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1 Introduction

If f : X → Y is a continuous function between topological spaces, and
∅ 6= A ⊂ X, it is often true that knowledge of f |A tells us little about f |X\A. A
digital image is often a model of an object in Euclidean space, and the concept
of a digitally continuous function is modeled on the “preservation of nearness”
notion of a Euclidean continuous function; however, when we consider a con-
tinuous function f : (X,κ) → (Y, λ) between digital images, we often find that
knowledge of f |A tells us much about f |X\A. In this paper, we continue the
work of fixed point theory for digital images (see [24, 15, 18, 11, 12, 13, 14])
and coincidence theory for digital images (see [1]) by examining how restrictions
placed on f |A limit f |X\A.

2 Preliminaries

Let N denote the set of natural numbers; N∗ = { 0 }∪N, the set of nonnega-
tive integers; Z, the set of integers; and R, the set of real numbers. #X will be
used for the number of members of a set X.

2.1 Adjacencies

Material in this section is largely quoted or paraphrased from [18].
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A digital image is a pair (X,κ) where X ⊂ Zn for some n and κ is an
adjacency on X. Thus, (X,κ) is a graph for which X is the vertex set and κ
determines the edge set. Usually, X is finite, although there are papers that con-
sider infinite X. Usually, adjacency reflects some type of “closeness” in Zn of the
adjacent points. When these “usual” conditions are satisfied, one may consider
a subset Y of Zn (typically, an n-dimensional cube) containing X as a model
of a black-and-white “real world” image in which the black points (foreground)
are represented by the members of X and the white points (background) by
members of Y \X.

We write x↔κ y, or x↔ y when κ is understood or when it is unnecessary
to mention κ, to indicate that x and y are κ-adjacent. Notations x -κ y, or
x - y when κ is understood, indicate that x and y are κ-adjacent or are equal.

The most commonly used adjacencies are the cu adjacencies, defined as
follows. Let X ⊂ Zn and let u ∈ Z, 1 ≤ u ≤ n. Then for points

x = (x1, . . . , xn) 6= (y1, . . . , yn) = y

we have x↔cu y if and only if

� for at most u indices i we have |xi − yi| = 1, and

� for all indices j, |xj − yj | 6= 1 implies xj = yj .

The cu-adjacencies are often denoted by the number of adjacent points a
point can have in the adjacency. E.g.,

� in Z, c1-adjacency is 2-adjacency;

� in Z2, c1-adjacency is 4-adjacency and c2-adjacency is 8-adjacency;

� in Z3, c1-adjacency is 6-adjacency, c2-adjacency is 18-adjacency, and c3-
adjacency is 26-adjacency.

In this paper, we mostly use the c1 and c2 adjacencies in Z2.
Let x ∈ (X,κ). We use the notations

N(X,x, κ) = { y ∈ X | y ↔κ x }

and
N∗(X,x, κ) = { y ∈ X | y -κ x } = N(X,x, κ) ∪ {x }.

We say {xn }kn=0 ⊂ (X,κ) is a κ-path (or a path if κ is understood) from x0
to xk if xi -κ xi+1 for i ∈ { 0, . . . , k − 1 }, and k is the length of the path.

A subset Y of a digital image (X,κ) is κ-connected [24], or connected when
κ is understood, if for every pair of points a, b ∈ Y there exists a κ-path in Y
from a to b.
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2.2 Digitally continuous functions

Material in this section is largely quoted or paraphrased from [18].
We denote by id or idX the identity map id(x) = x for all x ∈ X.

Definition 1. [24, 4] Let (X,κ) and (Y, λ) be digital images. A function
f : X → Y is (κ, λ)-continuous, or digitally continuous when κ and λ are
understood, if for every κ-connected subset X ′ of X, f(X ′) is a λ-connected
subset of Y . If (X,κ) = (Y, λ), we say a function is κ-continuous to abbreviate
“(κ, κ)-continuous.”

Theorem 1. [4] A function f : X → Y between digital images (X,κ) and
(Y, λ) is (κ, λ)-continuous if and only if for every x, y ∈ X, if x ↔κ y then
f(x) -λ f(y).

