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Abstract. We study generalized Sasakian-space-forms (GSSF) M2n+1(k1, k2, k3) with Sasa-
kian metric admitting ∗-Ricci soliton. We obtain that either such GSSF has k1 = 2n+1

2n+2
,

k2 = k3 = − 1
2n+2

and ∗-soliton is steady or k1 = 0, k2 = k3 = −1 and ∗-soliton is expanding.
Also, we provide some examples in support of results. Further, we give an example that GSSF
with Sasakian metric with k1 6= 0 and k1 6= 2n+1

2n+2
do not admit the ∗-Ricci soliton.
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1 Introduction

Hamilton [9] in 1988 introduced the concept of Ricci soliton as a generaliza-
tion of an Einstein metric as well as a self-similar solution of the Ricci flow of
Hamilton [6]. A triplet (g, V, ν) on a Riemannian manifold is a Ricci soliton if
the Ricci tensor i.e. Ric satisfies the following equation [5]

Ric+
1

2
LV g = νg,

where LV is the Lie-derivative along the potential vector field V , g is a Rieman-
nian metric and ν a real scalar. The soliton is expanding, steady, or shrinking
if ν is < 0, = 0 or > 0, respectively.

iThis work of the first author is partially supported by the award of a grant under FRGS
for the year 2020-21, F.No. GGSIPU/DRC/FRGS/2020/ 1988/4.

ii’∗The corresponding author is thankful to DRC, Guru Gobind Singh Indraprastha Uni-
versity for providing financial support to pursue Ph.D. research work (L. No. GGSIPU/
DRC/Ph.D./2018/1290)

http://siba-ese.unisalento.it/ © 2022 Università del Salento
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The Ricci soliton on an almost contact metric(a.c.m) manifold was studied
extensively by many geometers ([10, 11, 13, 15, 16]).

In 1959 Tachibana [17] introduced the notion of ∗-Ricci tensor and Hamada
[8] studied the ∗-Ricci tensor and defined it on an a.c.m manifold M as follows:

S∗(W,U) =
1

2
trace(Z 7→ R(W,ψU)ψZ), ∀ W,U,Z ∈ TM, (1.1)

where ψ is a (1, 1)-tensor field and R is a Riemann curvature tensor. Kaimakamis
and Panagiotidou in [12] studied ∗-Ricci soliton with V = ξ and defined it as

Ric∗ +
1

2
LV g = νg. (1.2)

Further, the ∗-Ricci soliton with V belongs to principal curvature space and
to the holomorphic distribution was studied by Chen [4]. Recently, Majhi et al.
[14] and Ghosh and Patra [7] studied Sasakian manifold admitting (1.2).

The geometers [1] were interested to find the examples M2n+1(k1, k2, k3) of
GSSF with non-constant functions k1, k2, k3. It is a significant project. In this
paper, we study the existence and non-existence of ∗-Ricci soliton on GSSF
with Sasakian structure and obtain the functions k1, k2, k3 and nature of ∗-
Ricci soliton i.e. whether ∗-soliton is expanding or steady or shrinking along
with examples.

2 Preliminaries

A smooth manifold M2n+1 is called an a.c.m manifold if structure tensors
(ψ, ξ, η, g) satisfies [2]:

ψ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

ψξ = 0, η o ψ = 0, η(W ) = g(W, ξ), (2.2)

g(ψW,ψU) = g(W,U)− η(W )η(U), (2.3)

where ψ is a (1, 1)-tensor field, ξ a structure vector field, η a 1-form and g a
Riemannian metric and W , U ∈ TM .

An a.c.m manifold M2n+1(ψ, ξ, η, g) is called a GSSF if there exists three
smooth functions k1, k2, and k3 on M such that the curvature tensor R is given
by [1]

R(W,U)Z = k1{g(U,Z)W − g(W,Z)U}+ k2{g(W,ψZ)ψU (2.4)

−g(U,ψZ)ψW + 2g(W,ψU)ψZ}+ k3{g(W,Z)η(U)ξ

−g(U,Z)η(W )ξ + η(W )η(Z)U − η(U)η(Z)W},
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∀ W , U , Z ∈ TM . In particular M is a Sasakian space form if k1 = c+3
4 ,

k2 = k3 = c−1
4 , Kenmotsu space form if k1 = c−3

4 , k2 = k3 = c+1
4 , cosymplectic

space form if k1 = k2 = k3 = c
4 .

