Inequalities related to the S -Divergence

Lin Feng

School of Mathematical Sciences, Nankai University, Tianjin 300071, China
2388925151@qq.com

Lei Li ${ }^{i}$

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
leilee@nankai.edu.cn

Junming Zhang

School of Mathematical Sciences, Nankai University, Tianjin 300071, China
llddeddym@outlook.com
Yuanming Zhang
School of Mathematical Sciences, Nankai University, Tianjin 300071, China 909173577@qq.com

Received: 18.3.2022; accepted: 28.10.2022.

Abstract

The S-Divergence is a distance like function on the convex cone of positive definite matrices, which is motivated from convex optimization. In this paper, we will prove some inequalities for Kubo-Ando means with respect to the square root of the S-Divergence.

Keywords: S-Divergence; Kubo-Ando means; positive definite matrices
MSC 2022 classification: primary 15A45, secondary 47B65

1 Introduction

Let \mathbb{H}_{n} denote the set of all $n \times n$ Hermitian matrices. The set of all positive definite (henceforth positive) matrices in \mathbb{H}_{n} is denoted by \mathbb{P}_{n}. The Frobenius norm of a matrix A is $\|A\|_{F}=\sqrt{\operatorname{tr}\left(A^{*} A\right)}$, while $\|A\|$ denoted the operator norm.

The set \mathbb{P}_{n} is a well-studied differentiable Riemannian manifold, with the Riemannian metric given by the differential form $d s=\left\|A^{-1 / 2} d A A^{-1 / 2}\right\|_{F}$. The metric induces the Riemannian distance (for more information, one can see, e.g., $[2$, Chapter 6]):

$$
\begin{equation*}
\delta_{R}(A, B):=\left\|\log \left(B^{-1 / 2} A B^{-1 / 2}\right)\right\|_{F}, \quad \forall A, B>0 \tag{1.1}
\end{equation*}
$$

Motivated from convex optimization, one can define the S-Divergence:

$$
\begin{equation*}
\delta_{S}^{2}(A, B)=\log \operatorname{det}\left(\frac{A+B}{2}\right)-\frac{1}{2} \log \operatorname{det}(A B), \forall A, B>0 \tag{1.2}
\end{equation*}
$$

[^0]Sra exhibited several properties related to the Riemannian distance δ_{R} (see [20]). Note that the S-divergence δ_{S}^{2} is non-negative definite and symmetric, but not a metric. Indeed, Sra prove that δ_{S} is a metric on \mathbb{P}_{n} (see [20, Theorem 3.1]).

Note that the equality $\log \operatorname{det} A=\operatorname{Tr} \log A$ holds for all $A \in \mathbb{P}_{n}$, by the argument of [16, p.28], we have that

$$
\begin{align*}
\delta_{S}^{2}(A, B) & =\log \operatorname{det}\left(\frac{A^{-1 / 2} B A^{-1 / 2}+I}{2}\right)-\frac{1}{2} \log \operatorname{det}\left(A^{-1 / 2} B A^{-1 / 2}\right) \\
& =\operatorname{Tr}\left[\log \left(\frac{A^{-1 / 2} B A^{-1 / 2}+I}{2}\right)-\log \left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right] . \tag{1.3}
\end{align*}
$$

It follows that for any $\lambda>0$, we have that $\delta_{S}(\lambda A, \lambda B)=\delta_{S}(A, B)$.
Many authors consider the inequalities related to the various means (see $[4,9,11,12,13])$. In this paper, we will work on this problem and prove some inequalities related to the geometric mean, spectral geometric mean and Wasserstein mean under the S-divergence.

2 Inequalities related to various means

In this section, we will prove some inequalities related to some Kubo-Ando means. For positive matrices A and B, recall that the geometric mean $A \sharp B$ is defined by

$$
A \sharp B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

The geometric mean has a lot of attractive properties (see, e.g., [1, 14]). In the following theorem, we list the properties of the S-divergence used in the paper (see See [20, Theorem 4.1, Theorem 4.5 and Corollary 4.10]).