Theorem 2. [4] Let f : (X,κ)→ (Y, λ) and g : (Y, λ)→ (Z, µ) be continu-
ous functions between digital images. Then g◦f : (X,κ)→ (Z, µ) is continuous.

Definition 2. Let A ⊂ X. A κ-continuous function r : X → A is a retrac-
tion, and A is a retract of X, if r(a) = a for all a ∈ A.

A function f : (X,κ)→ (Y, λ) is an isomorphism (called a homeomorphism
in [3]) if f is a continuous bijection such that f−1 is continuous.

We use the following notation. For a digital image (X,κ),

C(X,κ) = { f : X → X | f is κ-continuous }.

Given f ∈ C(X,κ), a point x ∈ X is a fixed point of f if f(x) = x. We denote
by Fix(f) the set {x ∈ X | x is a fixed point of f }. A point x ∈ X is an almost
fixed point [24, 26] or an approximate fixed point [15] of f if x -κ f(x).

We use the projection functions p1, p2 : Z2 → Z defined for (x, y) ∈ Z2 by
p1(x, y) = x, p2(x, y) = y. These functions are (c1, c1)-continuous and (c2, c1)-
continuous [22].

2.3 Freezing and cold sets

Material in this section is largely quoted or paraphrased from [11].
Knowledge of Fix(f) for f ∈ C(X,κ) can tell us much about f |X\Fix(f).

This motivates the study of freezing and cold sets.

Definition 3. [11] Let (X,κ) be a digital image. We say A ⊂ X is a freezing
set for X if given g ∈ C(X,κ), A ⊂ Fix(g) implies g = idX . If no proper subset
of a freezing set A is a freezing set for (X,κ), then A is a minimal freezing set

Definition 4. [11] A ⊂ X is a cold set for the connected digital image (X,κ)
if given g ∈ C(X,κ) such that g|A = idA, then for all x ∈ X, g(x) ∈ N∗(X,x, κ).

Remark 1. [11] A freezing set is a cold set.
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Definition 5. [12] Let X ⊂ Zn.

� The boundary of X with respect to the ci adjacency, i ∈ { 1, 2}, is

Bdi(X) = {x ∈ X | there exists y ∈ Zn \X such that y ↔ci x}.

Bd1(X) is what is called the boundary of X in [23]. This paper uses both
Bd1(X) and Bd2(X).

� The interior of X with respect to the ci adjacency is

Inti(X) = X \Bdi(X).

Theorem 3. [11] Let X ⊂ Zn be finite. Then for 1 ≤ u ≤ n, Bd1(X) is a
freezing set for (X, cu).

Theorem 4. [11] Let X = Πn
i=1[0,mi]Z. Let A = Πn

i=1{ 0,mi}.

� Let Y = Πn
i=1[ai, bi]Z be such that X ⊂ Y . Let f : X → Y be c1-continuous.

If A ⊂ Fix(f), then X ⊂ Fix(f).

� A is a freezing set for (X, c1); minimal for n ∈ { 1, 2 }.

Theorem 5. [11] Let X =
∏n
i=1[0,mi]Z ⊂ Zn, where mi > 1 for all i. Then

Bd1(X) is a minimal freezing set for (X, cn).

2.4 Digital disks and bounding curves

Material in this section is largely quoted or paraphrased from [12].
We say a finite c2-connected set S = {xi }ni=1 ⊂ Z2 is a (digital) line segment

if the members of S are collinear.
We say a segment with slope of ±1 is slanted. An axis-parallel segment is

horizontal or vertical.

Remark 2. [12] A digital line segment must be axis-parallel or slanted.

A closed curve is a path S = { si }mi=0 such that s0 = sm, and 0 < |i−j| < m
implies si 6= sj . If

N(S, x0, κ) = N(S, xm, κ) = {x1, xm−1 } and

1 ≤ i < m implies N(S, xi, κ) = {xi−1, xi+1 },

S is a cycle. We may also refer to a cycle as a (digital) κ-simple closed curve.
For a simple closed curve S ⊂ Z2 we generally assume

� m ≥ 8 if κ = c1, and
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� m ≥ 4 if κ = c2.

