Note di Matematica Note Mat. **42** (2022) no. 2, 93–107.

(α, τ) -P-derivations on left near-rings

Samir Mouhssine

Department of Mathematics, Polydisciplinary Faculty, University Sidi Mohammed Ben Abdellah, LSI, P.O.Box 1223, Taza, Morocco. samir.mouhssine@usmba.ac.ma or samirfes27@gmail.com

Abdelkarim Bouaⁱ

Department of Mathematics, Polydisciplinary Faculty, University Sidi Mohammed Ben Abdellah, LSI, P.O.Box 1223, Taza, Morocco. abdelkarimboua@yahoo.fr or karimoun2006@yahoo.fr

Received: 28.8.2022; accepted: 21.3.2023.

Abstract. Suppose that \mathcal{N} is a near-ring and P is a 3-prime ideal of \mathcal{N} . In this paper we introduce the notion of (α, τ) -P derivation in near-rings, we also study the structure of the quotient near-ring \mathcal{N}/P which satisfies certain algebraic identities involving (α, τ) -P derivations.

Keywords: Near-rings, Prime ideals, (α, τ) -derivations, Commutativity.

MSC 2022 classification: primary 16U60, secondary, 16W25.

1 Introduction

Throughout this paper, \mathcal{N} will denote a left near-ring with multiplicative center $Z(\mathcal{N})$ and additive center $C(\mathcal{N})$. A near-ring \mathcal{N} is said to be zerosymmetric if 0x = 0 for all $x \in \mathcal{N}$ (recall that a left distributivity in \mathcal{N} yields that x0 = 0). Also, \mathcal{N} is said to be 2-torsion free if 2x = 0 implies x = 0 for all $x \in \mathcal{N}$. Recall that \mathcal{N} is called a 3-prime near-ring, if for $x, y \in \mathcal{N}, x\mathcal{N}y = \{0\}$ implies x = 0 or y = 0. For all $x, y \in \mathcal{N}$, [x, y] = xy - yx and $x \circ y = xy + yx$ shall denote the Lie product and the Jordan products, respectively. The symbol (x, y) will denote the additive-group commutator x + y - x - y. A normal subgroup P of $(\mathcal{N}, +)$ is called a left ideal (resp. a right ideal) if $\mathcal{PN} \subseteq \mathcal{N}$ (resp. $(x+p)y-xy \in P$ for all $x, y \in \mathcal{N}$ and $p \in P$), and if P is both a left ideal and a right ideal, then P is said to be an ideal of \mathcal{N} . According to Groenewald [6], an ideal P is a 3-prime if for $a, b \in \mathcal{N}, a\mathcal{N}b \subseteq P \Rightarrow a \in P$ or $b \in P$. An additive mapping $d: \mathcal{N} \to \mathcal{N}$ is a (α, τ) -derivation if there exist automorphisms $\alpha, \tau: \mathcal{N} \to \mathcal{N}$ such that $d(xy) = \tau(x)d(y) + d(x)\alpha(y)$ for all $x, y \in \mathcal{N}$, or equivalently, as noted in [1], such that $d(xy) = d(x)\alpha(y) + \tau(x)d(y)$ for all $x, y \in \mathcal{N}$. A mapping $d: \mathcal{N} \to \mathcal{N}$ is said to be *P*-additive if $d(x+y) - (d(x) + d(y)) \in P$

ⁱCorresponding author

http://siba-ese.unisalento.it/ (C) 2022 Università del Salento

for all $x, y \in \mathcal{N}$. A mapping $d : \mathcal{N} \to \mathcal{N}$ is *P*-trivial if $d(\mathcal{N}) \subseteq P$. Element x of \mathcal{N} for which $d(x) \in P$ is called P constant. A mapping $d : \mathcal{N} \to \mathcal{N}$ is called $(\alpha, \tau) - P$ -commuting if $[d(x), x]_{\alpha, \tau} \in P$ for all $x \in \mathcal{N}$.

Many results in the literature show how the global structure of a nearring \mathcal{N} is often closely related to the behavior of derivations defined on \mathcal{N} . Recently, a number of more general notions of derivations on near-rings have been introduced and studied (see for example [3], [4], [5], [7], [8] and [9]). In the following, we define the notion of (α, τ) -*P*-derivation in near rings, which generalizes the notion of (α, τ) -derivation, and we enrich this definition with an example that justifies the existence of this type of application:

Definition 1. Let \mathcal{N} be a near-ring and P be a subgroup of $(\mathcal{N}, +)$. An P-additive mapping $d : \mathcal{N} \to \mathcal{N}$ is called a (α, τ) -P-derivation of \mathcal{N} , if there exist maps $\alpha, \tau : \mathcal{N} \to \mathcal{N}$ such that $d(xy) - (\tau(x)d(y) + d(x)\alpha(y)) \in P$ for all $x, y \in \mathcal{N}$.

Definition 2. Let \mathcal{N} be a near-ring and P be a subgroup of $(\mathcal{N}, +)$. An P-additive mapping $d : \mathcal{N} \to \mathcal{N}$ is called a (α, τ) - P^+ -derivation of \mathcal{N} , if d is a (α, τ) -P-derivation such that

- (a) $d(d(xy) (\tau(x)d(y) + d(x)\alpha(y))) \in P$ for all $x, y \in \mathcal{N}$,
- (b) $d(d(xy) (d(x)\alpha(y) + \tau(x)d(y))) \in P$ for all $x, y \in \mathcal{N}$.

In the case of $\alpha = \tau = I_{\mathcal{N}}$ we define the following notions:

Definition 3. Let \mathcal{N} be a near-ring and P be a subset of \mathcal{N} . An P-additive mapping $d: \mathcal{N} \to \mathcal{N}$ is called a P-derivation if $d(xy) - (xd(y) + d(x)y) \in P$ for all $x, y \in \mathcal{N}$.

Definition 4. Let \mathcal{N} be a near-ring and P be a subset of \mathcal{N} . A map $d : \mathcal{N} \to \mathcal{N}$ is a P^+ -derivation if d is a P-derivation such that

- (a) $d^2(xy) d(xd(y) + d(x)y) \in P$ for all $x, y \in \mathcal{N}$,
- (b) $d^2(xy) d(d(x)y + xd(y)) \in P$ for all $x, y \in \mathcal{N}$.

Definition 5. Let \mathcal{N} be a near-ring. A normal subgroup P of $(\mathcal{N}, +)$ is called a symmetric ideal if

- (a) P is an ideal of \mathcal{N} ,
- (b) $P\mathcal{N} \subseteq P$.

If $P = \{0\}$ is a symmetric ideal of a near-ring \mathcal{N} , we get the concept of a zero-symmetric near-ring \mathcal{N} .

Definition 6. A near-ring \mathcal{N} is said to be symmetric if every ideal of \mathcal{N} is symmetric.