Let e1, e2,. . ., e2n+1 are local orthonormal vector fields on M2n+1, then Ricci
curvature S is defined as [20]

S(W,U) =
2n+1∑
i=1

g(R(ei,W )U, ei), ∀ W,U ∈ TM. (2.5)

Definition 1. M is called η-Einstein if S(W,U) = δg(W,U) + µη(W )η(U)
∀ W , U ∈ TM , δ, µ ∈ R. Further, an η-Einstein Sasakian manifold with δ = −2
and µ = 2n+ 2 is called null-Sasakian and if δ > −2 then positive-Sasakian [3].

Definition 2. [18] On a contact metric manifold M a vector field V is said
to be an infinitesimal contact transformation if LV η = fη for some f ∈ C∞

on M and an infinitesimal automorphism of the contact metric structure if it
leaves η, ξ, g, ψ invariant.

The following commutation formulae will be useful to obtain our results. On
a Riemannian manifold M [19], we have

(∇ZLV g)(W,U) = g((LV∇)(Z,W ), U) + g((LV∇)(Z,U),W ), (2.6)

(LVR)(W,U)Z = (∇WLV∇)(U,Z)− (∇ULV∇)(W,Z), (2.7)

∀ W , U , Z ∈ TM .

3 ∗-Ricci Soliton on GSSF with Sasakian metric

Let M2n+1(k1, k2, k3) be a GSSF with Sasakian metric, then [1]

∇W ξ = (k3 − k1)ψW, (3.1)

(∇Wψ)(U) = (k1 − k3)
(
g(W,U)ξ − η(U)W

)
, (3.2)

(∇W η)(U) = g(∇W ξ, U) = (k3 − k1)g(ψW,U), (3.3)

R(W,U)ξ = (k1 − k3)(η(U)W − η(W )U), (3.4)

∀ W , U ∈ TM .
We set following:

F1 = k1 + (1 + 2n)k2; F2 = 2nk1 + 3k2 − k3; F3 = 3k2 + (2n− 1)k3. (3.5)

Theorem 1. [1] Let M2n+1(k1, k2, k3) be a GSSF with Sasakian metric,
then k2 = k3 = k1 − 1.
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Theorem 2. Let M2n+1(k1, k2, k3) be a GSSF with Sasakian metric, then
ξk1 = 0.

Proof. Using (2.4) in (2.5), we obtain

S(W,U) = F2g(W,U)− F3η(W )η(U), (3.6)

∀ W , U ∈ TM .
Using Theorem 1 in (3.6), we get

QW = ((2n+ 2)k1 − 2)W − ((2n+ 2)k1 − (2n+ 2))η(W )ξ. (3.7)

Differentiating (3.7) along ξ and using (3.1), we find that

(∇ξQ)W = ((2n+ 2)ξk1)(W − η(W )ξ). (3.8)

Also, since ξ is Killing on a Sasakian manifold, therefore we have [7]

∇ξQ = 0. (3.9)

Comparing (3.8) and (3.9), we get ξk1 = 0, which completes the proof.
QED

Theorem 3. Let M2n+1(k1, k2, k3) be a GSSF admitting ∗-Ricci soliton with
Sasakian metric, then

ν = 2F1 = 4(n+ 1)k1 − 2(2n+ 1). (3.10)

Moreover, k1, k2 and k3 are constants and k1 ∈ {0, 2n+1
2n+2}.

Proof. Replacing U with ψU , Z with ψZ in (2.4) and using (1.1), we find

S∗(W,U) = F1(g(W,U)− η(W )η(U)). (3.11)

Using (3.11) in (1.2), we get

(LV g)(W,U) = 2νg(W,U)− 2F1g(ψW,ψU). (3.12)

Differentiating (3.12) along Z ∈ TM , we find

(∇ZLV g)(W,U) = −2F1(g((∇Zψ)W,ψU) + g((∇Zψ)U,ψW )) (3.13)

− 2(ZF1)g(ψW,ψU).

