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Abstract. The main aim of this paper is to provide set-theoretical solutions of the Yang–
Baxter equation that are not necessarily bijective. We use the new structure of involution
semi-brace, that is a quadruple (S,+, ·,∗ ) with (S,+) a semigroup and (S, ·,∗ ) an involution
semigroup satisfying the relation a(b+ c) = ab+ a(a∗ + c), for all a, b, c ∈ S.
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Introduction

The quantum Yang-Baxter equation first appeared in theoretical physics in
a paper by Yang [26] and, independently, in one by Baxter [2].
In [14], Drinfel’d suggested to study set-theoretical solutions of this equation.
Specifically, given a non-empty set S, a map r : S × S → S × S such that

r1r2r1 = r2r1r2,

where r1 := r × idS and r2 := idS × r, is said to be a set-theoretical solution of
the Yang-Baxter equation, or shortly a solution on S.
Determining all the solutions is still an open problem and it has drawn the
attention of several mathematicians. We point out the approach based on left
braces, algebraic structures introduced by Rump [24] that include the Jacobson
radical rings. Rump’s paper traced a novel research direction which led to fruitful
results, as one can see in the survey by Cedó [9].
Bijective solutions can be produced through a generalization of left braces, the
skew left braces, algebraic structures introduced by Guarnieri and Vendramin
[16]. A skew left brace is a triple (S,+, ·) such that (S,+) and (S, )̇ are groups
and

a(b+ c) = ab− a+ ac
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holds, for all a, b, c ∈ S. If (S,+) is an abelian group, then (S,+, ·) is a left
brace. Subsequently, these structures have been investigated by many authors
and bijective solutions have been produced.
Catino, Colazzo and Stefanelli [4] showed that the algebraic structure of left
semi-brace turns out to be a useful tool for producing solutions which are not
necessarily bijective. Slight generalizations of semi-braces, under mild assump-
tions, provide solutions of the Yang-Baxter equation, see e.g., [3], [6], [8], [10],
[17], [18].

To determine new solutions, in [7] there were introduced inverse semi-braces
that include semi-braces. A (left) inverse semi-brace is a triple (S,+, ·) such
that (S,+) is an arbitrary semigroup, (S, ·) is an inverse semigroup, and

a(b+ c) = ab+ a(a−1 + c)

holds, for all a, b, c ∈ S, where a−1 is the inverse of a with respect to the
multiplication. We recall that a semigroup (S, ·) is inverse if, for each a ∈ S,
there exists a unique a−1 ∈ S satisfying a = aa−1a and a−1 = a−1aa−1.

If (S, ·) is an inverse semigroup, then the inversion S −→ S, a 7→ a−1 is
an involution. Recall that an involution on the semigroup (S, ·) is an anti-
isomorphism of period two, that is, a function ∗ : S −→ S satisfying the following
conditions

(a∗)∗ = a and (ab)∗ = b∗a∗,

for all a, b ∈ S. Note that in an inverse semigroup there may exist an involution
other than the inversion.

The main aim of this paper is to provide set-theoretical solutions of the
Yang–Baxter equation, using new structures like inverse semi-braces, namely
the involution semi-braces. A triple (S,+, ·,∗ ) is a (left) involution semi-brace
if (S,+) is a semigroup (not necessarily commutative), (S, ·,∗ ) is a regular ∗-
semigroup, and

a(b+ c) = ab+ a(a∗ + c) (0.1)

holds, for all a, b, c ∈ S. Here, according to Nordahl and Scheiblich [20], the
∗-semigroup (S, ·,∗ ) is said to be regular if a = aa∗a, for any a ∈ S.
The solutions will be sought among the maps r associated to involution semi-
braces (S,+, ·,∗ ), that is, r : S × S −→ S × S given by

r(a, b) := ( a(a∗ + b), (a∗ + b)∗b ), (0.2)

for all a, b ∈ S. Note that, as for inverse semi-braces, if (S,+, ·,∗ ) is an involution
semi-brace, the map r given in (2) is not necessarily a solution. In light of this,
we provide sufficient conditions so that the map r is a solution. Our attention
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is turned to study involution semi-braces for which the map associated is a
solution.

