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Abstract. Let c∗(1,r,a)(n) be the generalization of the cubic partition function c(n). In this
paper, we prove some new congruences modulo odd prime p by taking r = 3, 4, 5, 7, 11 and 13
using q-series identities. We study congruence properties of generalization of cubic partition
function for different values of a and give some particular cases as examples.
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1 Introduction

In a paper [1], Chan started the study of cubic partitions by exhibiting a close
relation between a certain type of partition function and Ramanujan’s cubic
continued fraction. For example, there are four cubic partitions of 3, namely
3, 21 + 1, 22 + 1 and 1 + 1 + 1, where the subscripts 1 and 2 denote the colours.
Cubic partition function c(n) is defined by

∞∑
n=0

c(n)qn =
1

(q; q)∞(q2; q2)∞
=

1

E(q)E(q2)
, (1.1)

where E(q) is Euler’s product,

E(q) = (q; q)∞ :=
∞∏
n=1

(1− qn), | q |< 1.

The function c(n) satisfies many Ramanujan type congruences, for example
c(3n + 2) ≡ 0 ( mod 3), ∀ n ≥ 0. Motivated by his works in [2, 3], many
partition congruences for analogous partition functions have been investigated.
For example, Chen and Lin [4] found four new congruences modulo 7 by using
modular forms, whereas Xiong [11] established sets of congruences modulo pow-
ers of 5. In [6], Chern and Dastidar have presented two new congruences modulo
11 for c(n). Furthermore, they have established a recursion for c(n), which is
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a special case of a broader class of recursions. Recently Hirschhorn [8] gave an
elementary proof of

c(5αn+ δα) ≡ 0 (mod 5b(α/2)c),

where α ≥ 2, n ≥ 0 and δα is the reciprocal of 8 modulo 5α.
Zhao and Zhang [12] explored congruences for the following function:

∞∑
n=0

cp(n)qn =
1

(q; q)2
∞(q2; q2)2

∞
=

1

E2(q)E2(q2)
(1.2)

and proved that cp(5n+ 4) ≡ 0 ( mod 5), ∀ n ≥ 0. Since cp(n) counts a pair
of cubic partitions, it is the number of cubic partition pairs. We can interpret
cp(n) as the number of 4-colour partitions of n with colours r, y, o and b subject
to the restriction that the colours o and b appear only in even parts. Recently
Lin [9] studied the arithmetic properties of cp(n) modulo 27 and conjectured
the following four congruences:

cp(49n+ 37) ≡ 0 (mod 49),

cp(81n+ 61) ≡ 0 (mod 243),

∞∑
n=0

cp(81n+ 7)qn ≡ q(q2; q2)∞(q3; q3)2
∞

(q6; q6)∞
(mod 81),

∞∑
n=0

cp(81n+ 34)qn ≡ 36(q; q)∞(q6; q6)2
∞

(q3; q3)∞
(mod 81)

In two recent papers, Chern [5] and Lin, Wang and Xia [10] independently
proved all the above four congruences.

Let c∗(1,r,a)(n) be defined by

∞∑
n=0

c∗(1,r,a)(n)qn =
1

[E(q)E(qr)]a
(1.3)

where a, r ≥ 1 are positive integers. c∗(1,r,a)(n) is the generalization of the cubic

partition function c(n).
In this paper, we prove some quite interesting congruences modulo odd prime

p by taking r = 3, 4, 5, 7, 11 and 13 using q−series identities. We study congru-
ence properties of generalization of cubic partition function for different values
of a and give some particular cases as examples.In particular, some of them
involve higher powers of the Euler function.
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2 New congruences for c∗(1,r,a)(n)

In this section, we prove six new congruence modulo an odd prime p. To
prove our congruences, we employ the following q-series identity from [7, equa-
tion (0.46)]:

E3(q) =

∞∑
n=−∞

(4n+ 1)q[(4n+1)2−1]/8. (2.4)