It is easy to see that every (α, τ) derivation on \mathcal{N} is a (α, τ) -P derivation on \mathcal{N} . The following example justifies the existence of a (α, τ) -P derivation that is not a (α, τ) derivation:

Example 1. Let S be a left near-ring. Define \mathcal{N} , P by:

$$\mathcal{N} = \left\{ \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{array} \right) \mid a, b, c, 0 \in S \right\}, \ P = \left\{ \left(\begin{array}{ccc} 0 & u & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \mid 0, u \in S \right\}$$

then \mathcal{N} is a left near-ring, and P is an ideal of \mathcal{N} Let us define d, α , and $\tau : \mathcal{N} \longrightarrow \mathcal{N}$ as follow:

$$d\begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{pmatrix} = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \alpha \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{pmatrix} = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & c & 0 \end{pmatrix}$$

and $\tau \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{pmatrix} = \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$

It's clear to see that d is a (α, τ) -P⁺-derivation, but not a (α, τ) -derivation on \mathcal{N} .

Example 2. Let S be a left near-ring. Define \mathcal{N} , P by:

$$\mathcal{N} = \left\{ \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{array} \right) \mid a, b, c, 0 \in S \right\}, P = \left\{ \left(\begin{array}{ccc} 0 & u & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \mid u \in S \right\}$$

then \mathcal{N} is a left near-ring, and P is a symmetric ideal of \mathcal{N} . The map $d: \mathcal{N} \longrightarrow \mathcal{N}$ given by:

$$d\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{array}\right) = \left(\begin{array}{ccc} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

is a P^+ -derivation, but not a derivation on \mathcal{N} .

With these definitions, by using P derivations, where P is an ideal of a near-ring \mathcal{N} , we will study properties of the near-ring \mathcal{N}/P . The originality of this work is that we use a P-derivation on \mathcal{N} (and not on \mathcal{N}/P), which satisfies some algebraic identities on \mathcal{N} and on P, without the primeness (semi-primeness) assumption on the considered near-ring.

2 Some preliminaries

Lemma 1. Let \mathcal{N} be a near-ring and P be an ideal of \mathcal{N} .

a. If P is 3-prime, then \mathcal{N}/P is a 3-prime near-ring.

b. If P is symmetric, then \mathcal{N}/P is a zero-symmetric near-ring.

Proof. Due to the ease of proof, we leave it to readers to enjoy.

Theorem 1. Let \mathcal{N} be a near-ring and P be an ideal of \mathcal{N} . If $d: \mathcal{N} \to \mathcal{N}$ is a P-derivation of \mathcal{N} preserving P, then the mapping $\tilde{d}: \mathcal{N}/P \to \mathcal{N}/P$ defined by $\tilde{d}(\overline{x}) = \overline{d(x)}$ is a derivation on \mathcal{N}/P .

Proof. \widetilde{d} is well defined, indeed let $\underline{y} \in \overline{x}$, then y - x = p for some $p \in P$, so $d(y) - (d(x) + d(p)) \in P$, so $\widetilde{d}(\overline{y}) = \overline{d(y)} = \overline{d(x)} = \widetilde{d}(\overline{x})$. Now let $\overline{x}, \overline{y} \in \mathcal{N}/P$, we have $\widetilde{d}(\overline{x}.\overline{y}) = \widetilde{d}(\overline{xy}) = \overline{d(xy)} = \overline{(xd(y) + d(x)y)} = \overline{xd(y) + d(x)y} = \overline{xd(y) + d(x)y} = \overline{xd(y) + d(x)y}$. Also, we have $\widetilde{d}(\overline{x} + \overline{y}) = \widetilde{d}(\overline{x} + y) = \overline{d(x + y)} = \overline{d(x + y)} = \overline{d(x) + d(y)} = \overline{d(x) + d(y)$

Theorem 2. Let \mathcal{N} be a near-ring and P be an ideal of \mathcal{N} . An P-additive map d on a near-ring \mathcal{N} is a P-derivation if and only if $d(xy)-(d(x)y+xd(y)) \in P$ for all $x, y \in \mathcal{N}$.

Proof. Suppose that d is a P-derivation. Since x(y + y) = xy + xy, it follows that

$$\overline{d(x(y+y))} = \overline{x}\overline{d(y+y)} + \overline{d(x)}(\overline{y} + \overline{y}) = \overline{x}\overline{d(y)} + \overline{x}\overline{d(y)} + \overline{d(x)}\overline{y} + \overline{d(x)}\overline{y} \text{ for all } x, y \in \mathcal{N}.$$
(2.1)

Now

$$\overline{d(xy+xy)} = \overline{d(xy)} + \overline{d(xy)} = \overline{xd(y)} + \overline{d(x)}\overline{y} + \overline{xd(y)} + \overline{d(x)}\overline{y} \text{ for all } x, y \in \mathcal{N}.$$
(2.2)

By (2.1) and (2.2), we get $\overline{xd(y)} + \overline{d(x)y} = \overline{d(x)y} + \overline{xd(y)}$, for all $x, y \in \mathcal{N}$. Hence, $d(xy) - (d(x)y + xd(y)) \in P$, for all $x, y \in \mathcal{N}$. For the converse, assume that $d(xy) - (d(x)y + xd(y)) \in P$ for all $x, y \in \mathcal{N}$. Since $\overline{x(y+y)} = \overline{xy} + \overline{xy}$ for all $x, y \in \mathcal{N}$, we get

$$\overline{d(x(y+y))} = \overline{d(x)}(\overline{y} + \overline{y}) + \overline{x}\overline{d(y+y)} \\ = \overline{d(x)}\overline{y} + \overline{d(x)}\overline{y} + \overline{x}\overline{d(y)} + \overline{x}\overline{d(y)} \text{ for all } x, y \in \mathcal{N}.$$
(2.3)

Also

$$\overline{d(xy+xy)} = \overline{d(xy)} + \overline{d(xy)} = \overline{d(x)\overline{y}} + \overline{x}\overline{d(y)} + \overline{d(x)\overline{y}} + \overline{x}\overline{d(y)}, \text{ for all } x, y \in \mathcal{N}.$$
(2.4)

In view of (2.3) and (2.4), we obtain $\overline{d(x)\overline{y}} + \overline{x}\overline{d(y)} = \overline{x}\overline{d(y)} + \overline{d(x)}\overline{y}$ for all $x, y \in \mathcal{N}$, which gives $d(xy) - (xd(y) + d(x)y) \in P$ for all $x, y \in \mathcal{N}$. So, d is a P-derivation. QED

If \mathcal{N} is a 3-prime near-ring in the previous theorem, then $P = \{0\}$ is a 3-prime ideal of \mathcal{N} , in which case we get the following result:

Corollary 1 ([10] Proposition 1). Let \mathcal{N} be a 3-prime near-ring. An additive endomorphism d on a near-ring \mathcal{N} is a derivation if and only if d(xy) = d(x)y + xd(y) for all $x, y \in \mathcal{N}$.