1 Involution semi-braces: definitions and examples

Recall that, if (S, ·) is a semigroup and ∗ : S −→ S a unary operation
satisfying the following conditions

(x∗)∗ = x, (xy)∗ = y∗x∗,

for all x, y ∈ S, then the triple (S, ·,∗ ) is called ∗-semigroup, or involution
semigroup, and the unary operation ∗ is said to be an involution.
Following [20], (S, ·,∗ ) is said to be regular if

x = xx∗x,

for any x ∈ S. We note that x∗ is an inverse of x since x∗xx∗ = (xx∗x)∗ = x∗.
Inverse semigroups (S, ·,−1 ) are clearly included in the class of regular ∗ - semi-
groups, and moreover, they can be equationally characterized within that class.
Indeed, as shown by Schein in [25], the class of all inverse semigroups is defined
within the variety of regular ∗–semigroups by the identity xx∗x∗x = x∗xxx∗.
Note that, if I is a non-empty set and S := I × I endowed with the following
operation (x, y) · (u, v) := (x, v), for all x, y, u, v ∈ X, i.e., (S, ·) is a rectangu-
lar band, then (S, ·,∗ ) is a regular ∗-semigroup, with (x, y)∗ := (y, x), for all
x, y ∈ I, but (S, ·) it is not an inverse semigroup.

The variety of regular ∗-semigroups was considered in many papers and its
important subvarieties were characterized, see e.g. [11], [12], [15], [21].
We point out that Reilly, in his short notes [23], fully described regular ∗-
semigroups satisfying the identity xyy∗x∗ = xx∗, introduced by Banaschewski
in [1]. We will refer to them as completely simple regular ∗-semigroups.

Note that regular ∗ - semigroups are distinguished from ∗ - regular semi-
groups in the sense of Drazin [13] and Nambooripad and Pastijn [19], as invo-
lution semigroups in which for each a ∈ S there exists x ∈ S such that

a = axa, x = xax, (ax)∗ = ax, (xa)∗ = xa.

Drazin showed that in a ∗-regular semigroup such an x must be unique, so that
it can be denoted by a†. The element a† is often named the generalized (or
Moore-Penrose) inverse of a.
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Definition 1. Let S be a set with two operations + and · such that (S,+)
is a semigroup (not necessarily commutative) and (S, ·) a regular ∗ – semigroup.
Then, we say that (S,+, ·, ∗) is a left involution semi-brace if

a(b+ c) = ab+ a(a∗ + c) (1.3)

holds, for all a, b, c ∈ S. We call (S,+) and (S, ·) the additive semigroup and the
multiplicative semigroup of (S,+, ·,∗ ), respectively.
A right involution semi-brace is defined similarly, by replacing condition (1.3)
with (a+ b)c = (a+ c∗)c+ bc, for all a, b, c ∈ S.
A two-sided involution semi-brace (S,+, ·) is a left involution semi-brace that
is also a right involution semi-brace with respect to the same operations + and
·, and the same involution.

Any arbitrary regular ∗ – semigroup gives easily rise to an involution semi-
brace, as we will show in the next example.

Example 1. If (S, ·) is a regular ∗-semigroup and (S,+) is a right zero
semigroup or a left zero semigroup, then S is a two-sided involution semi-brace,
which we call trivial involution semi-braces. Clearly, if |S| > 1, then such trivial
involution semi-braces are not isomorphic.

Example 2. Let (S, ·, ∗) be a regular ∗-semigroup, e an idempotent element
of S and set a + b = be, for all a, b ∈ S. Then, it easy to check that S is a left
involution semi-brace. Note that, if e is central, then (S,+, ·,∗ ) is also a right
involution semi-brace.

On the other hand, the numerous subvarieties allow one to obtain new ex-
amples.