We also require the following congruence which follows from the binomial the-
orem: For prime p and integer ` ≥ 1,

Ep` ≡ Ep` (mod p). (2.5)

Theorem 1. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 ≤ r < p. Suppose p and r satisfy the condition: 2r + 1 ≡ 0 ( mod p )
and p ≡ 5 or 11 ( mod 12 ). Then, ∀n ≥ 0

c∗(1,3,a)(pn+ r) ≡ 0 (mod p). (2.6)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting r = 3 in (1.3), we find that

∞∑
n=0

c∗(1,3,a)(n)qn =
[E(q)E(q3)]

3

[E(q)E(q3)]pm
. (2.7)

Employing (2.5) in (2.7), we obtain

∞∑
n=0

c∗(1,3,a)(n)qn =
[E(q)E(q3)]

3

[E(qp)E(q3p)]m
. (2.8)

Using (2.4), we observe that

[E(q)E(q3)]3 =
∞∑

m=−∞

∞∑
n=−∞

(4n+ 1)(4m+ 1)q[(4n+1)2+3(4m+1)2−4]/8. (2.9)

We note that

N = [(4n+ 1)2 + 3(4m+ 1)2 − 4]/8,

which is equivalent to

8N + 4 = (4n+ 1)2 + 3(4m+ 1)2.
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If p ≡ 5 or 11 (mod 12), then the Legendre symbol
(
−3
p

)
= −1. Therefore,

it follows that

8N + 4 ≡ 0 (mod p)

or

2N + 1 ≡ 0 (mod p)

if and only if 4n + 1 ≡ 0 (mod p) and 4m + 1 ≡ 0 (mod p). Hence, the
congruences (2.6) now follows by employing (2.9) in (2.8) and then comparing
the coefficients of qpn+r. QED

Corollary 1. We have

c∗(1,3,2)(5n+ 2) ≡ 0 (mod 5), (2.10)

c∗(1,3,14)(17n+ 8) ≡ 0 (mod 17), (2.11)

c∗(1,3,8)(11n+ 5) ≡ 0 (mod 11), (2.12)

c∗(1,3,20)(23n+ 11) ≡ 0 (mod 23). (2.13)

Proof. Take p = 5 and a = 2. Then, p is an odd prime, p ≡ 5 (mod 12) and
p divides a+ 3.Therefore, using these in(2.6) we obtain (2.10). Similarly, taking
p = 17 and a = 14 in (2.6) we obtain (2.11), taking p = 11 and a = 8 in (2.6) we
obtain (2.12) and taking p = 23 and a = 20 in (2.6) we obtain (2.13). QED

Theorem 2. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 ≤ r < p. Suppose p and r satisfy the condition: 8r + 5 ≡ 0 (mod p)
and p ≡ 3 (mod 4). Then, ∀n ≥ 0,

c∗(1,4,a)(pn+ r) ≡ 0 (mod p). (2.14)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting r = 4 in (1.3), we find that

∞∑
n=0

c∗(1,4,a)(n)qn =
[E(q)E(q4)]

3

[E(q)E(q4)]pm
. (2.15)

Employing (2.5) in (2.15), we obtain

∞∑
n=0

c∗(1,4,a)(n)qn =
[E(q)E(q4)]

3

[E(qp)E(q4p)]m
. (2.16)
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Using (2.4), we observe that

[E(q)E(q4)]3 =

∞∑
m=−∞

∞∑
n=−∞

(4n+ 1)(4m+ 1)q[(4n+1)2+4(4m+1)2−5]/8. (2.17)

We note that

N = [(4n+ 1)2 + 4(4m+ 1)2 − 5]/8,

which is equivalent to

8N + 5 = (4n+ 1)2 + 4(4m+ 1)2.