Theorem 3. Let \mathcal{N} be a near-ring and P be an ideal of \mathcal{N} and d an arbitrary P-derivation of a near-ring \mathcal{N} . Then \mathcal{N}/P satisfies the following partial distributive laws.

a. $(\overline{x}\overline{d(y)} + \overline{d(x)}\overline{y})\overline{z} = \overline{x}\overline{d(y)}\overline{z} + \overline{d(x)}\overline{y}\overline{z}$ for all $x, y, z \in \mathcal{N}$. **b.** $(\overline{d(x)}\overline{y} + \overline{x}\overline{d(y)})\overline{z} = \overline{d(x)}\overline{y}\overline{z} + \overline{x}\overline{d(y)}\overline{z}$ for all $x, y, z \in \mathcal{N}$.

Proof. **a.** It is clear that $\overline{d(xy)} = \overline{x}\overline{d(y)} + \overline{d(x)}\overline{y}$, for all $x, y \in \mathcal{N}$. Then

$$\overline{d((xy)z)} = \overline{xy}\overline{d(z)} + \overline{d(xy)}\overline{z} = \overline{xy}\overline{d(z)} + (\overline{x}\overline{d(y)} + \overline{d(x)}\overline{y})\overline{z}.$$
(2.5)

Also,

$$\overline{d(x(yz))} = \overline{x}\overline{d(yz)} + \overline{d(x)}\overline{yz} = \overline{x}(\overline{y}\overline{d(z)} + \overline{d(y)}\overline{z}) + \overline{d(x)}\overline{yz}.$$
(2.6)

It is clear that in a near-ring \mathcal{N} the associative law holds, then $\overline{d((xy)z)} = \overline{d(x(yz))}$, for all $x, y, z \in \mathcal{N}$. From (2.5) and (2.6), we get $\overline{xy}\overline{d(z)} + (\overline{xd(y)} + \overline{d(x)y})\overline{z} = \overline{xy}\overline{d(z)} + \overline{xd(y)}\overline{z} + \overline{d(x)yz}$, for all $x, y, z \in \mathcal{N}$, which forces that $(\overline{xd(y)} + \overline{d(x)y})\overline{z} = \overline{xd(y)}\overline{z} + \overline{d(x)yz}$ for all $x, y, z \in \mathcal{N}$.

b. We know that $\overline{d(xy)} = \overline{d(x)}\overline{y} + \overline{x}\overline{d(y)}$, for all $x, y \in \mathcal{N}$. Then

$$\overline{d(x(yz))} = \overline{d(x)}\overline{yz} + \overline{x}\overline{d(yz)}
= \overline{d(x)}\overline{yz} + \overline{x}(\overline{d(y)}\overline{z} + \overline{y}\overline{d(z)}).$$
(2.7)

S. Mouhssine and A. Boua

Also,

$$\overline{d((xy)z)} = \overline{d(xy)}\overline{z} + (\overline{xy})\overline{d(z)}
= (\overline{d(x)}\overline{y} + \overline{x}\overline{d(y)})\overline{z} + \overline{xy}\overline{d(z)}.$$
(2.8)

This implies that d(x(yz)) = d((xy)z) for all $x, y, z \in \mathcal{N}$. Applying (2.7) and (2.8) give $\overline{d(x)yz} + \overline{xd(y)z} + \overline{xyd(z)} = (\overline{d(x)y} + \overline{xd(y)})\overline{z} + \overline{xyd(z)}$ for all $x, y, z \in \mathcal{N}$, which ensures that $(\overline{d(x)y} + \overline{xd(y)})\overline{z} = \overline{d(x)yz} + \overline{xd(y)z}$ for all $x, y, z \in \mathcal{N}$. QED

Using the same reasoning as above, we get the following result:

Corollary 2 ([10] Lemma 1). Let \mathcal{N} be a near-ring and d be an arbitrary *P*-derivation of \mathcal{N} . Then \mathcal{N} satisfies the following partial distributive laws.

- **a.** (xd(y) + d(x)y)z = xd(y)z + d(x)yz for all $x, y, z \in \mathcal{N}$.
- **b.** (d(x)y + xd(y))z = d(x)yz + xd(y)z for all $x, y, z \in \mathcal{N}$.

Lemma 2. Let \mathcal{N} be a near-ring and P be a 3-prime ideal of \mathcal{N} .

- **a.** If $\overline{z} \in Z(\mathcal{N}/P) \setminus \{\overline{0}\}$, then \overline{z} is not a zero divisor.
- **b.** If $Z(\mathcal{N}/P)$ contains a nonzero element \overline{z} for which $\overline{z} + \overline{z} \in Z(\mathcal{N}/P)$, then $(\mathcal{N}/P, +)$ is abelian.
- c. If $\overline{z} \in Z(\mathcal{N}/P) \smallsetminus \{\overline{0}\}$ and $\overline{x} \in \mathcal{N}/P$ such that $\overline{x} \ \overline{z} \in Z(\mathcal{N}/P)$ or $\overline{z} \ \overline{x} \in Z(\mathcal{N}/P)$, then $\overline{x} \in Z(\mathcal{N}/P)$.

Proof. By hypothesis, we have P is a 3-prime ideal of \mathcal{N} . Thus \mathcal{N}/P is 3-prime near-ring. Therefore, (**a**), (**b**) and (**c**) are consequences of [2, Lemmas 1.2(i), 1.2(iii) and 1.3(iii)].

Corollary 3 ([2] Lemmas 1.2(i), 1.2(iii) and 1.3(iii)). Let \mathcal{N} be a 3-prime near-ring.

- **a.** If $z \in Z(\mathcal{N}) \setminus \{0\}$, then z is not a zero divisor.
- **b.** If $Z(\mathcal{N})$ contains a nonzero element z for which $z+z \in Z(\mathcal{N})$, then $(\mathcal{N}, +)$ is abelian.
- c. If $z \in Z(\mathcal{N}) \setminus \{0\}$ and $x \in \mathcal{N}$ such that $xz \in Z(\mathcal{N})$ or $zx \in Z(\mathcal{N})$, then $x \in Z(\mathcal{N})$.

Lemma 3. Let \mathcal{N} be a near-ring and \underline{P} be a 3-prime ideal of \mathcal{N} . Let da non P-trivial P-derivation on \mathcal{N} . Then $\overline{xd}(\mathcal{N}) = \{\overline{0}\}$, implies $\overline{x} = \overline{0}$, and $\overline{d(\mathcal{N})}\overline{x} = \{\overline{0}\}$, implies $\overline{x} = \overline{0}$.

98

Proof. Suppose that $\overline{xd(\mathcal{N})} = \{\overline{0}\}$. Then $\overline{0} = \overline{xd(yz)} = \overline{xd(y)z} + \overline{xyd(z)} = \overline{xyd(z)}$ for all $y, z \in \mathcal{N}$, which implies that $x\mathcal{N}d(z) \subseteq P$. In light of 3-primeness of P, we have $\overline{0} = \overline{x}$ or $\overline{0} = \overline{d(z)}$ for all $z \in \mathcal{N}$. Since $d(\mathcal{N}) \nsubseteq P$, we conclude that $\overline{0} = \overline{x}$. A similar argument works if $\overline{d(\mathcal{N})x} = \{\overline{0}\}$.

Lemma 4. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} and d a P^+ -derivation on \mathcal{N} . If $d^2(\mathcal{N}) \subseteq P$, then $d(\mathcal{N}) \subseteq P$ or $2(\mathcal{N}/P) = \{\overline{0}\}$.