Example 3. Let (S, ·,∗ ) be a semigroup belonging to the variety of semilat-
tice ∗ - semigroups, that is the variety defined by identity xx∗y = xx∗ [11]. If we
define a+ b = aa∗, for all a, b ∈ S, then (S,+, ·,∗ ) is an involution semi-brace.

Other examples of involution semi-braces can be obtained by using the well-
known general construction of the involutorial Plonka sum of algebra, introduced
in [22]. Here, we give the basic construction restricted to the case of involution
semi-braces.

Theorem 1. Let Y be a semilattice ∗–semigroup, {Sα | α ∈ Y } a family
of disjoint involution semi-braces and a bijection ∗ on

⋃
{Sα | α ∈ Y }. For

each pair α, β of elements of Y such that α ≥ β, let φα,β : Sα −→ Sβ be a
homomorphism of involution semi-braces such that

(1) φα,α is the identical automorphism of Sα, for every α ∈ Y ,



Involution semi-braces and the Yang-Baxter equation 67

(2) φβ,γφα,β = φα,γ, for all α, β, γ ∈ Y such that α ≥ β ≥ γ,

(3) ∗ : Sα −→ Sα∗ is an involution semi-braces anti-isomorphism, for any
α ∈ Y ,

(4) φα∗,β∗(a) = (φα,β(a∗))∗ for all α, β,∈ Y , α ≥ β and a ∈ Sα∗.

Then, S =
⋃
{Sα | α ∈ Y } endowed by the addition and the multiplication

defined by

a+ b = φα,αβ(a) + φβ,αβ(a),

ab = φα,αβ(a)φβ,αβ(a),

for every a ∈ Sα and b ∈ Sβ, is an involution semi-brace.
Such an involution semi-brace is said to be a strong semilattice S of involution
semi-braces Sα and is denoted by S = [Y ; Sα, φα,β].

2 Solutions associated to involution semi-braces

In this section, we deal with solutions associated to (left) involution semi-
braces and we provide sufficient conditions to obtain them.

Let us note that if a is an element of S, the map λa : S −→ S, x 7→ a(a∗+x)
is an endomorphism of the semigroup (S,+) and λab(x) = ab(ab)∗ + λaλb(x),
for all a, b, x, y ∈ S. Indeed,

λa(x+ y) = a(a∗ + x+ y) = a(a∗ + x) + a(a∗ + y) = λa(x) + λa(y)

and

λab(x) = ab((ab)∗ + x)

= a(b(ab)∗ + b(b∗ + x)

= ab(ab)∗ + a(a∗ + λb(x))

= ab(ab)∗ + λaλb(x).

If b is an element of S, we denote by ρb the map from S into itself defined by
ρb(x) = (x ∗+b)∗b, for each x ∈ S.

Definition 2. Let (S,+, ·,∗ ) be an involution semi-brace. We call the map
r : S × S −→ S × S given by

r(a, b) := ( a(a∗ + b), (a∗ + b)∗b ) (2.4)
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for all a, b ∈ S, the map associated to (S,+, ·,∗ ).
Following the notation introduced above, we can write r(a, b) = (λa(b), ρb(a)),
for all a, b ∈ S.

Example 4. If (S,+, ·,∗ ) is the trivial involution semi-brace in Example 1
with (S,+) a right zero semigroup, the map r associated to (S,+, ·,∗ ) given by
r(a, b) = (ab, b∗b), for all a, b ∈ S, is an idempotent solution.
Similarly, if (S,+, ·,∗ ) is the trivial left involution semi-brace with (S,+) left
zero semigroup, the map r associated to (S,+.·,∗ ) given by r(a, b) = (aa∗, ab),
for all a, b ∈ S, is an idempotent solution too.

