New generalization of cubic partition of n

K. N. Vidya
Department Education in Science and Mathematics, Regional Institute of Education(NCERT), Mysuru 570 006, India.
vidyaknagabhushan@gmail.com

Received: 18.3.2022; accepted: 29.10.2022.

Abstract

Let $c_{(1, r, a)}^{*}(n)$ be the generalization of the cubic partition function $c(n)$. In this paper, we prove some new congruences modulo odd prime p by taking $r=3,4,5,7,11$ and 13 using q-series identities. We study congruence properties of generalization of cubic partition function for different values of a and give some particular cases as examples.

Keywords: Partitions; k-colors; Partition Congruences
MSC 2022 classification: Primary 11P83; Secondary 05A15, 05A17.

1 Introduction

In a paper [1], Chan started the study of cubic partitions by exhibiting a close relation between a certain type of partition function and Ramanujan's cubic continued fraction. For example, there are four cubic partitions of 3 , namely $3,2_{1}+1,2_{2}+1$ and $1+1+1$, where the subscripts 1 and 2 denote the colours. Cubic partition function $c(n)$ is defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} c(n) q^{n}=\frac{1}{(q ; q)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}}=\frac{1}{E(q) E\left(q^{2}\right)} \tag{1.1}
\end{equation*}
$$

where $E(q)$ is Euler's product,

$$
E(q)=(q ; q)_{\infty}:=\prod_{n=1}^{\infty}\left(1-q^{n}\right), \quad|q|<1
$$

The function $c(n)$ satisfies many Ramanujan type congruences, for example $c(3 n+2) \equiv 0(\bmod 3), \quad \forall n \geq 0$. Motivated by his works in [2, 3], many partition congruences for analogous partition functions have been investigated. For example, Chen and Lin [4] found four new congruences modulo 7 by using modular forms, whereas Xiong [11] established sets of congruences modulo powers of 5 . In [6], Chern and Dastidar have presented two new congruences modulo 11 for $c(n)$. Furthermore, they have established a recursion for $c(n)$, which is
a special case of a broader class of recursions. Recently Hirschhorn [8] gave an elementary proof of

$$
c\left(5^{\alpha} n+\delta_{\alpha}\right) \equiv 0 \quad\left(\bmod 5^{\lfloor(\alpha / 2)\rfloor}\right)
$$

where $\alpha \geq 2, n \geq 0$ and δ_{α} is the reciprocal of 8 modulo 5^{α}.
Zhao and Zhang [12] explored congruences for the following function:

$$
\begin{equation*}
\sum_{n=0}^{\infty} c p(n) q^{n}=\frac{1}{(q ; q)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}^{2}}=\frac{1}{E^{2}(q) E^{2}\left(q^{2}\right)} \tag{1.2}
\end{equation*}
$$

and proved that $c p(5 n+4) \equiv 0(\bmod 5), \quad \forall n \geq 0$. Since $c p(n)$ counts a pair of cubic partitions, it is the number of cubic partition pairs. We can interpret $c p(n)$ as the number of 4-colour partitions of n with colours r, y, o and b subject to the restriction that the colours o and b appear only in even parts. Recently Lin [9] studied the arithmetic properties of $c p(n)$ modulo 27 and conjectured the following four congruences:

$$
\begin{array}{r}
c p(49 n+37) \equiv 0 \quad(\bmod 49) \\
c p(81 n+61) \equiv 0 \quad(\bmod 243) \\
\sum_{n=0}^{\infty} c p(81 n+7) q^{n} \equiv \frac{q\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}^{2}}{\left(q^{6} ; q^{6}\right)_{\infty}} \quad(\bmod 81) \\
\sum_{n=0}^{\infty} c p(81 n+34) q^{n} \equiv \frac{36(q ; q)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty}^{2}}{\left(q^{3} ; q^{3}\right)_{\infty}} \quad(\bmod 81)
\end{array}
$$

In two recent papers, Chern [5] and Lin, Wang and Xia [10] independently proved all the above four congruences.