Proof. By hypothesis, we have

$$\overline{0} = \frac{d^2(xy)}{\overline{d(d(x)y + xd(y))}}$$

$$= \overline{d^2(x)\overline{y} + \overline{d(x)}} \overline{d(y)} + \overline{d(x)} \overline{d(y)} + \overline{x}\overline{d^2(y)}$$

$$= \frac{2\overline{d(x)}}{\overline{d(y)}} \overline{d(y)}$$

$$= \overline{d(x)} \overline{d(2y)} \text{ for all } x, y \in \mathcal{N}.$$

Replacing y by ny in the last equation we get $\overline{d(x)\overline{n}d(2y)} = \overline{0}$ for all $n, x, y \in \mathcal{N}$, which implies that $\overline{d(x)} (\mathcal{N}/P) \overline{d(2y)} = \{\overline{0}\}$ for all $x, y \in \mathcal{N}$. By primeness of P, we find $d(\mathcal{N}) \subseteq P$ or $\overline{d(2y)} = \overline{0}$ for all $y \in \mathcal{N}$. Suppose $d(\mathcal{N}) \nsubseteq P$, so $\overline{d(2y)} = \overline{0}$ for all $y \in \mathcal{N}$, then

$$\overline{0} = \overline{d(2xy)} \\
= \overline{d(xy)} + \overline{d(xy)} \\
= \overline{d(x)\overline{y}} + \overline{x}\overline{d(y)} + \overline{x}\overline{d(y)} + \overline{d(x)}\overline{y} \\
= \overline{d(x)\overline{y}} + \overline{x}\overline{d(2y)} + \overline{d(x)}\overline{y} \\
= \overline{d(x)\overline{y}} + \overline{d(x)\overline{y}} \\
= \overline{d(x)}(\overline{y} + \overline{y}) \text{ for all } x, y \in \mathcal{N}.$$

That is, $\overline{d(\mathcal{N})}(\overline{y} + \overline{y}) = \{\overline{0}\}$ for all $y \in \mathcal{N}$. By Lemma 3, we get $2(\mathcal{N}/P) = \{\overline{0}\}$.

Theorem 4. Let \mathcal{N} be a near-ring, P be a symmetric 3-prime ideal of \mathcal{N} , and d be a P-derivation of \mathcal{N} . If \overline{u} is not left zero divisor on \mathcal{N}/P and $[u, d(u)] \in P$, then $\overline{d((x, u))} = \overline{0}$ for all $x \in \mathcal{N}$.

 $\begin{array}{l} Proof. \text{ From } u(u+x) = u^2 + ux, \text{ we get } \overline{u}\overline{d}(u+x) + \overline{d}(u)(\overline{u}+\overline{x}) = \overline{u}\overline{d}(u) + \overline{d}(u)\overline{u} + \overline{u}\overline{d}(u)\overline{u} + \overline{u}\overline{d}(u)\overline{u} + \overline{d}(u)\overline{u} = \overline{u}\overline{d}(u)\overline{u} + \overline{u}\overline{d}(x). \text{ Since } \overline{d}(u)\overline{u} = \overline{u}\overline{d}(u), \text{ this equation can be expressed as } \overline{u}(\overline{d}(x) + \overline{d}(u) - \overline{d}(x) - \overline{d}(u)) = \overline{0} = \overline{u}\overline{d}((x,u)). \text{ Thus, } \overline{d}((x,u)) = \overline{0}. \end{array}$

3 Commutativity of \mathcal{N}/P

Theorem 5. Let \mathcal{N} be a near-ring and P be a symmetric 3-prime ideal of \mathcal{N} . Suppose that \mathcal{N}/P has no nonzero divisors of zero. If \mathcal{N} admits a non P-trivial P-commuting P-derivation d, then $(\mathcal{N}/P, +)$ is abelian.

Proof. Let \overline{c} be any additive commutator of \mathcal{N}/P . Then $\overline{d(c)} = \overline{0}$ by Lemma 4. Moreover, for any $\overline{w} \in \mathcal{N}/P$, \overline{wc} is an additive commutator, so it is also a *P*-constant. Thus, $\overline{0} = \overline{d(wc)} = \overline{wd(c)} + \overline{d(w)}\overline{c}$ and $\overline{d(w)}\overline{c} = \overline{0}$. Since $\overline{d(w)} \neq \overline{0}$ for some $\overline{w} \in \mathcal{N}/P$, we conclude that $\overline{c} = \overline{0}$.

Theorem 6. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} . If \mathcal{N} admits a non P-trivial P-derivation d such that $\overline{d(\mathcal{N})} \subseteq Z(\mathcal{N}/P)$, then $(\mathcal{N}/P, +)$ is abelian. Moreover, if $d^2(\mathcal{N}) \nsubseteq P$, then \mathcal{N}/P is a commutative ring.

Proof. Suppose that $\overline{0}$ is the only *P*-constant. Since *d* is *P*-commuting, by Lemma 4 we have $\overline{x} \in C(\mathcal{N}/P)$ for all $\overline{x} \in \mathcal{N}/P$, which are nonzero divisors. In particular, for $d(x) \notin P$, we have $\overline{d(x)} \in C(\mathcal{N}/P)$. Then for all $\overline{y} \in \mathcal{N}/P$ we get $\overline{0} = \overline{d(y)} + \overline{d(x)} - \overline{d(y)} - \overline{d(x)} = \overline{d((y,x))}$, so $(\overline{y}, \overline{x}) = \overline{0}$; a contradiction.

Let $\overline{c} \neq \overline{0}$ be an arbitrary P constant, and \overline{x} be a non P constant. So $d(xc) = \overline{d(x)}\overline{c} + \overline{x}\overline{d(c)} = \overline{d(x)}\overline{c} \in Z(\mathcal{N}/P)$. By lemma 2 (iii) we get $\overline{c} \in Z(\mathcal{N}/P)$. Since $\overline{c} + \overline{c}$ is a P constant, we get $\overline{c} + \overline{c} \in Z(\mathcal{N}/P)$. Thus, by lemma 2 (ii), $(\mathcal{N}/P, +)$ is abelian.