Example 5. Let (S,+, ·,∗ ) be the involution semi-brace of Example 2 with
a+ b := be, for all a, b ∈ S, where e is an arbitrary idempotent of (S, ·).
Then, the map r associated to (S,+, ·,∗ ) is given by r(a, b) = (abe, e∗b∗b), for
all a, b ∈ S.
If (S, ·,∗ ) is a completely simple regular ∗-semigroup, that is, a regular ∗–
semigroup with identity xyy∗x∗ = xx∗, then r is a solution. Indeed,

r1r2r1(a, b, c) = (abee∗b∗bce, e∗(e∗b∗bce)∗e∗b∗bce, e∗c∗c) = (abce, e∗e, e∗c∗c),

r2r1r2(a, b, c) = (abce, e∗(bce)∗bce, e∗(e∗c∗c)∗e∗c∗c) = (abce, e∗e, e∗c∗cc∗c)

= (abce, e∗e, e∗e∗c),

for all a, b, c ∈ S.

Example 6. Let (S,+, ·,∗ ) be the involution semi-brace of Example 3 with
a+ b := aa∗ and aa∗b = aa∗, for all a, b ∈ S. The map r associated to (S,+, ·,∗ )
given by r(a, b) = (a, aa∗), for all a, b ∈ S is a solution.

Now, our aim is to show that if S = [Y ;Sα, φα,β] is a strong semilattice of
involution semi-braces such that every Sα has a solution rα, for every α ∈ Y ,
the map associated to S is a solution. This result is a consequence of a more
general construction technique on solutions, obtained in [6, Theorem 4.1].

Lemma 1. Let Y be a semilattice, let {(Xα, rα) | α ∈ Y } be a family of
dijoint solutions indexed by Y such that for each pair α, β ∈ Y with α ≥ β there
is a map φα,β : Xα −→ Xβ. Let X be the union

X =
⋃
{Xα | α ∈ Y }

and r : X ×X −→ X ×X the map defined by

r(x, y) = rαβ(φα,αβ(x), φβ,αβ(y)),
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for all x ∈ Xα and y ∈ Xβ. Then (X, r) is a solution if the following conditions
are satisfied:

(1) φα,α is the identity map of Xα, for every α ∈ Y ,

(2) φβ,γφα,β = φα,γ, for all α, β, γ ∈ Y such that α ≥ β ≥ γ,

(3) (φα,β × φα,β)rα = rβ(φα,β × φα,β), for all α, β ∈ Y such that α ≥ β.

We call the pair (X, r) a strong semilattice of solutions (Xα, rα) indexed by Y .

Now, as a consequence of this lemma, we obtain the following result.

Theorem 2. Let S = [Y ;Sα, φα,β] be a strong semilattice of involution
semi-braces. If Sα has rα as a solution, for every α ∈ Y , then the map r given
by

r(a, b) = rαβ(φα,αβ(a), φβ,αβ(b)),

for all a ∈ Sα and b ∈ Sβ, is a solution on S.

Proof. For any α ∈ Y , let rα : Sα × Sα −→ Sα × Sα be the solution associated
to the involution semi-brace Sα, i.e., the map defined by rα(a, b) = (a(a∗ +
b), (a∗ + b)∗b), for all a, b ∈ Sα. Since S is a strong semilattice of involution
semi-braces, φα,α is the identical automorphism of Sα and φβ,γφα,β = φα,γ for
all α, β, γ ∈ Y such that α ≥ β ≥ γ. Hence, the conditions (1) and (2) in
Lemma 1 are satisfied. Moreover, let α, β ∈ Y such that α ≥ β. Since φα,β is a
homomorphism of involution semi-braces, for all a, b ∈ Sα it follows that

(φα,β × φα,β)rα(a, b) = (φα,β(a(a∗ + b), φα,β(a∗ + b)∗b))

= (φα,β(a)((φα,β(a))∗ + φα,β(b)), ((φα,β(a))∗ + φα,β(b))∗φα,β(b))

= rβ(φα,β(a), φα,β(b))

= rβ(φα,β × φα,β)(a, b).