Using (2.6) in (3.13), we obtain

g((LV∇)(Z,W ), U) + g((LV∇)(Z,U),W ) = −2F1g((∇Zψ)W,ψU) (3.14)

−2F1g((∇Zψ)U,ψW )− 2(ZF1)g(ψW,ψU).
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Similarly, we have

g((LV∇)(W,U), Z) + g((LV∇)(W,Z), U) = −2F1g((∇Wψ)U,ψZ) (3.15)

−2F1g((∇Wψ)Z,ψU)− 2(WF1)g(ψU,ψZ),

g((LV∇)(U,Z),W ) + g((LV∇)(U,W ), Z) = −2F1g((∇Uψ)Z,ψW ) (3.16)

−2F1g((∇Uψ)W,ψZ)− 2(UF1)g(ψZ,ψW ).

Adding (3.15) and (3.16), then subtracting (3.14) we find that

g((LV∇)(W,U), Z) =

F1g((∇Zψ)W,ψU) + F1g((∇Zψ)U,ψW ) + (ZF1)g(ψW,ψU)

−F1g((∇Uψ)Z,ψW )− F1g((∇Uψ)W,ψZ)− (UF1)g(ψZ,ψW )

−F1g((∇Wψ)U,ψZ)− F1g((∇Wψ)Z,ψU)− (WF1)g(ψU,ψZ),

(3.17)

∀ W , U , Z ∈ TM .
Putting U = ξ in (3.17) and using (3.2), Theorem 1 and Theorem 2, we

obtain

(LV∇)(W, ξ) = −2F1ψW. (3.18)

Further, differentiating (3.18) along U ∈ TM and using (3.1), (3.2), we find

(∇ULV∇)(W, ξ) = (LV∇)(W,ψU)− 2(UF1)ψW (3.19)

−2F1g(W,U)ξ + 2F1η(W )U.

Using (3.19) in (2.7), we obtain

(LVR)(W,U)ξ = (LV∇)(U,ψW )− 2(WF1)ψU + 2F1η(U)W (3.20)

− (LV∇)(W,ψU) + 2(UF1)ψW − 2F1η(W )U.

Putting U = ξ in (3.20) and using (2.1), (3.18) and Theorem 2, we obtain

(LVR)(W, ξ)ξ = 4F1(W − η(W )ξ). (3.21)

Putting U = ξ, Z = ξ in (2.4), we get

R(W, ξ)ξ = (k1 − k3)(W − η(W )ξ). (3.22)

Lie-differentiating (3.22) along V , we have

(LVR)(W, ξ)ξ = V (k1 − k3)(W − η(W )ξ) (3.23)

+ (k1 − k3)(g(LV ξ,W )ξ − 2η(LV ξ)W − (LV η)(W )ξ).
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Putting U = ξ in (3.11), we obtain

S∗(W, ξ) = 0. (3.24)

Putting U = ξ in (1.2) and using (3.24), we get

(LV g)(W, ξ) = 2νη(W ). (3.25)

Lie-differentiating η(W ) = g(W, ξ) along V and using (3.25), we find

(LV η)(W )− g(LV ξ,W )− 2νη(W ) = 0. (3.26)

Taking Lie-derivative of g(ξ, ξ) = 1 along V and using (3.25), we have

η(LV ξ) = −ν. (3.27)

Using (3.26), (3.27) and Theorem 1 in (3.23), we obtain

(LVR)(W, ξ)ξ = 2ν(W − η(W )ξ). (3.28)

From (3.21) and (3.28), we get

ν = 2F1. (3.29)

Using (3.5) and Theorem 1 in (3.29), we obtain (3.10). Further, since ν is
constant so k1, k2 and k3 are constants. Moreover, from (3.5), we get F1, F2 and
F3 all are constants.

Now, using (3.2) and Theorem 1 in (3.17), we get

(LV∇)(W,U) = −2F1η(W )ψU − 2F1η(U)ψW. (3.30)

Differentiating (3.30) along Z and using (3.2), (3.3), Theorem 1 and Theo-
rem 2, we obtain

(∇ZLV∇)(W,U) = −2F1(g(ψW,Z)ψU + g(ψU,Z)ψW (3.31)

+ η(W )g(Z,U)ξ + η(U)g(Z,W )ξ − 2η(W )η(U)Z).