Now supposing that $d^2(N) \notin P$, and proving that \mathcal{N}/P is a commutative ring. We have $\left(\overline{d(x)\overline{y}} + \overline{x}\overline{d(y)}\right)\overline{z} = \overline{d(xy)}\overline{z} = \overline{z}\overline{d(xy)} = \overline{z}\left(\overline{d(x)\overline{y}} + \overline{x}\overline{d(y)}\right)$ for all $x, y, z \in \mathcal{N}$. That is $\overline{d(x)\overline{yz}} + \overline{x}\overline{d(y)}\overline{z} = \overline{z}\overline{d(x)}\overline{y} + \overline{z}\overline{x}\overline{d(y)}$ for all $x, y, z \in \mathcal{N}$. Thus $\overline{d(x)}[\overline{y},\overline{z}] = \overline{d(y)}[\overline{z},\overline{x}]$ for all $x, y, z \in \mathcal{N}$. Replacing y by d(y) in last expression and using it we get $\overline{d^2(y)}[\overline{z},\overline{x}] = \overline{0}$ for all $x, y, z \in \mathcal{N}$. Since $\overline{d^2(y)} \in Z(\mathcal{N}/P)$, we obtain $\overline{d^2(y)}(\mathcal{N}/P)[\overline{z},\overline{x}] = \{\overline{0}\}$ for all $x, y, z \in \mathcal{N}$. The 3-primeness of \mathcal{N}/P gives $[\overline{z},\overline{x}] = \overline{0}$ for all $x, z \in \mathcal{N}$, therefore \mathcal{N}/P is a commutative ring. QED

Corollary 4. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} . If \mathcal{N} admits a non P-trivial P⁺-derivation d such that $\overline{d(\mathcal{N})} \subseteq Z(\mathcal{N}/P)$, then $(\mathcal{N}/P, +)$ is abelian. Moreover, if $2(\mathcal{N}/P) \neq \{\overline{0}\}$, then \mathcal{N}/P is a commutative ring.

Proof. In the light of Lemma 4 and Theorem 6 we get the proof.

Theorem 7. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} , d a non P-trivial P-derivation and $a \in \mathcal{N}$. If $d^2(\mathcal{N}) \notin P$ and $[d(x), a] \in P$ for all $x \in \mathcal{N}$, then $\overline{a} \in Z(\mathcal{N}/P)$.

Proof. Let $a \in \mathcal{N}$. We set $C(a) = \{x \in \mathcal{N} \mid [x, a] \in P\}$. Next we claim that

$$d(C(a))\mathcal{N} \subseteq C(a). \tag{3.9}$$

Indeed, let $y \in C(a)$ and $x \in \mathcal{N}$. By assumption, we have that $d(yx), d(x) \in d(\mathcal{N}) \subseteq C(a)$. Since $y, d(x) \in C(a), yd(x) \in C(a)$ as well. Hence $\overline{y}d(x)\overline{a} = \overline{ay}d(x)$. It follows from Theorem 3 (a) that

$$\overline{y}\overline{d(x)}\overline{a} + \overline{d(y)}\overline{x}\overline{a} = (\overline{y}\overline{d(x)} + \overline{d(y)}\overline{x})\overline{a}$$
$$= \overline{d(yx)}\overline{a}$$
$$= \overline{a}\overline{d(yx)}$$
$$= \overline{a}(\overline{y}\overline{d(x)} + \overline{d(y)}\overline{x}).$$

Which implies that $\overline{y}\overline{d(x)}\overline{a} + \overline{d(y)}\overline{x}\overline{a} = \overline{a}\overline{y}\overline{d(x)} + \overline{a}\overline{d(y)}\overline{x}$.

Since $\overline{y}d(x)\overline{a} = \overline{ay}d(x)$, we see that $\overline{d}(y)\overline{xa} = \overline{ad}(y)\overline{x}$, which proves our claim. Finally, by our assumption $d^2(\mathcal{N}) \notin P$. Hence $\overline{d^2(z)} \neq \overline{0}$, for some $z \in \mathcal{N}$. Set y = d(z) and pick an arbitrary $x \in \mathcal{N}$. Since $y \in d(\mathcal{N}) \subseteq C(a), d(y)x \in C(a)$ by (3.9). In particular $\underline{d}(y)u, d(y)uv \in C(a)$ for all $u, v \in \mathcal{N}$. Now it follows that $\overline{0} = [\overline{a}, \overline{d(y)}\overline{uv}] = \overline{ad}(y)\overline{uv} - \overline{d(y)}\overline{uva} = \overline{d(y)}\overline{uav} - \overline{d(y)}\overline{uva} = \overline{d(y)}\overline{u}(\overline{av} - \overline{va})$ or $\overline{d(y)}\overline{u}[\overline{a},\overline{v}] = \overline{0}$, for all $u, v \in \mathcal{N}$. Since \mathcal{N}/P is a 3-prime near-ring and $\overline{d(y)} \neq \overline{0}$, we conclude that $[\overline{a}, \overline{v}] = \overline{0}$, for all $v \in \mathcal{N}$, which completes the proof. QED

Corollary 5. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} and d be a non P-trivial P^+ -derivation. If $2(\mathcal{N}/P) \neq \{\overline{0}\}$ and $[d(x), a] \in P$ for all $x \in \mathcal{N}$, then $\overline{a} \in Z(\mathcal{N}/P)$.

Theorem 8. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} and d_1 , d_2 be non P-trivial P-derivations of \mathcal{N} such that $[d_1(x), d_2(y)] \in P$ for all $x, y \in \mathcal{N}$, then one of the following assertions holds:

- **a.** $d_1^2(\mathcal{N}) \subseteq P$.
- **b.** $d_2^2(\mathcal{N}) \subseteq P$.
- c. \mathcal{N}/P is a commutative ring.

Proof. Assume that $d_1^2(\mathcal{N}) \not\subseteq P$, and $d_2^2(\mathcal{N}) \not\subseteq P$. It follows from Theorem 7, that $\overline{d_1(N)} \subseteq Z(\mathcal{N}/P)$ and so $[\mathcal{N}/P, \overline{d_1(N)}] = \{\overline{0}\}$. Again by Theorem 7, we conclude that $\mathcal{N}/P \subseteq Z(\mathcal{N}/P)$ and so \mathcal{N}/P is a commutative near-ring. In particular \mathcal{N}/P is distributive. Let $\overline{u}, \overline{x}, \overline{y} \in \mathcal{N}/P$. Then $(\overline{u} + \overline{u})(\overline{x} + \overline{y}) = (\overline{u} + \overline{u})\overline{x} + (\overline{u} + \overline{u})\overline{y} = \overline{ux} + \overline{ux} + \overline{uy} + \overline{uy}$, it follows that $\overline{uy} + \overline{ux} = \overline{ux} + \overline{uy}$ and $\overline{u}(\overline{y} + \overline{x} - \overline{y}|\overline{x}) = \overline{0}$ for all $\overline{u}, \overline{x}, \overline{y} \in \mathcal{N}/P$. Since \mathcal{N}/P is 3-prime, we have $(\overline{y} + \overline{x} - \overline{y} - \overline{x}) = \overline{0}$ for all $\overline{x}, \overline{y} \in \mathcal{N}/P$, and so \mathcal{N}/P is a commutative ring. The proof is complete.

S. Mouhssine and A. Boua

Corollary 6. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} and d_1 , d_2 are P^+ -derivations of \mathcal{N} . If $[d_1(x), d_2(y)] \in P$ for all $x, y \in \mathcal{N}$, then one of the following assertions holds:

- **a.** $2(\mathcal{N}/P) = \{\overline{0}\}.$
- **b.** $d_1(\mathcal{N}) \subseteq P$.
- c. $d_2(\mathcal{N}) \subseteq P$.
- **d.** \mathcal{N}/P is a commutative ring.