Hence, the condition (3) in Lemma 1 holds. Therefore, we can consider the
strong semilattice Y of solutions rα, i.e., the map r defined by

r(a, b) = rαβ(φα,αβ(a), φβ,αβ(b))

for all a ∈ Sα and b ∈ Sβ. Finally, we note that

r(a, b) = (φα,αβ(a)((φα,αβ(a))∗ + φα,αβ(b)), ((φα,αβ(a))∗ + φα,αβ(b))∗φα,αβ(b))

= (a(a∗ + b), (a∗ + b)∗b),

for all a ∈ Sα and y ∈ Sβ. QED
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Note that, if (S,+, ·) is a left semi-brace with (S,+) a left cancellative semi-
group, then the map r is a solution (see [4, Theorem 9]). Let us recall that not
every left semi-brace gives rise to solutions. In this context, in [5, Theorem 3]
a characterization has been proved. For left inverse semi-braces, only sufficient
conditions are provided to obtain solutions (see [7, Theorem 7]).

In the following, we provide sufficient conditions to obtain solutions through
left involution semi-braces.

Theorem 3. Let r be the map associated to a left involution semi-brace
(S,+, ·, ∗). If the following are satisfied

(1) (a+ b) (a+ b)∗ (a+ bc) = a+ bc,

(2) λa(b)
∗ + λρb(a) (c) = λa(b)

∗ + λ(a∗+ b)∗λb (c),

(3) ρb (a)∗ + c = (b∗ + c)
(
ρλb(c) (a)∗ + ρc (b)

)
,

for all a, b, c ∈ S, then the map r is a solution.

Proof. It is a routine computation to verify that the map r associated to S given
by r(a, b) = (λa(b), ρb(a)) is a solution if and only if they hold

λaλb(c) = λλa(b)λρb(a) (c)

λρλb(c)(a)ρc (b) = ρλρb(a)(c)
λa (b)

ρcρb(a) = ρρc(b)ρλb(c) (a) ,

for all a, b, c ∈ S. Thus, if a, b, c ∈ S, we have that

λλa(b)λρb(a) (c) = λa (b)
(
λa (b)∗ + λρb(a) (c)

)
= λa (b)

(
λa (b)∗ + λ(a∗+ b)∗λb (c)

)
by 2.

= λa (b) ((a∗ + b)∗ a∗ + (a∗ + b)∗ (a∗ + b+ λb (c)))

= λa (b) (a∗ + b)∗ (a∗ + λb (c)) by (1.3)

= a (a∗ + b) (a∗ + b)∗ (a∗ + b (b∗ + c))

= a (a∗ + b (b∗ + c)) by 1.

= a (a∗ + λb (c)) = λaλb (c) .
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Moreover, we obtain

λρλb(c)(a)ρc (b) = ρλb(c) (a)
(
ρλb(c) (a)∗ + ρc (b)

)
= (a∗ + λb (c))∗ λb (c)

(
ρλb(c) (a)∗ + ρc (b)

)
= (a∗ + λb (c))∗ b (b∗ + c)

(
ρλb(c) (a)∗ + ρc (b)

)
= (a∗ + λb (c))∗ b (ρb (a)∗ + c) by 3.

= (a∗ + λb (c))∗ (a∗ + b) (a∗ + b)∗ b (ρb (a)∗ + c) by 1.

= ((a∗ + b) (a∗ + λb (c)))∗ ρb (a) (ρb (a)∗ + c)

=
(
(a∗ + b) a∗ + λ(a∗+b)∗λb (c)

)∗
λρb(a) (c) by (1.3)

=
(
λa (b)∗ + λ(a∗+b)∗λb (c)

)∗
λρb(a) (c)

=
(
λa (b)∗ + λρb(a) (c)

)∗
λρb(a) (c) by 2.

= ρλρb(a)(c)
λa (b) .

Finally, we get

ρcρb (a) = (ρb (a)∗ + c)
∗
c

=
(
(b∗ + c)

(
ρλb(c) (a)∗ + ρc (b)

))∗
c by 3.

=
(
ρλb(c) (a)∗ + ρc (b)

)∗
(b∗ + c)∗ c

=
(
ρλb(c) (a)∗ + ρc (b)

)∗
ρc (b)

= ρρc(b)ρλb(c) (a) .

Therefore, the map r is a solution on the involution semi-brace S. QED
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