Using (3.31) in (2.7), we obtain

(LVR)(Z,W )U = −2F1(2g(ψW,Z)ψU + g(ψU,Z)ψW − g(ψU,W )ψZ (3.32)

+η(W )g(Z,U)ξ − η(Z)g(W,U)ξ + 2η(Z)η(U)W − 2η(W )η(U)Z),

∀ W , U , Z ∈ TM .
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Contracting (3.32) over Z, we find

(LV S)(W,U) = −4F1(g(W,U)− (2n+ 1)η(W )η(U)). (3.33)

Changing W to ψU and U to ψW in (3.33), we obtain

(LV S)(ψU,ψW ) = −4F1g(ψW,ψU). (3.34)

Lie-differentiating (3.6) along V and using (3.12) and (3.26), we have

(LV S)(W,U) = (V (F2) + 2F2ν − 2F2F1)g(W,U) + (2F2F1 (3.35)

−V (F3)− 4νF3)η(W )η(U)− F3(g(LV ξ,W )η(U) + g(LV ξ, U)η(W )),

∀ W , U ∈ TM .
Changing W to ψU and U to ψW in (3.35), we find

(LV S)(ψU,ψW ) = (2F2ν − 2F2F1)g(ψW,ψU). (3.36)

From (3.34) and (3.36), we get

F2ν − F2F1 = −2F1. (3.37)

Using (3.5), (3.29) and Theorem 1 in (3.37), we have

(2n+ 2)
(
(2n+ 2)k1 − (2n+ 1)

)
k1 = 0,

which gives either k1 = 2n+1
2n+2 or k1 = 0.

Thus proof is complete. QED

Corollary 1. Let M2n+1(k1, k2, k3) be a GSSF admitting ∗-Ricci soliton.
If M2n+1 has Sasakian metric, then either ∗-soliton is steady or expanding. In
the first case M is η-Einstein and positive-Sasakian with killing ∗-soliton vector
field V . In second case M is null-Sasakian and V leaves ψ invariant.

Proof. In view of Theorem 3:
Considering the case k1 = 2n+1

2n+2 . Then, from (3.10), we get ν = 0. Hence,

∗-soliton is steady. Using (3.5), Theorem 1 and k1 = 2n+1
2n+2 in (3.6) and in (1.2),

we find

S(W,U) = (2n− 1)g(W,U) + η(W )η(U), (LV g)(W,U) = 0,

∀ W , U ∈ TM . Hence M2n+1 is η-Einstein positive-Sasakian and V is killing.
Considering the case when k1 = 0. Then (3.10) gives ν = −2(2n + 1) and
hence ∗-soliton is expanding. Using k1 = 0 and Theorem 1 in (3.6), we obtain

S(W,U) = −2g(W,U) + 2(n+ 1)η(W )η(U),
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∀ W , U ∈ TM . Hence M2n+1 is null-Sasakian.
Using (3.11) in (1.2), we have

(LV g)(W,U) = (2ν − 2F1)g(W,U) + 2F1η(W )η(U). (3.38)

Now comparing (3.33) and (3.35), we get

V (F2)g(W,U) + F2(LV g)(W,U)− V (F3)η(W )η(U)− F3((LV η)(W )η(U)(3.39)

+(LV η)(U)η(W )) = −4F1(g(W,U)− (2n+ 1)η(W )η(U)).

Using k1 = 0, (3.38), Theorem 3 and putting U = ξ and ψW in place of W
in (3.39), we obtain F3(LV η)(ψW ) = 0.

Since F3 6= 0, therefore, we get

(LV η)(ψW ) = 0. (3.40)

By putting ψW in place of W in (3.40), we find

(LV η)(W ) = η(W )(LV η)(ξ). (3.41)

Using (3.26), (3.27) and ν = −2(2n+ 1) in (3.41), we get

(LV η)(W ) = −2(2n+ 1)η(W ). (3.42)

Taking exterior derivative of (3.42), we get

(LV dη)(W,U) = −2(2n+ 1)dη(W,U). (3.43)

As on Sasakian manifold

dη(W,U) = g(W,ψU). (3.44)

Using (3.44) in (3.43), we find

(LV dη)(W,U) = −2(2n+ 1)g(W,ψU). (3.45)