Let $c_{(1, r, a)}^{*}(n)$ be defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1, r, a)}^{*}(n) q^{n}=\frac{1}{\left[E(q) E\left(q^{r}\right)\right]^{a}} \tag{1.3}
\end{equation*}
$$

where $a, r \geq 1$ are positive integers. $c_{(1, r, a)}^{*}(n)$ is the generalization of the cubic partition function $c(n)$.

In this paper, we prove some quite interesting congruences modulo odd prime p by taking $r=3,4,5,7,11$ and 13 using q-series identities. We study congruence properties of generalization of cubic partition function for different values of a and give some particular cases as examples.In particular, some of them involve higher powers of the Euler function.

2 New congruences for $c_{(1, r, a)}^{*}(n)$

In this section, we prove six new congruence modulo an odd prime p. To prove our congruences, we employ the following q-series identity from [7, equation (0.46)]:

$$
\begin{equation*}
E^{3}(q)=\sum_{n=-\infty}^{\infty}(4 n+1) q^{\left[(4 n+1)^{2}-1\right] / 8} \tag{2.4}
\end{equation*}
$$

We also require the following congruence which follows from the binomial theorem: For prime p and integer $\ell \geq 1$,

$$
\begin{equation*}
E_{\ell}^{p} \equiv E_{p \ell} \quad(\bmod p) \tag{2.5}
\end{equation*}
$$

Theorem 1. Suppose p is an odd prime divisor of $a+3$ and r is an integer with $0 \leq r<p$. Suppose p and r satisfy the condition: $2 r+1 \equiv 0(\bmod p)$ and $p \equiv 5$ or $11(\bmod 12)$. Then, $\forall n \geq 0$

$$
\begin{equation*}
c_{(1,3, a)}^{*}(p n+r) \equiv 0 \quad(\bmod p) \tag{2.6}
\end{equation*}
$$

Proof. Since p divides $a+3$, we can write $a+3=p m$, for some integer m. Setting $r=3$ in (1.3), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,3, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{3}\right)\right]^{3}}{\left[E(q) E\left(q^{3}\right)\right]^{p m}} \tag{2.7}
\end{equation*}
$$

Employing (2.5) in (2.7), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,3, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{3}\right)\right]^{3}}{\left[E\left(q^{p}\right) E\left(q^{3 p}\right)\right]^{m}} \tag{2.8}
\end{equation*}
$$

Using (2.4), we observe that

$$
\begin{equation*}
\left[E(q) E\left(q^{3}\right)\right]^{3}=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}(4 n+1)(4 m+1) q^{\left[(4 n+1)^{2}+3(4 m+1)^{2}-4\right] / 8} \tag{2.9}
\end{equation*}
$$

We note that

$$
N=\left[(4 n+1)^{2}+3(4 m+1)^{2}-4\right] / 8
$$

which is equivalent to

$$
8 N+4=(4 n+1)^{2}+3(4 m+1)^{2}
$$

If $p \equiv 5$ or $11(\bmod 12)$, then the Legendre symbol $\left(\frac{-3}{p}\right)=-1$. Therefore, it follows that

$$
8 N+4 \equiv 0 \quad(\bmod p)
$$

or

$$
2 N+1 \equiv 0 \quad(\bmod p)
$$

if and only if $4 n+1 \equiv 0(\bmod p)$ and $4 m+1 \equiv 0(\bmod p)$. Hence, the congruences (2.6) now follows by employing (2.9) in (2.8) and then comparing the coefficients of $q^{p n+r}$.