These requirements are necessary for the Jordan Curve Theorem of digital topol-
ogy, below, as a c1-simple closed curve in Z2 must have at least 8 points to have
a nonempty finite complementary c2-component, and a c2-simple closed curve
in Z2 must have at least 4 points to have a nonempty finite complementary c1-
component. Examples in [23] show why it is desirable to consider S and Z2 \ S
with different adjacencies.

Theorem 6. [23] (Jordan Curve Theorem for digital topology) Let {κ, κ′ } =
{ c1, c2 }. Let S ⊂ Z2 be a simple closed κ-curve such that S has at least 8 points
if κ = c1 and such that S has at least 4 points if κ = c2. Then Z2 \S has exactly
2 κ′-connected components.

One of the κ′-components of Z2 \ S is finite and the other is infinite. This
suggests the following.

Definition 6. [12] Let S ⊂ Z2 be a c2-closed curve such that Z2 \ S has
two c1-components, one finite and the other infinite. The union D of S and the
finite c1-component of Z2 \ S is a (digital) disk. S is a bounding curve of D.
The finite c1-component of Z2 \S is the interior of S, denoted Int(S), and the
infinite c1-component of Z2 \ S is the exterior of S, denoted Ext(S).

Notes [12]:

� If D is a digital disk determined as above by a bounding c2-closed curve
S, then (S, c1) can be disconnected. See Figure 1.

� There may be more than one closed curve S bounding a given disk D. See
Figure 2. When S is understood as a bounding curve of a disk D, we use
the notations Int(S) and Int(D) interchangeably.

� Since we are interested in finding minimal freezing or cold sets and since
it turns out we often compute these from bounding curves, we may prefer
those of minimal size. A bounding curve S for a disk D is minimal if there
is no bounding curve S′ for D such that #S′ < #S.

� In particular, a bounding curve need not be contained in Bd1(D). E.g., in
the disk D shown in Figure 2(i), (2, 2) is a point of the bounding curve;
however, all of the points c1-adjacent to (2, 2) are members of D, so by
Definition 5, (2, 2) 6∈ Bd1(D). However, a bounding curve for D must be
contained in Bd2(D).

� In Definition 6, we use c2 adjacency for S and we do not require S to be
simple. Figure 2 shows why these seem appropriate.
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Figure 1. [12] The c1-disk D = { (x, y) ∈ Z2 | |x| + |y| < 2 }. The bounding
curve S = { (x, y) ∈ Z2 | |x|+ |y| = 1 } = D \ { (0, 0) } is not c1-connected.

– The c2 adjacency allows slanted segments in bounding curves and
makes possible a bounding curve in subfigure (ii) with fewer points
than the bounding curve in subfigure (i) in which adjacent pairs of
the bounding curve are restricted to c1 adjacency.

– Neither of the bounding curves shown in Figure 2 is a c2-simple
closed curve. E.g., non-consecutive points of each of the bounding
curves, (0, 1) and (1, 0), are c2-adjacent. The bounding curve shown
in Figure 2(ii) is clearly also not a c1-simple closed curve.

� A closed curve that is not simple may be the boundary Bd2 of a digital
image that is not a disk. This is illustrated in Figure 3.

More generally, we have the following.

Definition 7. [12] Let X ⊂ Z2 be a finite, ci-connected set, i ∈ { 1, 2 }.
Suppose there are pairwise disjoint c2-closed curves Sj ⊂ X, 1 ≤ j ≤ n, such
that

� X ⊂ S1 ∪ Int(S1);

� for j > 1, Dj = Sj ∪ Int(Sj) is a digital disk;

� no two of
S1 ∪ Ext(S1), D2, . . . , Dn

are c1-adjacent or c2-adjacent; and

� we have

Z2 \X = Ext(S1) ∪
n⋃
j=2

Int(Sj).
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Figure 2. [12] Two views of D = [0, 3]2Z \ { (3, 3) }, which can be regarded as a
c1-disk with either of the closed curves shown in dark as a bounding curve.
(i) The dark line segments show a c1-simple closed curve S that is a bounding
curve for D. Note the point (2, 2) in the bounding curve shown. By Definition 5,
(2, 2) 6∈ Bd1(D); however, (2, 2) ∈ Bd2(D).
(ii) The dark line segments show a c2-closed curve S that is a minimal bounding
curve for D.