If p ≡ 3 (mod 4), then the Legendre symbol
(
−4
p

)
= −1. Therefore, it follows

that

8N + 5 ≡ 0 (mod p)

if and only if 4n+ 1 ≡ 0 (mod p) and 4m+ 1 ≡ 0 (mod p). Hence, the con-
gruences (2.14) now follows by employing (2.17) in (2.16) and then comparing
the coefficients of qpn+r. QED

Corollary 2. We have

c∗(1,4,4)(7n+ 2) ≡ 0 (mod 7), (2.18)

c∗(1,4,8)(11n+ 9) ≡ 0 (mod 11). (2.19)

Proof. Taking p = 7 and a = 4 in (2.14) we obtain (2.18) and taking p = 11
and a = 8 in (2.14) we obtain (2.19). QED

Theorem 3. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 ≤ r < p. Suppose p and r satisfy any of the following two conditions:

(1) 4r + 3 ≡ 0 (mod p), p ≡ 2 or 3 (mod 5) and p ≡ 1 (mod 4)

(2) 4r + 3 ≡ 0 (mod p), p ≡ 1 or 4 (mod 5) and p ≡ 3 (mod 4)

Then, ∀n ≥ 0,

c∗(1,5,a)(pn+ r) ≡ 0 (mod p). (2.20)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting r = 5 in (1.3), we find that

∞∑
n=0

c∗(1,5,a)(n)qn =
[E(q)E(q5)]

3

[E(q)E(q5)]pm
. (2.21)
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Employing (2.5) in (2.21), we obtain

∞∑
n=0

c∗(1,5,a)(n)qn =
[E(q)E(q5)]

3

[E(qp)E(q5p)]m
. (2.22)

Using (2.4), we observe that

[E(q)E(q5)]3 =
∞∑

m=−∞

∞∑
n=−∞

(4n+ 1)(4m+ 1)q[(4n+1)2+5(4m+1)2−6]/8. (2.23)

We note that
N = [(4n+ 1)2 + 5(4m+ 1)2 − 6]/8,

which is equivalent to

8N + 6 = (4n+ 1)2 + 5(4m+ 1)2.

If
p ≡ 2 or 3 (mod 5) & p ≡ 1 (mod 4)

or
p ≡ 1 or 4 (mod 5) & p ≡ 3 (mod 4),

then the Legendre symbol
(
−5
p

)
= −1. Therefore, it follows that

8N + 6 ≡ 0 (mod p)

or
4N + 3 ≡ 0 (mod p)

if and only if 4n+ 1 ≡ 0 (mod p) and 4m+ 1 ≡ 0 (mod p). Hence, the con-
gruences (2.20) now follows by employing (2.23) in (2.22) and then comparing
the coefficients of qpn+r. QED

Corollary 3. We have

c∗(1,5,14)(17n+ 12) ≡ 0 (mod 17), (2.24)

c∗(1,5,10)(13n+ 9) ≡ 0 (mod 13), (2.25)

c∗(1,5,8)(11n+ 2) ≡ 0 (mod 11), (2.26)

c∗(1,5,16)(19n+ 4) ≡ 0 (mod 19). (2.27)

Proof. Setting p = 17 and a = 14 in (2.20) implies (2.24). For (2.25), we set
p = 13 and a = 10 in (2.20). For (2.26), we put p = 11 and a = 8 in (2.20).
Finally, by setting p = 19 and a = 16 in (2.20) we obtain (2.27). QED
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Theorem 4. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 ≤ r < p. Suppose p and r satisfy any of the following two conditions:

(1) r + 1 ≡ 0 (mod p), p ≡ 3 or 5 or 6 (mod 7) and p ≡ 1 (mod 4)

(2) r + 1 ≡ 0 (mod p), p ≡ 3 or 5 or 6 mod 7 and p ≡ 3 (mod 4)

Then, ∀n ≥ 0,
c∗(1,7,a)(pn+ r) ≡ 0 (mod p). (2.28)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting r = 7 in (1.3), we find that