Lie-derivative of (3.44) along V gives

(LV dη)(W,U) = (LV g)(W,ψU) + g(W, (LV ψ)U). (3.46)

Replacing U by ψU and using k1 = 0, Theorem 1, ν = 2F1 = −2(2n+ 1) in
(3.38), we obtain

(LV g)(W,ψU) = −2(2n+ 1)g(W,ψU). (3.47)

From (3.45), (3.46) and (3.47), we get LV ψ = 0. Whereby proof is complete.
QED
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Theorem 4. Let M2n+1(k1, k2, k3) be a GSSF admitting ∗-Ricci soliton with
V = bξ. If M admits Sasakian metric, then
(i) ∗-Ricci soliton is steady and V is a constant multiple of ξ,
(ii) M is ∗-Ricci flat and k1, k2 and k3 are constant.

Proof. (i) Suppose that V = bξ, for some function b. Then, from (1.2), we obtain

bg(∇W ξ, U) + (Wb)η(U) + bg(∇Uξ,W ) + (Ub)η(W ) + 2S∗(W,U) (3.48)

−2νg(W,U) = 0.

Putting U = ξ in (3.48) and using (3.1), (3.24) and Theorem 1, we find

(Wb) + (ξb)η(W )− 2νη(W ) = 0. (3.49)

Putting W = ξ in (3.49), we get ξb = ν. Using it in (3.49), we find

(db)(W )− νη(W ) = 0. (3.50)

Taking exterior derivative of (3.50), we obtain νdη = 0. Which gives ν = 0
as M2n+1 has Sasakian metric. Therefore, from (3.50), we get, (db)(W ) = 0.
Hence, b is a constant. Hence we have (i).

Taking ν = 0 and b = constant in (3.48), we obtain

bg(∇W ξ, U) + bg(∇Uξ,W ) + 2S∗(W,U) = 0. (3.51)

Using (3.1) in (3.51), we get S∗(W,U) = 0. Hence, M2n+1 is ∗-Ricci flat.
Using this fact, (3.5) and Theorem 1 in (3.11), we get k1 = 2n+1

2n+2 and k2 = k3 =
−1

2n+2 . Thus proof is complete. QED

4 Examples of ∗-Ricci soliton on GSSF with Sasakian
metric

Example 1. Consider M = {(x, y, z) ∈ R3 : y 6= 0} with
ψ(e1) = e2, ψ(e2) = −e1, ψ(e3) = 0, η = −2ydx+ dz,

e3 = ξ = ∂
∂z , g = dx⊗ dx+ dy ⊗ dy + η ⊗ η,

e1 = ∂
∂y , e2 = ∂

∂x + 2y ∂
∂z .

(4.1)

Moreover,

[el, e3] = 0 for l = 1, 2; [e1, e2] = 2e3. (4.2)
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The Koszul’s formula ∀ W , U , Z ∈ TM with Riemannian connection ∇ is

2g(∇WU,Z) = Wg(U,Z) + Ug(Z,W )− Zg(W,U) (4.3)

−g(W, [U,Z])− g(U, [W,Z]) + g(Z, [W,U ]).

From (4.2) and (4.3), we get{
∇e1e1 = 0, ∇e2e1 = −e3, ∇e3e1 = −e2, ∇e1e2 = e3, ∇e2e2 = 0,

∇e3e2 = e1, ∇e1e3 = −e2, ∇e2e3 = e1, ∇e3e3 = 0.
(4.4)

Using (4.1) and (4.4), we can see that M is a Sasakian manifold. Using
(3.11), (4.2) and (4.4), we find
R(el, e3)e3 = el, R(el, ep)ep = −3el, l 6= p, l, p = 1, 2,

R(el, ep)es = 0, l 6= p 6= s, l, p, s = 1, 2, 3, R(el, e3)el = −e3, l = 1, 2,

S∗(el, el) = −3, l = 1, 2, S∗(e3, e3) = S∗(el, ep) = 0, l 6= p, l, p = 1, 2, 3.