Theorem 1. δ_{S} has the following properties:
(i) $A \sharp B$ is the equidistant from A and B, that is,

$$
\delta_{S}(A, A \sharp B)=\delta_{S}(B, A \sharp B) .
$$

(ii) If A, B are positive definite and $t \in[0,1]$, we have that

$$
\delta_{S}^{2}\left(A^{t}, B^{t}\right) \leq t \delta_{S}^{2}(A, B)
$$

(iii) If X, Y are positive definite and A is positive semidefinite, $\beta=\lambda_{\min }(A)$, then

$$
\delta_{S}^{2}(A+X, A+Y) \leq \delta_{S}^{2}(\beta I+X, \beta I+Y) \leq \delta_{S}^{2}(X, Y)
$$

Suppose that $t \in[0,1]$, then one can define the Wasserstein mean of $A, B \in$ \mathbb{P}_{n} by

$$
\begin{aligned}
A \diamond_{t} B= & (1-t)^{2} A+t^{2} B+t(1-t)\left[A^{1 / 2}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2} A^{-1 / 2}\right. \\
& \left.+A^{-1 / 2}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2} A^{1 / 2}\right] \\
= & (1-t)^{2} A+t^{2} B+t(1-t)\left[(A B)^{1 / 2}+(B A)^{1 / 2}\right] \\
= & A^{-1 / 2}\left[(1-t) A+t\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right]^{2} A^{-1 / 2}
\end{aligned}
$$

Bhatia, Jain and Lim [3, p.180] proved that $A \diamond_{t} B$ is the natural parametrisation of the geodesic joining A and B associated Riemannian distance

$$
\langle Y, Z\rangle_{A}=\sum_{i, j} \alpha_{i} \frac{\operatorname{Re} \overline{y_{j i}} z_{j i}}{\left(\alpha_{i}+\alpha_{j}\right)^{2}}
$$

where $A=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$ is a positive definite matrix.
Theorem 2. For any $A, B \in \mathbb{P}_{n}$ and any $t \in(0,1)$, we have that

$$
\delta_{S}^{2}\left(A, A \diamond_{t} B\right) \geq 2 \delta_{S}^{2}\left(I,(1-t) I+t A^{-1} \sharp B\right) .
$$

Proof. Let $C=A^{1 / 2} B A^{1 / 2}$. By Theorem 1, we can derive that

$$
\begin{aligned}
& \delta_{S}^{2}\left(A, A \diamond_{t} B\right) \\
= & \delta_{S}^{2}\left(A^{2},\left[(1-t) A+t\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right]^{2}\right) \\
\geq & 2 \delta_{S}^{2}\left(A,(1-t) A+t\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right) \\
= & 2 \delta_{S}^{2}\left(I,(1-t) I+t A^{-1} \sharp B\right) .
\end{aligned}
$$

$Q E D$
Remark 1. For A and B, when put $C=A^{1 / 2} B A^{1 / 2}$, we just can prove that

$$
\begin{aligned}
& \delta_{S}^{2}\left(B, A \diamond_{t} B\right) \\
= & \delta_{S}^{2}\left(C,\left((1-t) A+t C^{1 / 2}\right)^{2}\right) \\
= & 2 \delta_{S}^{2}\left(C^{1 / 2},(1-t) A+t C^{1 / 2}\right)
\end{aligned}
$$

Moreover, one can define the spectral geometric mean between positive matrices A and B :

$$
A \sharp B=\left(A^{-1} \sharp B\right)^{1 / 2} A\left(A^{-1} \sharp B\right)^{1 / 2}
$$

(we refer [14] for more details). It is easy to see that $\delta_{S}^{2}\left(A^{-1} \sharp B, A \sharp B\right)=\delta_{S}^{2}(I, A)$.