∞∑
n=0

c∗(1,7,a)(n)qn =
[E(q)E(q7)]

3

[E(q)E(q7)]pm
. (2.29)

Employing (2.5) in (2.29), we obtain

∞∑
n=0

c∗(1,7,a)(n)qn =
[E(q)E(q7)]

3

[E(qp)E(q7p)]m
. (2.30)

Using (2.4), we observe that

[E(q)E(q7)]3 =
∞∑

m=−∞

∞∑
n=−∞

(4n+ 1)(4m+ 1)q[(4n+1)2+7(4m+1)2−8]/8. (2.31)

We note that
N = [(4n+ 1)2 + 7(4m+ 1)2 − 8]/8,

which is equivalent to

8N + 8 = (4n+ 1)2 + 7(4m+ 1)2.

If
p ≡ 3 or 5 or 6 (mod 7) & p ≡ 1 (mod 4)

or
p ≡ 3 or 5 or 6 (mod 7) & p ≡ 3 (mod 4)

then the Legendre symbol
(
−7
p

)
= −1. Therefore, it follows that

8N + 8 ≡ 0 (mod p)

or
N + 1 ≡ 0 (mod p)

if and only if 4n+ 1 ≡ 0 (mod p) and 4m+ 1 ≡ 0 (mod p). Hence, the con-
gruences (2.28) now follows by employing (2.31) in (2.30) and then comparing
the coefficients of qpn+r. QED
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Corollary 4. We have

c∗(1,7,14)(17n+ 16) ≡ 0 (mod 17), (2.32)

c∗(1,7,2)(5n+ 4) ≡ 0 (mod 5), (2.33)

c∗(1,7,10)(13n+ 12) ≡ 0 (mod 13), (2.34)

c∗(1,7,28)(31n+ 30) ≡ 0 (mod 31), (2.35)

c∗(1,7,16)(19n+ 18) ≡ 0 (mod 19). (2.36)

Proof. Setting p = 17 and a = 14 in (2.28) we obtain (2.32). For (2.33), we set
p = 5 and a = 2 in (2.28).For (2.34), we set p = 13 and a = 10 in (2.28). For
(2.35), we set p = 31 and a = 28 in (2.28). Finally, by setting p = 19 and a = 16
in (2.28) we obtain (2.36). QED

Theorem 5. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 ≤ r < p. Suppose p and r satisfy any of the following two conditions:

(1) 2r + 3 ≡ 0 (mod p), p ≡ 2 or 6 or 7 or 8 or 10 (mod 11) and p ≡ 1
(mod 4)

(2) 2r + 3 ≡ 0 (mod p), p ≡ 2 or 6 or 7 or 8 or 10 (mod 11) and p ≡ 3
(mod 4)

Then, ∀n ≥ 0,

c∗(1,11,a)(pn+ r) ≡ 0 (mod p). (2.37)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting r = 11 in (1.3), we find that

∞∑
n=0

c∗(1,11,a)(n)qn =
[E(q)E(q11)]

3

[E(q)E(q11)]pm
. (2.38)

Employing (2.5) in (2.38), we obtain

∞∑
n=0

c∗(1,11,a)(n)qn =
[E(q)E(q11)]

3

[E(qp)E(q11p)]m
. (2.39)

Using (2.4), we observe that

[E(q)E(q11)]3 =

∞∑
m=−∞

∞∑
n=−∞

(4n+ 1)(4m+ 1)q[(4n+1)2+11(4m+1)2−12]/8. (2.40)
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We note that

N = [(4n+ 1)2 + 11(4m+ 1)2 − 12]/8,

which is equivalent to

8N + 12 = (4n+ 1)2 + 11(4m+ 1)2.