Figure 3. [12] D = [0, 6]Z × [0, 2]Z \ { (3, 2) } shown with a bounding curve S in
dark segments. D is not a disk with either the c1 or the c2 adjacency, since with
either of these adjacencies, Z2 \S has two bounded components, { (1, 1), (2, 1) }
and { (4, 1), (5, 1) }.
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Figure 4. [12] p ∈ uv in a bounding curve, with uv slanted. Note u 6↔c1 p 6↔c1 v,
p↔c2 c 6↔c1 p, { p, c } ⊂ N(Z2, c1, b)∩N(Z2, c1, d). If X is slant-thick at p then
c ∈ X. (Not meant to be understood as showing all of X.)

Then {Sj }nj=1 is a set of bounding curves of X.

Note: As above, a digital image X ⊂ Z2 may have more than one set of
bounding curves.

2.5 Thickness

A notion of “thickness” in a digital image X, introduced in [12], means,
roughly speaking, X is “locally” like a disk.

Our definition of thickness depends on a notion of an “interior angle” of a
disk. We have the following.

Definition 8. [12] Let s1 and s2 be sides of a digital disk X ⊂ Z2, i.e.,
maximal digital line segments in a bounding curve S of X, such that s1 ∩ s2 =
{ p } ⊂ X. The interior angle of X at p is the angle formed by s1, s2, and
Int(S).

Definition 9. [12] Let X ⊂ Z2 be a digital disk. Let S be a bounding curve
of X and p ∈ S.

� Suppose p is in a maximal slanted segment σ of S such that p is not an
endpoint of σ. Then X is slant-thick at p if there exists c ∈ X such that
(see Figure 4)

c↔c2 p 6↔c1 c, (2.1)

� Suppose p is the vertex of a 90◦ (π/2 radians) interior angle θ of S. Then
X is 90◦-thick at p if there exists q ∈ Int(X) such that

– if θ has axis-parallel sides then q ↔c2 p 6↔c1 q (see Figure 5(1));

– if θ has slanted sides then q ↔c1 p (see Figure 5(2)).

� Suppose p is the vertex of a 135◦ (3π/4 radians) interior angle θ of S.
Then X is 135◦-thick at p if there exist b, b′ ∈ X such that b and b′ are in
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Figure 5. [12] (1) ∠apb is a 90◦ (π/2 radians) angle of a bounding curve of
X at p ∈ A1, with horizontal and vertical sides. If X is 90◦-thick at p then
q ∈ Int(X). (Not meant to be understood as showing all of X.)
(2) ∠apb is a 90◦ (π/2 radians) angle between slanted segments of a bounding
curve. If X is 90◦-thick at p then q ∈ Int(X). (Not meant to be understood as
showing all of X).

Figure 6. [12] ∠apq is an angle of 135◦ degrees (3π/4 radians) of a bounding
curve of X at p, with ap∪ pq a subset of the bounding curve. If X is 135◦-thick
at p then b, b′ ∈ X. (Not meant to be understood as showing all of X.)

the interior of θ and (see Figure 6)

b↔c2 p 6↔c1 b and b′ ↔c1 p.

Definition 10. [12, 14] Let X ⊂ Z2 be a digital disk. We say X is thick if
the following are satisfied. For some bounding curve S of X,

� for every maximal slanted segment of S, if p ∈ S is not an endpoint of S,
then X is slant-thick at p, and

� for every p that is the vertex of a 90◦ (π/2 radians) interior angle θ of S,
X is 90◦-thick at p, and

� for every p that is the vertex of a 135◦ (3π/4 radians) interior angle θ of
S, X is 135◦-thick at p.
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2.6 Convexity

A set X in a Euclidean space Rn is convex if for every pair of distinct points
x, y ∈ X, the line segment xy from x to y is contained in X. The convex hull of
Y ⊂ Rn, denoted hull(Y ), is the smallest convex subset of Rn that contains Y .
If Y ⊂ R2 is a finite set, then hull(Y ) is a single point if Y is a singleton; a line
segment if Y has at least 2 members and all are collinear; otherwise, hull(Y ) is
a polygonal disk, and the endpoints of the edges of hull(Y ) are its vertices.