Proposition 1. For any positive matrices A and B, we have that

$$
\delta_{S}^{2}(I, A \nvdash B) \leq \frac{1}{2} \delta_{S}^{2}\left(B, A^{-1}\right) .
$$

Proof. By the definition, one can derive that

$$
\begin{aligned}
\delta_{S}^{2}(I, A \sharp B) & =\delta_{S}^{2}\left(\left(A^{-1} \sharp B\right)^{-1}, A\right)=\delta_{S}^{2}\left(A^{-1} \sharp B, A^{-1}\right) \\
& =\delta_{S}^{2}\left(\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}, I\right) \\
& \leq \frac{1}{2} \delta_{S}^{2}\left(A^{1 / 2} B A^{1 / 2}, I\right) \\
& =\frac{1}{2} \delta_{S}^{2}\left(B, A^{-1}\right) .
\end{aligned}
$$

More generally, one can define weighted spectral geometric mean for $0 \leq t \leq$ 1. See, e.g., [15]. Let A, B be positive matrices, the weighted spectral geometric mean is defined by

$$
A \natural_{t} B=\left(A^{-1} \sharp B\right)^{t} A\left(A^{-1} \sharp B\right)^{t} .
$$

By the definition, it is easy to prove the following properties:
Lemma 1. For any $s, t \in[0,1]$ and any positive matrices A, B, we have that

$$
\delta_{S}^{2}\left(A \natural_{s} B, A \mathfrak{h}_{t} B\right)=\delta_{S}^{2}\left(A, A \natural_{t-s} B\right) .
$$

When $1 / 2<t<1$, we have

$$
\begin{aligned}
& \delta_{S}^{2}\left(A^{-1} \sharp B, A \mathfrak{h}_{t} B\right) \\
= & \delta_{S}^{2}\left(I,\left(A^{-1} \sharp B\right)^{t-1 / 2} A\left(A^{-1} \sharp B\right)^{t-1 / 2}\right) \\
= & \delta_{S}^{2}\left(I, A \mathfrak{h}_{t-1 / 2} B\right) .
\end{aligned}
$$

On the other hand, to give a universal estimate, we can prove the following inequality.

Theorem 3. If $t \neq 1 / 2$, for any positive matrices A, B, we have

$$
\delta_{S}^{2}\left(A^{-1} \sharp B, A \natural_{t} B\right) \leq \frac{|1-2 t|}{2} \delta_{S}^{2}\left(B, A^{(3-2 t) /(1-2 t)}\right) .
$$

Proof. When $0<t<1 / 2$, it follows from the properties of S-divergence δ_{S} that

$$
\begin{aligned}
& \delta_{S}^{2}\left(A^{-1} \sharp B, A \mathfrak{h}_{t} B\right) \\
= & \delta_{S}^{2}\left(\left(A^{-1} \sharp B\right)^{1-2 t}, A\right) \\
\leq & (1-2 t) \delta_{S}^{2}\left(A^{-1} \sharp B, A^{1 /(1-2 t)}\right) \\
= & (1-2 t) \delta_{S}^{2}\left(\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}, A^{(2-2 t) /(1-2 t)}\right) \\
\leq & \frac{1-2 t}{2} \delta_{S}^{2}\left(A^{1 / 2} B A^{1 / 2}, A^{(4-4 t) /(1-2 t)}\right) \\
= & \frac{1-2 t}{2} \delta_{S}^{2}\left(B, A^{(3-2 t) /(1-2 t)}\right) .
\end{aligned}
$$

When $1 / 2<t<1$, by a similar argument, we have that

$$
\delta_{S}^{2}\left(A^{-1} \sharp B, A \mathfrak{\natural}_{t} B\right) \leq \frac{2 t-1}{2} \delta_{S}^{2}\left(B, A^{(3-2 t) /(1-2 t)}\right) .
$$

Remark 2. We also can derive that

$$
\delta_{S}^{2}\left(A^{-1} \sharp B, A \natural_{t} B\right)=\delta_{S}^{2}\left(\left(A^{-1} \sharp B\right)^{1-2 t}, A\right) .
$$