Corollary 7. Let R be a ring, P be a prime ideal of R and d_1 , d_2 are derivations of R such that $[d_1(x), d_2(y)] \in P$ for all $x, y \in R$, then we have one of the following assertions:

- **a.** Char(R/P) = 2.
- **b.** $d_1(R) \subseteq P$.
- c. $d_2(R) \subseteq P$.
- **d.** R/P is a commutative integral domain.

Theorem 9. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} . If \mathcal{N} admits P-derivations d_1 and d_2 such that $d_1(x)d_2(y) + d_2(x)d_1(y) \in P$, for all $x, y \in \mathcal{N}$, then one of the following assertions holds:

- **a.** $d_1(\mathcal{N}) \subseteq P$.
- **b.** $d_2(\mathcal{N}) \subseteq P$.
- *c.* $2(\mathcal{N}/P) = \{\overline{0}\}$

Proof. Suppose that $d_1(\mathcal{N}) \not\subseteq P$ and $d_2(\mathcal{N}) \not\subseteq P$. By hypothesis, we have

$$\begin{split} \overline{0} &= & d_1(x) \, d_2(u+v) + d_2(x) \, d_1(u+v) \\ &= & \overline{d_1(x)} [\overline{d_2(u)} + \overline{d_2(v)}] + \overline{d_2(x)} [\overline{d_1(u)} + \overline{d_1(v)}] \\ &= & \overline{d_1(x)} \, \overline{d_2(u)} + \overline{d_1(x)} \, \overline{d_2(v)} + \overline{d_2(x)} \, \overline{d_1(u)} + \overline{d_2(x)} \, \overline{d_1(v)} \\ &= & \overline{d_1(x)} \, \overline{d_2(u)} + \overline{d_1(x)} \, \overline{d_2(v)} - \overline{d_1(x)} \, \overline{d_2(u)} - \overline{d_1(x)} \, \overline{d_2(v)} \\ &= & \overline{d_1(x)} [\overline{d_2(u)} + \overline{d_2(v)} - \overline{d_2(u)} - \overline{d_2(v)}] = \overline{d_1(x)} \, \overline{d_2((u,v))} \end{split}$$

Thus $\overline{d_1(\mathcal{N})d_2((u,v))} = \{\overline{0}\}$ for all $u, v \in \mathcal{N}$. Using Lemma 3 gives $\overline{d_2((u,v))} = \overline{0}$ for all $u, v \in \mathcal{N}$. Substituting wu and wv for u and v respectively, we have $\overline{0} = \overline{d_2((wu,wv))} = \overline{d_2(w(u,v))} = \overline{d_2(w)}(\overline{u},\overline{v})$ for all $u, v, w \in \mathcal{N}$. That is

102

 $\overline{d_2(\mathcal{N})}.(\overline{u},\overline{v}) = \{\overline{0}\}$. From Lemma 3, we get $(\overline{u},\overline{v}) = \overline{0}$, for all $u, v, w \in \mathcal{N}$. Thus $(\mathcal{N}/P, +)$ is abelian.

Substituting x by uv in the hypothesis, we get

$$\overline{0} = [\overline{u}\overline{d_{1}(v)} + \overline{d_{1}(u)}\overline{v}]\overline{d_{2}(y)} + [\overline{u}\overline{d_{2}(v)} + \overline{d_{2}(u)}\overline{v}]\overline{d_{1}(y)}$$

$$= \overline{u}\overline{d_{1}(v)d_{2}(y)} + \overline{d_{1}(u)}\overline{v}\overline{d_{2}(y)} + \overline{u}\overline{d_{2}(v)d_{1}(y)} + \overline{d_{2}(u)}\overline{v}\overline{d_{1}(y)}$$

$$= \overline{u}[\overline{d_{1}(v)d_{2}(y)} + \overline{d_{2}(v)d_{1}(y)}] + \overline{d_{1}(u)}\overline{v}\overline{d_{2}(y)} + \overline{d_{2}(u)}\overline{v}\overline{d_{1}(y)}$$

$$= \overline{d_{1}(u)}\overline{v}\overline{d_{2}(y)} + \overline{d_{2}(u)}\overline{v}\overline{d_{1}(y)} \text{ for all } u, v, y \in \mathcal{N}.$$
(3.10)

Taking yt instead of y in (3.10) to obtain

$$\overline{0} = \overline{d_1(u)\overline{v}d_2(yt)} + \overline{d_2(u)\overline{v}d_1(yt)}$$

$$= \overline{d_1(u)\overline{v}}\left[\overline{d_2(y)\overline{t}} + \overline{y}\overline{d_2(t)}\right] + \overline{d_2(u)\overline{v}}\left[\overline{d_1(y)\overline{t}} + \overline{y}\overline{d_1(t)}\right]$$

$$= \overline{d_1(u)\overline{v}d_2(y)\overline{t}} + \overline{d_1(u)\overline{v}\overline{y}d_2(t)} + \overline{d_2(u)\overline{v}d_1(y)\overline{t}} + \overline{d_2(u)\overline{v}\overline{y}d_1(t)}$$

$$= \left[\overline{d_1(u)\overline{v}d_2(y)\overline{t}} + \overline{d_2(u)\overline{v}d_2(y)\overline{t}}\right] + \left[\overline{d_1(u)\overline{v}\overline{y}d_2(t)} + \overline{d_2(u)\overline{v}\overline{y}d_2(t)}\right]$$

$$= \overline{d_1(u)\overline{v}d_2(y)\overline{t}} + \overline{d_2(u)\overline{v}\overline{d_1(y)\overline{t}}} \text{ for all } u, v, t, y \in \mathcal{N}.$$
(3.11)

Placing $d_1(t)$ instead of t, in (3.11), we get that

$$\overline{d_1(u)}\overline{v}\overline{d_2(y)d_1(t)} + \overline{d_2(u)}\overline{v}\overline{d_1(y)d_1(t)} = \overline{0} \text{ for all } u, v, t, y \in \mathcal{N}.$$
(3.12)

Taking $vd_1(y)$ and t instead of v and y respectively in (3.10), we find that

$$\overline{d_1(u)\overline{v}d_1(y)d_2(t)} + \overline{d_2(u)\overline{v}d_1(y)d_1(t)} = \overline{0} \text{ for all } u, v, t, y \in \mathcal{N}.$$
(3.13)

Subtraction of (3.13) from (3.12) yields that

$$\overline{d_1(u)}\overline{v}[\overline{d_2(y)d_1(t)} - \overline{d_1(y)d_2(t)}] = \overline{0}.$$

Using the hypothesis, we obtain $\overline{d_1(u)}\overline{v}\left[\overline{d_2(y)d_1(t)} + \overline{d_2(y)d_1(t)}\right] = \overline{0}$. Since $d_1(\mathcal{N}) \notin P$, it follows that $\overline{d_1(u)} \neq \overline{0}$ for some $u \in \mathcal{N}$. As

$$\overline{d_1(u)}(\mathcal{N}/P)\left[\overline{d_2(y)d_1(t)} + \overline{d_2(y)d_1(t)}\right] = \{0\}$$

and \mathcal{N}/P is 3-prime, we conclude that

$$\overline{d_2(y)d_1(t)} + \overline{d_2(y)d_1(t)} = \overline{0} \text{ for all } t, y \in \mathcal{N}.$$
(3.14)