Corollary 1. We have

$$
\begin{align*}
& c_{(1,3,2)}^{*}(5 n+2) \equiv 0 \tag{2.10}\\
& c_{(1,3,14)}^{*}(17 n+8) \equiv 0 \tag{2.11}\\
& c_{(1,3,8)}^{*}(11 n+5) \equiv 0 \tag{2.12}\\
&(\bmod 5) \tag{2.13}\\
& c_{(1,3,20)}^{*}(23 n+11) \equiv 0 \\
&(\bmod 11) \\
&(\bmod 23)
\end{align*}
$$

Proof. Take $p=5$ and $a=2$. Then, p is an odd prime, $p \equiv 5(\bmod 12)$ and p divides $a+3$.Therefore, using these in(2.6) we obtain (2.10). Similarly, taking $p=17$ and $a=14$ in (2.6) we obtain (2.11), taking $p=11$ and $a=8$ in (2.6) we obtain (2.12) and taking $p=23$ and $a=20$ in (2.6) we obtain (2.13). $Q_{Q E D}$

Theorem 2. Suppose p is an odd prime divisor of $a+3$ and r is an integer with $0 \leq r<p$. Suppose p and r satisfy the condition: $8 r+5 \equiv 0(\bmod p)$ and $p \equiv 3(\bmod 4)$. Then, $\forall n \geq 0$,

$$
\begin{equation*}
c_{(1,4, a)}^{*}(p n+r) \equiv 0 \quad(\bmod p) . \tag{2.14}
\end{equation*}
$$

Proof. Since p divides $a+3$, we can write $a+3=p m$, for some integer m. Setting $r=4$ in (1.3), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,4, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{4}\right)\right]^{3}}{\left[E(q) E\left(q^{4}\right)\right]^{p m}} \tag{2.15}
\end{equation*}
$$

Employing (2.5) in (2.15), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,4, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{4}\right)\right]^{3}}{\left[E\left(q^{p}\right) E\left(q^{4 p}\right)\right]^{m}} \tag{2.16}
\end{equation*}
$$

Using (2.4), we observe that

$$
\begin{equation*}
\left[E(q) E\left(q^{4}\right)\right]^{3}=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}(4 n+1)(4 m+1) q^{\left[(4 n+1)^{2}+4(4 m+1)^{2}-5\right] / 8} \tag{2.17}
\end{equation*}
$$

We note that

$$
N=\left[(4 n+1)^{2}+4(4 m+1)^{2}-5\right] / 8
$$

which is equivalent to

$$
8 N+5=(4 n+1)^{2}+4(4 m+1)^{2}
$$

If $p \equiv 3(\bmod 4)$, then the Legendre symbol $\left(\frac{-4}{p}\right)=-1$. Therefore, it follows that

$$
8 N+5 \equiv 0 \quad(\bmod p)
$$

if and only if $4 n+1 \equiv 0(\bmod p)$ and $4 m+1 \equiv 0(\bmod p)$. Hence, the congruences (2.14) now follows by employing (2.17) in (2.16) and then comparing the coefficients of $q^{p n+r}$.

Corollary 2. We have

$$
\begin{align*}
c_{(1,4,4)}^{*}(7 n+2) & \equiv 0 \tag{2.18}\\
c_{(1,4,8)}^{*}(11 n+9) & \equiv 0 \tag{2.19}
\end{align*}(\bmod 7), ~(\bmod 11) . ~ \$
$$

Proof. Taking $p=7$ and $a=4$ in (2.14) we obtain (2.18) and taking $p=11$ and $a=8$ in (2.14) we obtain (2.19).

QED
Theorem 3. Suppose p is an odd prime divisor of $a+3$ and r is an integer with $0 \leq r<p$. Suppose p and r satisfy any of the following two conditions:

$$
\begin{aligned}
& \text { (1) } 4 r+3 \equiv 0 \quad(\bmod p), p \equiv 2 \text { or } 3 \quad(\bmod 5) \text { and } p \equiv 1(\bmod 4) \\
& \text { (2) } 4 r+3 \equiv 0 \quad(\bmod p), p \equiv 1 \text { or } 4 \quad(\bmod 5) \text { and } p \equiv 3 \quad(\bmod 4)
\end{aligned}
$$

Then, $\forall n \geq 0$,

$$
\begin{equation*}
c_{(1,5, a)}^{*}(p n+r) \equiv 0 \quad(\bmod p) . \tag{2.20}
\end{equation*}
$$