Remark 3. Note that $A দ_{t} B$ is the solution of the equation $\left(A^{-1} \sharp B\right)^{t}=$ $A^{-1} \sharp X$, then we have that

$$
\begin{aligned}
& \delta_{S}^{2}\left(A, A \natural_{t} B\right) \\
= & \delta_{S}^{2}\left(A^{1 / 2} A A^{1 / 2}, A^{1 / 2}\left(A \natural_{t} B\right) A^{1 / 2}\right) \\
\geq & 2 \delta_{S}^{2}\left(A,\left(A^{1 / 2}\left(A \natural_{t} B\right) A^{1 / 2}\right)^{1 / 2}\right) \\
= & 2 \delta_{S}^{2}\left(I, A^{-1} \sharp\left(A \natural_{t} B\right)\right) \\
= & 2 \delta_{S}^{2}\left(I,\left(A^{-1} \sharp B\right)^{t}\right) .
\end{aligned}
$$

Acknowledgement

We would like to express my appreciation to the referee for his/her kind efforts and valuable comments.

References

[1] T. Ando: Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26, 1979, 203-241.
[2] R. Bhatia: Positive definite matrices, Princeton University Press, 2007.
[3] R. Bhatia, T. Jain, Y. Lim: On the Bures-Wasserstein distance between positive definite matrices, Expo. Math., 37, 2019, 165-191.
[4] A. Bikchentaev, E. McDonald, F. Sukochev: Ando's inequality for uniform submajorization, Linear Algebra Appl., 605, 2020, 206-226.
[5] H.-Y. Chen, G. P. Gehér, C.-N. Liu, L. Molnár, D. Virosztek, N.-C. Wong: Maps on positive definie operators preserving the quantum χ_{α}^{2}-divergence, Lett. Math. Phys., 107, 2017, 2267-2290.
[6] T. H. Dinh, R. Dumitru, J. A. Franco: Some geometric properties of matrix means with respect to different metrics, Positivity, 24, 2020, 1419-1434.
[7] M. GaÁL, L. MolnáR: Transformations on density operators and on positive definite operators preserving the quantum Rényi divergence, Period Math. Hung., 74, 2017, 88107.
[8] M. GaÁL, G. Nagy: Maps on Hilbert space effect algebras preserving norms of operator means, Acta Sci. Math. (Szeged), 84, n.1-2, 2018, 201-208.
[9] F. Hiai, Y. Seo, S. Wada: Ando-Hiai type inequalities for Operator Means and Operator Perspectives, Intern. J. Math., 31, 2020, 2050007.
[10] S. Kim, H. Lee: Relatvie operator entropy related with the spec;tral geometric mean, Anal. Math. Phys., 5, 2015, 233-240.
[11] S. Kim, H. Lee: Inequalities of the Wasserstein mean with other matrix means, Ann. Funct. Anal., 11, 2020, 194-207.
[12] M. Krnić, N. Lovrićević, J. PećArić: Jsensen's operator and applications to mean inequalities for operators in Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2), 35, n.1, 2012, 1-14.
[13] R. Lemos, G. Soares: Spectral inequalities for Kubo-Ando operator means, Linear Algebra Appl., 607, 2020, 29-44.
[14] L. Li, L. Molnár, L. Wang: On preservers related to the spectral geometric mean, Linear Algebra Appl., 610, 2021, 647-672.
[15] Y. Lim, M. PÁLFiA: Weighted inductive means, Linear Algebra Appl., 453, 2014, 59-83.
[16] L. MolnÁR, Jordan triple endomorphisms and isometries of spaces if positive definite matrices, Linear Multilinear Alg., 63, 2015, 12-33.
[17] L. MoLnÁR, G. NAGY: Isometries and relative entropy preserving maps on density operators, Linear Multilinear Alg., 60, 2012, 93-108.
[18] L. MolnÁr, J. Pitrik, D. Virosztek: Maps on positive definite matrices preserving Bregman and Jensen divergences, Linear Algebra Appl., 495, 2016, 174-189.
[19] L. Molnár, W. Timmermann: Maps on quantum states preserving the Jensen-Shannon divergence, J. Phys. A: Math. Theor., 42, 2009, 015301(9pp).
[20] S. Sra: Positive definite matrices and the S-divergence, Proc. Amer. Math. Soc., 144, 2016, n.7, 2787-2797.

[^0]: ${ }^{\mathrm{i}}$ This work is partially supported by NSF of China (12171251)
 http://siba-ese.unisalento.it/ © 2022 Università del Salento