Recall that $(\mathcal{N}/P, +)$ is abelian. Letting yu instead of y in (3.14), we obtain

$$\overline{0} = \overline{d_2(y)}\overline{u}\overline{d_1(t)} + \overline{y}\overline{d_2(u)d_1(t)} + \overline{d_2(y)}\overline{u}\overline{d_1(t)} + \overline{y}\overline{d_2(u)d_1(t)}$$

$$= \overline{y}\left[\overline{d_2(u)d_1(t)} + \overline{d_2(u)d_1(t)}\right] + \left[\overline{d_2(y)}\overline{u}\overline{d_1(t)} + \overline{d_2(y)}\overline{u}\overline{d_1(t)}\right]$$

$$= \overline{d_2(y)}\overline{u}\overline{d_1(t)} + \overline{d_2(y)}\overline{u}\overline{d_1(t)} \text{ for all } u, t, y \in \mathcal{N}.$$
(3.15)

S. Mouhssine and A. Boua

Now substituting ut instead of t in (3.14), we obtain

$$\overline{0} = \overline{d_2(y)\overline{u}d_1(t)} + \overline{d_2(y)d_1(u)\overline{t}} + \overline{d_2(y)\overline{u}d_1(t)} + \overline{d_2(y)d_1(u)\overline{t}} \\ = \overline{d_2(y)d_1(u)\overline{t}} + \overline{d_2(y)d_1(u)\overline{t}} \text{ for all } u, t, y \in \mathcal{N}.$$
(3.16)

Therefore, $\overline{d_2(\mathcal{N})d_1(u)}(\overline{t}+\overline{t}) = \{\overline{0}\}$ for all $u, t \in \mathcal{N}$ and so $\overline{d_1(\mathcal{N})}(\overline{t}+\overline{t}) = \{\overline{0}\}$ for all $t \in \mathcal{N}$ by Lemma 3. Again applying Lemma 3, we conclude that $2(\mathcal{N}/P) = \{\overline{0}\}$.

Corollary 8. Let P be a prime ideal of a ring R. If R admits P-derivations d_1 and d_2 such that $d_1(x)d_2(y) + d_2(x)d_1(y) \in P$, for all $x, y \in R$, then one of the following assertions holds:

- **a.** $d_1(R) \subseteq P$.
- **b.** $d_2(R) \subseteq P$.
- c. $char(\mathcal{N}/P) = 2$

Lemma 5. Let \mathcal{N} be an arbitrary near-ring. Let S and T be nonempty subsets of \mathcal{N} such that st = -ts for all $s \in S$ and $t \in T$. If $a, b \in S$ and $c \in T$ for which $-c \in T$, then (ab)c = c(ab).

Theorem 10. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} . If d_1 and d_2 are P^+ -derivations on \mathcal{N} such that $d_1(x) \circ d_2(y) \in P$ for all $x, y \in \mathcal{N}$, then one of the following assertions holds:

- **a.** $2(\mathcal{N}/P) = \{\overline{0}\}.$
- **b.** $d_1(\mathcal{N}) \subseteq P$.
- c. $d_2(\mathcal{N}) \subseteq P$.

Proof. Suppose that $2(\mathcal{N}/P) \neq \{\overline{0}\}$. By Lemma 4, we may assume $d_1^2(\mathcal{N}) \notin P$ and $d_2^2(\mathcal{N}) \notin P$. Let $w \in d_2(\mathcal{N})$ then $-w \in d_2(\mathcal{N})$. Therefore, by Lemma 5, if $u, v \in d_1(\mathcal{N})$, then \overline{uv} centralizes $\overline{d_2(\mathcal{N})}$, hence $\overline{uv} \in Z(\mathcal{N}/P)$ by Theorem 7. It follows that $\overline{d_1(x)^2d_1(y)} = \overline{d_1(x)d_1(y)d_1(x)}$ and $\overline{d_1(x)^2d_1(y)^2} = \left(\overline{d_1(x)d_1(y)}\right)^2$ for all $x, y \in \mathcal{N}$. Hence $\overline{d_1(x)d_1(y)}\left(\overline{d_1(x)d_1(y)} - \overline{d_1(y)d_1(x)}\right) = \overline{0}$ and $\overline{d_1(y)d_1(x)}\left(\overline{d_1(x)d_1(y)} - \overline{d_1(y)d_1(x)}\right) = \overline{0}$. Since $\overline{d_1(x)d_1(y)}$ and $\overline{d_1(y)d_1(x)}$ are central, Lemma 2 (i) shows that for any $x, y \in \mathcal{N}$, either $\overline{d_1(x)d_1(y)} = \overline{d_1(y)d_1(x)} = \overline{d_1(y)d_1(x)} = \overline{0}$ or $\overline{d_1(x)d_1(y)} = \overline{d_1(y)d_1(x)}$. Then, $[d_1(\mathcal{N}), d_1(\mathcal{N})] \subseteq P$. By Theorem 8, \mathcal{N} is commutative. However, this fact with our hypothesis shows that $\overline{0} = 2\overline{d_1(x)d_2(y)}$ for all $x, y \in U$. Suppose $d_1(\mathcal{N}) \not\subseteq P$ and $d_2(\mathcal{N}) \not\subseteq P$. Using similar arguments as in the proof of lemma 4, we get $2(\mathcal{N}/P) = \{\overline{0}\}$; a contradiction. So $d_1(\mathcal{N}) \subseteq P$ or $d_1(\mathcal{N}) \subseteq P$.

Corollary 9. Let P be a prime ideal of a ring R. If R admits P-derivations d_1 and d_2 such that $d_1(x) \circ d_2(y) \in P$ for all $x, y \in R$, then one of the following assertions holds:

- **a.** $d_1(R) \subseteq P$.
- **b.** $d_2(R) \subseteq P$.
- *c.* Char(R/P) = 2.

Theorem 11. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} , and let d_1 and d_2 P-derivations such that $d_1d_2(xy) - d_1(xd_2(y) + d_2(x)y) \in P$ for all $x, y \in \mathcal{N}$. If d_1d_2 is a P-derivation, then one of the following assertions holds:

- **a.** $d_1(\mathcal{N}) \subseteq P$.
- **b.** $d_2(\mathcal{N}) \subseteq P$.
- c. $2(\mathcal{N}/P) = \{\overline{0}\}.$

Proof. Since d_1d_2 is a *P*-derivation, we have

$$d_1d_2(xy) = \overline{x}d_1d_2(y) + d_1d_2(x)\overline{y}$$
, for all $x, y \in \mathcal{N}$.

On the other hand,

$$\overline{d_1 d_2(xy)} = \overline{d_1(x d_2(y) + d_2(x)y)} = \overline{x} \overline{d_1 d_2(y)} + \overline{d_1(x) d_2(y)} + \overline{d_2(x) d_1(y)} + \overline{d_1 d_2(x)} \overline{y}.$$

Comparing these two expressions, we obviously obtain

$$\overline{d_1(x)d_2(y)} + \overline{d_2(x)d_1(y)} = \overline{0}$$
, for all $x, y \in \mathcal{N}$.