Proof. Since p divides $a+3$, we can write $a+3=p m$, for some integer m. Setting $r=5$ in (1.3), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,5, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{5}\right)\right]^{3}}{\left[E(q) E\left(q^{5}\right)\right]^{p m}} \tag{2.21}
\end{equation*}
$$

Employing (2.5) in (2.21), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,5, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{5}\right)\right]^{3}}{\left[E\left(q^{p}\right) E\left(q^{5 p}\right)\right]^{m}} \tag{2.22}
\end{equation*}
$$

Using (2.4), we observe that

$$
\begin{equation*}
\left[E(q) E\left(q^{5}\right)\right]^{3}=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}(4 n+1)(4 m+1) q^{\left[(4 n+1)^{2}+5(4 m+1)^{2}-6\right] / 8} \tag{2.23}
\end{equation*}
$$

We note that

$$
N=\left[(4 n+1)^{2}+5(4 m+1)^{2}-6\right] / 8
$$

which is equivalent to

$$
8 N+6=(4 n+1)^{2}+5(4 m+1)^{2}
$$

If

$$
p \equiv 2 \text { or } 3 \quad(\bmod 5) \& p \equiv 1 \quad(\bmod 4)
$$

or

$$
p \equiv 1 \text { or } 4 \quad(\bmod 5) \& p \equiv 3 \quad(\bmod 4)
$$

then the Legendre symbol $\left(\frac{-5}{p}\right)=-1$. Therefore, it follows that

$$
8 N+6 \equiv 0 \quad(\bmod p)
$$

or

$$
4 N+3 \equiv 0 \quad(\bmod p)
$$

if and only if $4 n+1 \equiv 0(\bmod p)$ and $4 m+1 \equiv 0(\bmod p)$. Hence, the congruences (2.20) now follows by employing (2.23) in (2.22) and then comparing the coefficients of $q^{p n+r}$.

Corollary 3. We have

$$
\begin{align*}
c_{(1,5,14)}^{*}(17 n+12) & \equiv 0 \quad(\bmod 17) \tag{2.24}\\
c_{(1,5,10)}^{*}(13 n+9) & \equiv 0 \quad(\bmod 13) \tag{2.25}\\
c_{(1,5,8)}^{*}(11 n+2) & \equiv 0 \quad(\bmod 11) \tag{2.26}\\
c_{(1,5,16)}^{*}(19 n+4) & \equiv 0 \quad(\bmod 19) \tag{2.27}
\end{align*}
$$

Proof. Setting $p=17$ and $a=14$ in (2.20) implies (2.24). For (2.25), we set $p=13$ and $a=10$ in (2.20). For (2.26), we put $p=11$ and $a=8$ in (2.20). Finally, by setting $p=19$ and $a=16$ in (2.20) we obtain (2.27). QED

Theorem 4. Suppose p is an odd prime divisor of $a+3$ and r is an integer with $0 \leq r<p$. Suppose p and r satisfy any of the following two conditions:

$$
\text { (1) } r+1 \equiv 0(\bmod p), p \equiv 3 \text { or } 5 \text { or } 6(\bmod 7) \text { and } p \equiv 1(\bmod 4)
$$

(2) $r+1 \equiv 0(\bmod p), p \equiv 3$ or 5 or $6 \bmod 7$ and $p \equiv 3(\bmod 4)$

Then, $\forall n \geq 0$,

$$
\begin{equation*}
c_{(1,7, a)}^{*}(p n+r) \equiv 0 \quad(\bmod p) . \tag{2.28}
\end{equation*}
$$

Proof. Since p divides $a+3$, we can write $a+3=p m$, for some integer m. Setting $r=7$ in (1.3), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,7, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{7}\right)\right]^{3}}{\left[E(q) E\left(q^{7}\right)\right]^{p m}} \tag{2.29}
\end{equation*}
$$

