ones proved in [5].
2. Let B,, be the Baskakov operators (see Example 1, 2). Then given z > 0,

n>1and A >0,
1

A\
1+x—xefﬁ)

Bn(fa)(z) = (
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Then, for every p > 1, Bi(fy) € LP(]0,+oco[) and Theorem 4 can be used
to prove that the relevant operators C), defined by (2.6) are an approximation
process in LP([0, +00]).

A way to get an estimate of the rate of convergence in Theorem 4 is to apply
a similarity technique that allows to derive it by means a suitable isometric
isomorphism between LP([0, +o00[) and LP([0, 1]), as done in Sections 3 and 4.

For the sake of simplicity, let us assume that b, = n and ¢, = 0.

Consider the isometric isomorphism @, : LP([0, +o00o[) — LP(]0,1]) defined
by setting, for every f € LP([0,+oc[), and for every 0 < ¢t <1,

O, (f)(t) =t /P f(—logt). (5.37)

Its inverse @1 : LP(]0,1]) = LP([0, +00[) is defined by ®,'(g)(t) = e tPg(e)
for every g € LP(]0,1]) and ¢ > 0.
Now, for all n > 1, define the operators W, : LP(]0,1]) — LP(]0, 1]) as follows

Wi(g) = ©,(Cn(®,(9))) (g9 € LP(]0,1])),

getting, as quoted before, an approximation process in LP(]0,1]).
We point out that, for any 0 < x < 1,

Waleo lp,) (@) = 2~ #Cy (1) (= loga), (5.38)
Wa(Ws lpo)(@) =2 Co (f14y = af1) (~loga) (5.39)

and
Walw? [on)(@) =2 2 (fr4y = 20f1.y + 2201 ) (~logz)  (5.40)

(see (5.37)), where fy is defined by (2.13).
Consider now the positive linear operator o : LP(]0,1]) — LP([0,1]) defined
by setting, for every g € LP(]0, 1)),

o(g)(t) = { g(t) Sié_ﬁ b (5.41)

Then |[|g[l, = [|o(g)ll, for all g € LP(]0,1]).
Now, for any n > 1, consider W} : LP([0,1]) — LP([0,1]) defined, for every
f € L*([0,1]), by
Wo(f) = a(Walf ljo,1))-

We point out that, for any f € LP(]0,4+00[) and n > 1,

Wy (0(®p(1)) = o (Wala(®p(f)) [j011) = o (Wa(®p(f)))-
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Moreover, for every = €]0,1] and ¢ > 0, we set

Va(ei o)) () = q)p(Bn(q);l(ei

_1
0))@) =2 By (fiy1) (~loga).
p
From now on, we shall assume that
Va(ei ljo,1)) € LP(]0,1]) for every i = 0,1, 2; (5.42)

moreover, we shall suppose that there exists M > 0 such that, for every n > 1
and 1 =0,1,2,
IVa(ei [jo)llp < M.

This implies that
1V (el < M, (5.43)

where V' (e;) = a(Va(ei ljo,1))-

After these preliminaries, we recall that, in order to evaluate ||Cy,(f) — f||p.
by using a similarity technique, we have at our disposal in LP([0,1]) a result
due to Swetits and Wood (see [15, Theorem 1)), which involves the second-
order integral modulus of smoothness in LP([0,1]), denoted by wa(g,d), (see
[10, Chapter 2, Section 7]).

The result runs as follows: if L,, : LP([0,1]) — LP([0,1]) (n > 1) is a positive
linear operator then, for every g € LP(]0,1]),

[ Ln(g9) — gllp < Kp(ﬂi,p

9||p + wa(g, Mn,p)p) (5.44)

with K}, > 0 is independent on g and n > 1, provided that p, ;, — 0 as n — oo,
where

2p/(2p+1
pinp =\ max{[|Ln(eo) — colly. ol 1827y, (5.45)
an(r) = La(¥e)(z) and  Bu(z) = La(y3)(x) (0 <o <1).
After these preliminaries, we are now ready to state the next result.