Now, our assertion follows from Theorem 9.

Corollary 10. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} , and d is a P^+ -derivation. If d^2 is a P-derivation, then one of the following assertions holds:

- **a.** $d(\mathcal{N}) \subseteq P$.
- **b.** $2(\mathcal{N}/P) = \{\overline{0}\}.$

QED

4 Semiprime ideal and derivations

Theorem 12. Let P be a semiprime ideal of a symmetric near-ring \mathcal{N} , where \mathcal{N}/P is 2-torsion free. Let d be a derivation of \mathcal{N} such that $[d(x), d(y)] \in P$ for all $x, y \in \mathcal{N}$, then one of the following assertions holds:

a. There exists a prime ideal $P_{\alpha} \supseteq P$ such that $d(\mathcal{N}) \subseteq P_{\alpha}$.

b. \mathcal{N}/P is a commutative ring.

Proof. Since P is semiprime, there exists a family \mathcal{P} of 3-prime ideals P_{α} such that $\cap P_{\alpha} = P$. Therefore,

$$[d(x), d(y)] \in P_{\alpha} \text{ for all } x, y \in R, P_{\alpha} \in \mathcal{P}.$$

$$(4.17)$$

Since d is a derivation, we get d is P_{α} -derivations on \mathcal{N} for all $P_{\alpha} \in \mathcal{P}$. Using (4.17) and the fact that $2(\mathcal{N}/P_{\alpha}) \neq \{\overline{0}\}$, the corrolary 6 gives

 $d(\mathcal{N}) \subseteq P_{\alpha} \text{ or } \mathcal{N}/P_{\alpha} \text{ is a commutative ring for all } P_{\alpha} \in \mathcal{P}.$ (4.18)

Suppose that $d(\mathcal{N}) \nsubseteq P_{\alpha}$ for all $P_{\alpha} \in \mathcal{P}$. Thus (4.18) implies that $\mathcal{N}/P = \mathcal{N}/\cap P_{\alpha}$ is commutative ring.

Theorem 13. Let P be a semiprime ideal of a symmetric near-ring \mathcal{N} , where \mathcal{N}/P is 2-torsion free. If d is a derivation on \mathcal{N} such that $2d(x)d(y) \in P$ for all $x, y \in \mathcal{N}$, then $d(\mathcal{N}) \subseteq P$.

Proof. Since P is semiprime, there exists a family \mathcal{P} of 3-prime ideals P_{α} such that $\cap P_{\alpha} = P$. Therefore,

$$2d(x)d(y) \in P_{\alpha} \text{ for all } x, y \in R, P_{\alpha} \in \mathcal{P}.$$
 (4.19)

Since d is a derivation, we get d is P_{α} -derivation on \mathcal{N} for all $P_{\alpha} \in \mathcal{P}$. Using (4.19) with $2(\mathcal{N}/P_{\alpha}) \neq \{\overline{0}\}$, then Theorem 10 gives $d(\mathcal{N}) \subseteq P_{\alpha}$ for all $P_{\alpha} \in \mathcal{P}$, which forces that $d(\mathcal{N}) \subseteq P$.

Theorem 14. Let P be a semiprime ideal of a symmetric near-ring \mathcal{N} and \mathcal{N}/P is 2-torsion free. If d is a derivation on \mathcal{N} such that $d(x) \circ d(y) \in P$ for all $x, y \in \mathcal{N}$, then $d(\mathcal{N}) \subseteq P$.

Proof. Since P is semiprime, there exists a family \mathcal{P} of 3-prime ideals P_{α} such that $\cap P_{\alpha} = P$. Therefore,

$$d(x) \circ d(y) \in P_{\alpha} \text{ for all } x, y \in \mathcal{N}, P_{\alpha} \in \mathcal{P}.$$

$$(4.20)$$

Since d is a derivation, we obtain d is P_{α} -derivations on \mathcal{N} for all $P_{\alpha} \in \mathcal{P}$. By (4.20) and $2(\mathcal{N}/P_{\alpha}) \neq \{\overline{0}\}$, Theorem 10 gives $d(\mathcal{N}) \subseteq P_{\alpha}$ for all $P_{\alpha} \in \mathcal{P}$, which implies that $d(\mathcal{N}) \subseteq P$.

Theorem 15. Let P be a semiprime ideal of a symmetric near-ring \mathcal{N} , and d be a derivation on \mathcal{N} . Then d^2 is a derivation if one of the following assertions holds:

a. There exists a prime ideal $P_{\alpha} \supseteq P$ such that $d(\mathcal{N}) \subseteq P_{\alpha}$.

b. $2(\mathcal{N}/P) = \{\overline{0}\}.$

Proof. Since P is semiprime, there exists a family \mathcal{P} of 3-prime ideals P_{α} such that $\cap P_{\alpha} = P$. Therefore, since d is a derivation, d is also P_{α}^+ -derivation on \mathcal{N} for all $P_{\alpha} \in \mathcal{P}$. Using the corollary 10, we get $2(\mathcal{N}/P_{\alpha}) = \{\overline{0}\}$ or $d(\mathcal{N}) \subseteq P_{\alpha}$ for all $P_{\alpha} \in \mathcal{P}$, which complete the proof of our theorem.

Acknowledgements. The authors thank the reviewer for valuable suggestions and comments.

References

- [1] M. ASHRAF, A. ALI AND A. SHAKIR: (σ, τ) -derivations on prime near-rings, Arch. Math. (Brno), 40 (2004), 281–286.
- H. E. BELL: On derivations in near-rings, Vol. II. In: Nearrings, Nearfields and K-loops, Math. Appl., 426 (1997), 191–197.
- [3] A. BOUA AND A. A. M. KAMAL: Some results on 3-Prime near-rings with derivations, Indian J. Pure Appl. Math., 47 (2016), 705-716.
- [4] A. BOUA: Structure of 3-prime near-rings satisfying some identities, Commun. Korean Math. Soc. 34(1) (2019), 17-26.
- [5] A. BOUA Some identities in rings and near rings with derivation, Kragujevac J. Math., 45(1) (2021), 75-80.
- [6] N. J. GROENEWALD: Different prime ideals in near-rings, Comm. Algebra, 19(10) (1991), 2667–2675.
- [7] S. MOUHSSINE, A. BOUA AND M. M. EL-SOUFI: On two-sided α-generalized derivations of 3-prime near-rings, Comm. Algebra., 50(11) (2022), 4682-4699.
- [8] S. MOUHSSINE AND A. BOUA: Homoderivations and semigroup ideals in 3-prime nearrings, Algebraic Structures and Their Applications, 8(2) (2021), 177-194.
- S. MOUHSSINE AND A. BOUA: Right multipliers and commutativity of 3-prime near-rings, IJAM., 34(1) (2021), 169-181.
- [10] X. K. WANG, Derivations in prime near-rings, Proc. Amer. Math. Soc., 121 (1994), 361-366.