Employing (2.5) in (2.29), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,7, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{7}\right)\right]^{3}}{\left[E\left(q^{p}\right) E\left(q^{7 p}\right)\right]^{m}} \tag{2.30}
\end{equation*}
$$

Using (2.4), we observe that

$$
\begin{equation*}
\left[E(q) E\left(q^{7}\right)\right]^{3}=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}(4 n+1)(4 m+1) q^{\left[(4 n+1)^{2}+7(4 m+1)^{2}-8\right] / 8} \tag{2.31}
\end{equation*}
$$

We note that

$$
N=\left[(4 n+1)^{2}+7(4 m+1)^{2}-8\right] / 8
$$

which is equivalent to

$$
8 N+8=(4 n+1)^{2}+7(4 m+1)^{2}
$$

If

$$
p \equiv 3 \text { or } 5 \text { or } 6 \quad(\bmod 7) \& p \equiv 1 \quad(\bmod 4)
$$

or

$$
p \equiv 3 \text { or } 5 \text { or } 6 \quad(\bmod 7) \& p \equiv 3 \quad(\bmod 4)
$$

then the Legendre symbol $\left(\frac{-7}{p}\right)=-1$. Therefore, it follows that

$$
8 N+8 \equiv 0 \quad(\bmod p)
$$

or

$$
N+1 \equiv 0 \quad(\bmod p)
$$

if and only if $4 n+1 \equiv 0(\bmod p)$ and $4 m+1 \equiv 0(\bmod p)$. Hence, the congruences (2.28) now follows by employing (2.31) in (2.30) and then comparing the coefficients of $q^{p n+r}$.

Corollary 4. We have

$$
\begin{align*}
c_{(1,7,14)}^{*}(17 n+16) & \equiv 0 \quad(\bmod 17) \tag{2.32}\\
c_{(1,7,2)}^{*}(5 n+4) & \equiv 0 \quad(\bmod 5) \tag{2.33}\\
c_{(1,7,10)}^{*}(13 n+12) & \equiv 0 \quad(\bmod 13) \tag{2.34}\\
c_{(1,7,28)}^{*}(31 n+30) & \equiv 0 \quad(\bmod 31) \tag{2.35}\\
c_{(1,7,16)}^{*}(19 n+18) & \equiv 0 \quad(\bmod 19) \tag{2.36}
\end{align*}
$$

Proof. Setting $p=17$ and $a=14$ in (2.28) we obtain (2.32). For (2.33), we set $p=5$ and $a=2$ in (2.28).For (2.34), we set $p=13$ and $a=10$ in (2.28). For (2.35), we set $p=31$ and $a=28$ in (2.28). Finally, by setting $p=19$ and $a=16$ in (2.28) we obtain (2.36).

QED
Theorem 5. Suppose p is an odd prime divisor of $a+3$ and r is an integer with $0 \leq r<p$. Suppose p and r satisfy any of the following two conditions:
(1) $2 r+3 \equiv 0(\bmod p), p \equiv 2$ or 6 or 7 or 8 or $10(\bmod 11)$ and $p \equiv 1$ $(\bmod 4)$
(2) $2 r+3 \equiv 0(\bmod p), p \equiv 2$ or 6 or 7 or 8 or $10(\bmod 11)$ and $p \equiv 3$ $(\bmod 4)$

Then, $\forall n \geq 0$,

$$
\begin{equation*}
c_{(1,11, a)}^{*}(p n+r) \equiv 0 \quad(\bmod p) \tag{2.37}
\end{equation*}
$$

Proof. Since p divides $a+3$, we can write $a+3=p m$, for some integer m. Setting $r=11$ in (1.3), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,11, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{11}\right)\right]^{3}}{\left[E(q) E\left(q^{11}\right)\right]^{p m}} \tag{2.38}
\end{equation*}
$$

Employing (2.5) in (2.38), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,11, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{11}\right)\right]^{3}}{\left[E\left(q^{p}\right) E\left(q^{11 p}\right)\right]^{m}} \tag{2.39}
\end{equation*}
$$