If

p ≡ 2 or 6 or 7 or 8 or 10 (mod 11) & p ≡ 1 (mod 4)

or

p ≡ 2 or 6 or 7 or 8 or 10 (mod 11) & p ≡ 3 (mod 4)

then the Legendre symbol
(
−11
p

)
= −1. Therefore, it follows that

8N + 12 ≡ 0 (mod p)

or

2N + 3 ≡ 0 (mod p)

if and only if 4n+ 1 ≡ 0 (mod p) and 4m+ 1 ≡ 0 (mod p). Hence, the con-
gruences (2.37) now follows by employing (2.40) in (2.39) and then comparing
the coefficients of qpn+r. QED

Corollary 5. We have

c∗(1,11,10)(13n+ 5) ≡ 0 (mod 13), (2.41)

c∗(1,11,14)(17n+ 7) ≡ 0 (mod 17), (2.42)

c∗(1,11,26)(29n+ 13) ≡ 0 (mod 29), (2.43)

c∗(1,11,76)(79n+ 38) ≡ 0 (mod 79). (2.44)

Proof. Setting p = 13 and a = 10 in (2.37) we obtain (2.41). For (2.42), we set
p = 17 and a = 14 in (2.37). For (2.43), we set p = 29 and a = 26 in (2.37).
Finally, by setting p = 79 and a = 76 in (2.37) we obtain (2.44). QED

Theorem 6. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 ≤ r < p. Suppose p and r satisfy any of the following two conditions:

(1) 4r + 7 ≡ 0 (mod p), p ≡ 2 or 5 or 6 or 7 or 8 or 11 (mod 13) and
p ≡ 7 (mod 4)

(2) 4r + 7 ≡ 0 (mod p), p ≡ 1 or 3 or 4 or 9 or 10 or 12 (mod 13) and
p ≡ 3 (mod 4)
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Then, ∀n ≥ 0,

c∗(1,13,a)(pn+ r) ≡ 0 (mod p). (2.45)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting r = 13 in (1.3), we find that

∞∑
n=0

c∗(1,13,a)(n)qn =
[E(q)E(q13)]

3

[E(q)E(q13)]pm
. (2.46)

Employing (2.5) in (2.46), we obtain

∞∑
n=0

c∗(1,13,a)(n)qn =
[E(q)E(q13)]

3

[E(qp)E(q13p)]m
. (2.47)

Using (2.4), we observe that

[E(q)E(q13)]3 =
∞∑

m=−∞

∞∑
n=−∞

(4n+ 1)(4m+ 1)q[(4n+1)2+13(4m+1)2−14]/8. (2.48)

We note that

N = [(4n+ 1)2 + 13(4m+ 1)2 − 14]/8,

which is equivalent to

8N + 14 = (4n+ 1)2 + 13(4m+ 1)2.

If

p ≡ 2 or 5 or 6 or 7 or 8 or 11 (mod 13) & p ≡ 7 (mod 4)

or

p ≡ 1 or 3 or 4 or 9 or 10 or 12 (mod 13) & p ≡ 3 (mod 4)

then the Legendre symbol
(
−13
p

)
= −1. Therefore, it follows that

8N + 14 ≡ 0 (mod p)

or

4N + 7 ≡ 0 (mod p)

if and only if 4n+ 1 ≡ 0 (mod p) and 4m+ 1 ≡ 0 (mod p). Hence, the con-
gruences (2.45) now follows by employing (2.48) in (2.47) and then comparing
the coefficients of qpn+r. QED
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Corollary 6. We have

c∗(1,13,38)(41n+ 29) ≡ 0 (mod 41), (2.49)

c∗(1,13,106)(109n+ 80) ≡ 0 (mod 109), (2.50)

c∗(1,13,128)(131n+ 31) ≡ 0 (mod 131). (2.51)

Proof. Setting p = 41 and a = 38 in (2.45) we obtain (2.49). For (2.50), we set
p = 109 and a = 106 in (2.45). Finally, by setting p = 131 and a = 128 in (2.45)
we obtain (2.51). QED
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