Proposition 7. Under the same assumptions of Theorem 4, let us assume
that (5.42) and (5.43) hold true. Moreover let us suppose that

Jim [V (eo) — eollp = 0
and that, denoting by

an(z) = Vi (vo)(2) and bu(z) = Vi(¥5) (@) (0<z<1),

we have
lim [|an, = lim_ [|by |27/ ZP+Y) = 0.
n—oo n—oo
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Then

3B Hne = 0

(see (5.45) where the.operators L, are exactly the operators W) and estimate
(5.44) applies to the operators C,.

Proof. By using (5.45), we have that, for every f € LP(]0,+o0]),

1C(f) = fllp = IWn(@5(f)) = @p()llp = lo(Wn(@p(£)) = p(f))llp
= [lo(Wn(®5(1))) = o(@p(flp = W (0(@5(£))) = o(@p(f))llp

< Ky (i pllo(@p ()l + w2 (0 (@p(£)); np)p)

= Kp (1, p |25 () lp + w2(0(Pp () f1mp)p):

provided that lim,, o finp — 0.

We now proceed with some calculations.

First of all, for all 0 < =z < 1 and taking (2.14), (3.16) and (5.41) into
account,

Wy (eo)(z) — 1| = [Wh(eo lj0,17) — 1]

an Bn
5 pna (e_Tn —6_7") x_%Bn (f;) (—logx)—l‘
n — &n 4
an Bn
< (671’7 —67?‘) ’:c*l/an (f;) (—10gm)—1’
Bn — an P

pn _an _bBn
)
n — Un

< ‘x_l/an <f%) (—logz) — 1) + pln

_|_

Hence,

[Waleo ljo.)(@) =17 < 227! (‘“"” B (1) (1og) =1+ (p;),,)
= or—! <|Vn(€o o) (@) =17 + (pf,lz)p) ;

accordingly,

. _ * 1
W (eo) — eol, < 27 (nvn (e0) — coll? + ) (5.46)

(pn)P
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Moreover, for a given 0 < x < 1, taking again (2.14) and (3.16) into account,

(Wi () ()] = Wz [10,17) ()]

_ n
— P

L+ 1/p)(Ba — ) (¢
R L (e_%:f — e_%) By (f1/p) (—logz)

xﬁn — Qp
e_(1+1/p)an e_(1+1/p)ﬁn
-1/ _ " - " _
= Kl SRRV IER ) B i) (- log2)
+ ‘Bn (f1+1/p) (—logx) — zB, (fl/p) (— logx)‘

+x <1 — anilan <6_% — 8_52>> By (fl/p) (—10g$):|

1
n(l+1/p)
-~ 1
+x l/pn—an (fl/p) (—log x)
_ 1
a n(l+1/p)
Then

_(+1/p)an _(+1/p)Bn

P ) By (fii) (- loga)

< g Up By (f1/p+1) (—logz) + Vi (v [10,1)) ()]

! Va(eo [jo,17) ().

Va(er [oa) (@) + [Va(z [jo,1) ()] + np

Wrlg)(@)f < 3 ((n 1 V(e ‘}0,1})(:17)>p+

(1+1/p)
V(e o) @)P + (nlpweo ho,l]xx)) ) ,

so that

- 1 . 1
lowa 1}y < 377 <WMP—|— IV () + (np)pMp>. (5.47)

Finally,

Wi(@2) (@) = 27 [Cr(farp) (— log )
—$2Cn(f1/p)(—10g r) — 2z (Cn(f1+1/p)(—10g r) — ﬂfcn(fup)(— log x))]
< Va(¥3 [jo.17)(2)

_(2+1/p)an _ (2+1/p)Bn
_ e n — e n
+a P [(1 -n ) By (fat1/p) (—log )

(2+1/p)(Bn — an)

+ 22 (1 __p (6_% - 6_52)> B, (fl/p) (—logx)

6n_04n
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(+1/p)an (+1/p)Bn

n —e

(1+1/p)(Bn — )

+ 21‘2 <1 — ﬁ (67% — eﬁz)) Bn (fl/p) (_ log‘r)
1

< Va0 hoa) @) + Sy
2

3
+aﬁj@%@mmm+§W@mm@»

+2x l—ne

By, (fis1/p) (—log )

Va(ez [jo,17) (@)

so that

p
Wl < 2 IV DI+ (moes + ma + 2) M)

2+1/p) n(1+1/p) n
(5.48)

The statement follows directly from (5.46), (5.47) and (5.48). QED
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