Using (2.4), we observe that

$$
\begin{equation*}
\left[E(q) E\left(q^{11}\right)\right]^{3}=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}(4 n+1)(4 m+1) q^{\left[(4 n+1)^{2}+11(4 m+1)^{2}-12\right] / 8} \tag{2.40}
\end{equation*}
$$

We note that

$$
N=\left[(4 n+1)^{2}+11(4 m+1)^{2}-12\right] / 8
$$

which is equivalent to

$$
8 N+12=(4 n+1)^{2}+11(4 m+1)^{2}
$$

If

$$
p \equiv 2 \text { or } 6 \text { or } 7 \text { or } 8 \text { or } 10 \quad(\bmod 11) \& p \equiv 1 \quad(\bmod 4)
$$

or

$$
p \equiv 2 \text { or } 6 \text { or } 7 \text { or } 8 \text { or } 10(\bmod 11) \& p \equiv 3 \quad(\bmod 4)
$$

then the Legendre symbol $\left(\frac{-11}{p}\right)=-1$. Therefore, it follows that

$$
8 N+12 \equiv 0 \quad(\bmod p)
$$

or

$$
2 N+3 \equiv 0 \quad(\bmod p)
$$

if and only if $4 n+1 \equiv 0(\bmod p)$ and $4 m+1 \equiv 0(\bmod p)$. Hence, the congruences (2.37) now follows by employing (2.40) in (2.39) and then comparing the coefficients of $q^{p n+r}$.

Corollary 5. We have

$$
\begin{align*}
& c_{(1,11,10)}^{*}(13 n+5) \equiv 0 \quad(\bmod 13) \tag{2.41}\\
& c_{(1,11,14)}^{*}(17 n+7) \equiv 0 \quad(\bmod 17), \tag{2.42}\\
& c_{(1,11,26)}^{*}(29 n+13) \equiv 0 \quad(\bmod 29), \tag{2.43}\\
& c_{(1,11,76)}^{*}(79 n+38) \equiv 0 \quad(\bmod 79) . \tag{2.44}
\end{align*}
$$

Proof. Setting $p=13$ and $a=10$ in (2.37) we obtain (2.41). For (2.42), we set $p=17$ and $a=14$ in (2.37). For (2.43), we set $p=29$ and $a=26$ in (2.37). Finally, by setting $p=79$ and $a=76$ in (2.37) we obtain (2.44). QED

Theorem 6. Suppose p is an odd prime divisor of $a+3$ and r is an integer with $0 \leq r<p$. Suppose p and r satisfy any of the following two conditions:
(1) $4 r+7 \equiv 0(\bmod p), p \equiv 2$ or 5 or 6 or 7 or 8 or $11(\bmod 13)$ and $p \equiv 7(\bmod 4)$
(2) $4 r+7 \equiv 0(\bmod p), p \equiv 1$ or 3 or 4 or 9 or 10 or $12(\bmod 13)$ and $p \equiv 3(\bmod 4)$

Then, $\forall n \geq 0$,

$$
\begin{equation*}
c_{(1,13, a)}^{*}(p n+r) \equiv 0 \quad(\bmod p) \tag{2.45}
\end{equation*}
$$

Proof. Since p divides $a+3$, we can write $a+3=p m$, for some integer m. Setting $r=13$ in (1.3), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,13, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{13}\right)\right]^{3}}{\left[E(q) E\left(q^{13}\right)\right]^{p m}} \tag{2.46}
\end{equation*}
$$

Employing (2.5) in (2.46), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{(1,13, a)}^{*}(n) q^{n}=\frac{\left[E(q) E\left(q^{13}\right)\right]^{3}}{\left[E\left(q^{p}\right) E\left(q^{13 p}\right)\right]^{m}} \tag{2.47}
\end{equation*}
$$

Using (2.4), we observe that

$$
\begin{equation*}
\left[E(q) E\left(q^{13}\right)\right]^{3}=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}(4 n+1)(4 m+1) q^{\left[(4 n+1)^{2}+13(4 m+1)^{2}-14\right] / 8} \tag{2.48}
\end{equation*}
$$