(4.5)

Using (2.4) and (4.5), we find that M is a GSSF with k1 = 0, k2 = k3 = −1.
The potential field on M is given by

V = (−3x− c4
2
y − c3

2
)
∂

∂x
+ (

c4
2
x+

c1
2
− 3y)

∂

∂y

+ (
c4
2
x2 + c1x− 6z − c4

2
y2 + c2)

∂

∂z
.

Then, we have [V, e1] = 3e1 + c4
2 e2, [V, e2] = − c4

2 e1 + 3e2, [V, e3] = 6e3.
Now, we can see that

(LV g)(el, ep) + 2S∗(el, ep) = 2νg(el, ep),

for ν = −6 and l, p = 1, 2, 3.
Therefore M3(0,−1,−1) is the GSSF with Sasakian metric admitting ex-

panding ∗-Ricci soliton.

Example 2. Consider M = {(x, y, z) ∈ R3 : x, y 6= 0} with
ψ(e1) = e2, ψ(e2) = −e1, ψ(e3) = 0, η = 4

4+3x2+3y2
(ydx− xdy) + dz,

e3 = ξ = ∂
∂z , g = 1

(1+ 3x2

4
+ 3y2

4
)2

(dx⊗ dx+ dy ⊗ dy) + η ⊗ η,

e1 = (1 + 3x2+3y2

4 ) ∂
∂x − y

∂
∂z , e2 = (1 + 3x2+3y2

4 ) ∂∂y + x ∂
∂z .

(4.6)

Moreover,

[el, e3] = 0 for l = 1, 2; [e1, e2] = −3y

2
e1 +

3x

2
e2 + 2e3. (4.7)
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From (4.3) and (4.7), we get{
∇e1e1 = 3y

2 e2,∇e2e1 = −3x
2 e2 − e3,∇e3e1 = −e2,∇e1e2 = −3y

2 e1 + e3,

∇e2e2 = 3x
2 e1,∇e3e2 = e1, ∇e1e3 = −e2, ∇e2e3 = e1, ∇e3e3 = 0.

(4.8)

Using (4.6) and (4.8), we can see that M is a Sasakian manifold. Using
(3.11), (4.7) and (4.8), we find

R(el, ep)es = 0, l 6= p 6= s, l, p, s = 1, 2, 3, R(el, e3)e3 = el, l = 1, 2,

R(el, e3)el = −e3, l = 1, 2, R(el, ep)ep = 0, l 6= p, l, p = 1, 2,

S∗(el, ep) = 0, l, p = 1, 2, 3.

(4.9)

Using (2.4) and (4.9), we find that M is a GSSF with k1 = 3
4 , k2 = k3 = −1

4 .
The potential field V on M is given by

V =
3

32

(
− y2 + x2 +

4

3

) ∂
∂x

+
3xy

16

∂

∂y
+
y

8

∂

∂z
. (4.10)

Then, we have [V, e1] = − 3
16ye2, [V, e2] = 3

16ye1, [V, e3] = 0.
Now, we can see that

(LV g)(ep, es) + 2S∗(ep, es) = 2νg(ep, es),

for ν = 0 and p, s = 1, 2, 3.
Hence M3(34 ,−

1
4 ,−

1
4) is the GSSF with Sasakian metric admitting steady

∗-Ricci soliton.

Now, we give an example of GSSF of arbitrary dimension with Sasakian
metric admitting ∗-Ricci soliton:

Example 3. Consider M = {(xp, yp, z) ∈ R2n+1 : yp 6= 0, p = 1, . . . , n}
with

ψ(ep) = en+p, ψ(en+p) = −ep, ψ(e2n+1) = 0, η = −2
n∑
p=1

ypdxp + dz,

e2n+1 = ξ = ∂
∂z , g =

n∑
p=1

(dxp ⊗ dxp + dyp ⊗ dyp) + η ⊗ η,

ep = ∂
∂yp , en+p = ∂

∂xp + 2yp ∂∂z .

(4.11)

We denote by A = {1, . . . , 2n + 1}, B = {1, . . . , 2n}, C = {n + 1, . . . , 2n}.
Then {

[ep, en+p] = 2e2n+1, [ep, es] = 0, s 6= n+ p, s ∈ A,
[eq, es] = 0, s 6= q − n, s ∈ A, q ∈ C.

(4.12)



106 R. S. Gupta, S. Rani

From (4.3) and (4.12), we get
∇epe2n+1 = −en+p = ∇e2n+1ep,∇eqeq = 0, q ∈ A,
∇eles = 0, l, s ∈ B, s /∈ {l, l + n, l − n},
∇epen+p = e2n+1 = −∇en+pep,∇e2n+1et = et−n = ∇ete2n+1, t ∈ C.

(4.13)

Using (4.11) and (4.13), we can see that M is a Sasakian manifold. Using
(3.11), (4.12) and (4.13), we find{
R(e2n+1, e1)e2n+1 = −e1, R(e1, en+1)e1 = 3en+1, S

∗(e2n+1, e2n+1) = 0,

S∗(el, el) = −(2n+ 1), l ∈ B,S∗(eq, es) = 0, q 6= s, q, s ∈ A.
(4.14)

Using (2.4) and (4.14), we find that M is a GSSF with k1 = 0, k2 = −1,
k3 = −1.

The potential field is given by

V =

n∑
p=1

(
− (2n+ 1)yp

∂

∂yp
− (2n+ 1)xp

∂

∂xp

)
− 2(2n+ 1)z

∂

∂z
.

Then, we have

[V, es] = (2n+ 1)es, s ∈ B, [V, e2n+1] = 2(2n+ 1)e2n+1.

Now, we can see that

(LV g)(eq, es) + 2S∗(eq, es) = 2νg(eq, es), q, s ∈ A,

for ν = −2(2n+ 1). Hence M2n+1(0,−1,−1) is the GSSF with Sasakian metric
admitting expanding ∗-Ricci soliton.

Now, we give an example of GSSF with Sasakian metric which does not
admit ∗-Ricci soliton.

Example 4. Consider M = {(x, y, z) ∈ R3 : x, y 6= 0} with
ψ(e1) = e2, ψ(e2) = −e1, ψ(e3) = 0, η = ydx−xdy

4(1+x2+y2)
+ 1

2dz,

e3 = ξ = 2 ∂
∂z , g = 1

4(1+x2+y2)2
(dx⊗ dx+ dy ⊗ dy) + η ⊗ η,

e1 = 2(1 + x2 + y2) ∂
∂x − y

∂
∂z , e2 = 2(1 + x2 + y2) ∂∂y + x ∂

∂z .

(4.15)

Moreover,

[e1, e3] = 0, [e1, e2] = −4ye1 + 4xe2 + 2e3, [e2, e3] = 0. (4.16)
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From (4.3) and (4.16), we get{
∇e1e1 = 4ye2,∇e2e1 = −4xe2 − e3, ∇e3e1 = −e2,∇e2e2 = 4xe1,

∇e1e2 = −4ye1 + e3,∇e3e2 = e1 = ∇e2e3,∇e1e3 = −e2,∇e3e3 = 0.
(4.17)

Using (4.15) and (4.17), we can see that M is a Sasakian manifold. Using
(4.16) and (4.17), we find{

R(e1, e2)e1 = −13e2, R(el, ep)es = 0, l 6= p 6= s, l, p, s = 1, 2, 3,

R(e1, e2)e2 = 13e1, R(el, e3)e3 = el, R(el, e3)el = −e3, l = 1, 2,
(4.18)

Using (2.4) and (4.18) we find that M is a GSSF with k1 = 4, k2 = 3, k3 = 3.
Suppose that M3(4, 3, 3) admits ∗-Ricci soliton. Then, we can assume V =

αe1 + βe2 + γe3 locally with respect to orthonormal frame {e1, e2, e3} for some
smooth functions. Using (3.11) and Theorem 3 in (1.2), we obtain

g(∇WV,U) + g(W,∇UV )− 26η(W )η(U) = 26g(W,U). (4.19)

From (4.19), we get the following:{
e1(α)− 4βy = 13, e2(β)− 4αx = 13, e2(γ) + e3(β) = 2α,

e3(γ) = 26, e1(β) + 4αy + e2(α) + 4βx = 0, e1(γ) + e3(α) = −2β.
(4.20)

We find that the system of equations (4.20) is inconsistent. Thus, M does
not admit ∗-Ricci soliton.

Acknowledgements. The authors are thankful to the reviewer for useful
suggestions to improve the first version of the article.
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