We note that

$$
N=\left[(4 n+1)^{2}+13(4 m+1)^{2}-14\right] / 8
$$

which is equivalent to

$$
8 N+14=(4 n+1)^{2}+13(4 m+1)^{2}
$$

If

$$
p \equiv 2 \text { or } 5 \text { or } 6 \text { or } 7 \text { or } 8 \text { or } 11 \quad(\bmod 13) \& p \equiv 7 \quad(\bmod 4)
$$

or

$$
p \equiv 1 \text { or } 3 \text { or } 4 \text { or } 9 \text { or } 10 \text { or } 12(\bmod 13) \& p \equiv 3 \quad(\bmod 4)
$$

then the Legendre symbol $\left(\frac{-13}{p}\right)=-1$. Therefore, it follows that

$$
8 N+14 \equiv 0 \quad(\bmod p)
$$

or

$$
4 N+7 \equiv 0 \quad(\bmod p)
$$

if and only if $4 n+1 \equiv 0(\bmod p)$ and $4 m+1 \equiv 0(\bmod p)$. Hence, the congruences (2.45) now follows by employing (2.48) in (2.47) and then comparing the coefficients of $q^{p n+r}$.

Corollary 6. We have

$$
\begin{align*}
c_{(1,13,38)}^{*}(41 n+29) & \equiv 0 \quad(\bmod 41), \tag{2.49}\\
c_{(1,13,106)}^{*}(109 n+80) & \equiv 0 \quad(\bmod 109), \tag{2.50}\\
c_{(1,13,128)}^{*}(131 n+31) & \equiv 0 \quad(\bmod 131) . \tag{2.51}
\end{align*}
$$

Proof. Setting $p=41$ and $a=38$ in (2.45) we obtain (2.49). For (2.50), we set $p=109$ and $a=106$ in (2.45). Finally, by setting $p=131$ and $a=128$ in (2.45) we obtain (2.51).

Acknowledgements. The author is thankful to the referee for his/her valuable suggestions which has considerably improved the quality of the paper.

References

[1] H. C. Chan, Ramanujan's cubic continued fraction and an analog of his " most beautiful identity ", Int. J. Number Theory, 3 (2010), 673-680.
[2] H. C. Chan, Ramanujan's cubic partition function and Ramanujan type congruences for certain partition functions, Int. J. Number Theory, 4 (2010), 819-834.
[3] H. C. Chan, Distribution of a certain partition function modulo powers of primes, Acta Math. Sin(Engl. Ser), 27 (2011), 625-634.
[4] W. Y. C. Chen, B. L. S. Lin, Congruences for the number of cubic partitions derived from modular forms, Preprint, arXiv:0910.1263, 15 pp
[5] S. Chern, Arithmetic properties of cubic partition pairs modulo powers of 3, Acta Math. Sin., 33(11) (2018), 1504-1512.
[6] S. Chern, M. G. Dastidar, Congruences and recursions for the cubic partition, Ramanujan J., 44 (2017), 559-66.
[7] S. Cooper, Ramanujan's theta functions. New York: Springer; 2017.
[8] M. D. Hirschhorn, Cubic partitions modulo powers of 5, Ramanujan J., 51(2020), 67-84.
[9] B.L.S. Lin, Congruences modulo 27 for cubic partition pairs, J. Number Theory, 171 (2017), 31-42.
[10] B.L.S. Lin, L. Wang, E. X. W. Xia, Congruences for cubic partition pairs modulo powers of 3 Ramanujan J., 46 (2018), 563-578.
[11] X. H. Xiong, The number of cubic partitions modulo powers of 5 (Chinese), Sci. Sin. Math., 411 (2011), 1-15.
[12] H. ZhaO, Z. ZHANG, Ramanujan type congruences for a partition function, The Electronic Journal of Combinatorics, 18 (2011), p. 58.