A digital version of convexity can be stated for subsets of the digital plane Z2

as follows. A finite set Y ⊂ Z2 is (digitally) convex [12] if either

� Y is a single point, or

� Y is a digital line segment, or

� Y is a digital disk with a bounding curve S such that the endpoints of the
maximal line segments of S are the vertices of hull(Y ) ⊂ R2.

3 Tools for determining fixed point sets

The following assertions will be useful in determining fixed point and freezing
sets.

Proposition 1. (Corollary 8.4 of [18]) Let (X,κ) be a digital image and
f ∈ C(X,κ). Suppose x, x′ ∈ Fix(f) are such that there is a unique shortest
κ-path P in X from x to x′. Then P ⊆ Fix(f).

Lemma 1, below,

... can be interpreted to say that in a cu-adjacency, a continuous
function that moves a point p also moves a point that is “behind” p.
E.g., in Z2, if q and q′ are c1- or c2-adjacent with q left, right, above,
or below q′, and a continuous function f moves q to the left, right,
higher, or lower, respectively, then f also moves q′ to the left, right,
higher, or lower, respectively [11].

Lemma 1. [11] Let (X, cu) ⊂ Zn be a digital image, 1 ≤ u ≤ n. Let
q, q′ ∈ X be such that q ↔cu q

′. Let f ∈ C(X, cu).

(1) If pi(f(q)) > pi(q) > pi(q
′) then pi(f(q′)) > pi(q

′).

(2) If pi(f(q)) < pi(q) < pi(q
′) then pi(f(q′)) < pi(q

′).

Remark 3. [11] If X ⊂ Z2 is finite, then a set of bounding curves for X is
a freezing set for (X, ci), i ∈ { 1, 2 }.
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In particular, we have:

Theorem 7. Let D be a digital disk in Z2. Let S be a bounding curve for
D. Then S is a freezing set for (D, c1) and for (D, c2).

The next two results form a dual pair.

Theorem 8. [12] Let X be a thick convex disk with a bounding curve S.
Let A1 be the set of points x ∈ S such that x is an endpoint of a maximal
axis-parallel edge of S. Let A2 be the union of slanted line segments in S. Then
A = A1 ∪A2 is a minimal freezing set for (X, c1).

Theorem 9. [12] Let X be a thick convex disk with a minimal bounding
curve S. Let B1 be the set of points x ∈ S such that x is an endpoint of a
maximal slanted edge in S. Let B2 be the union of maximal axis-parallel line
segments in S. Let B = B1 ∪B2. Then B is a minimal freezing set for (X, c2).

The next two results form another dual pair, generalizing the previous pair.

Theorem 10. [13] Let Vi ⊂ X ⊂ Z2, i ∈ { 1, . . . , n } where each Vi is a thick
convex disk. Let X ′ =

⋃n
i=1 Vi. Let Ci be a bounding curve of Vi. Let A1,i be the

set of endpoints of maximal horizontal or vertical segments of Ci. Let A2,i be the
union of maximal slanted segments of Ci. Then A = (X \X ′)∪

⋃n
i=1(A1,i∪A2,i)

is a freezing set for (X, c1).

Theorem 11. [13] Let Vi ⊂ X ⊂ Z2, i ∈ { 1, . . . , n } where each Vi is a
thick convex disk. Let X ′ =

⋃n
i=1 Vi. Let Ci be a bounding curve of Vi. Let B1,i

be the union of maximal horizontal and maximal vertical segments of Ci. Let
B2,i be the set of endpoints of maximal slanted segments of Ci. Then B = (X \
X ′)∪

⋃n
i=1(B1,i ∪B2,i) is a freezing set for (X, c2) (the adjacency is misprinted

as c1 in [13]).

4 Unifying sets

4.1 Definition and general properties

Definition 11. Let (X,κ) be a digital image. Let A ⊂ X. Suppose whenever
f, g ∈ C(X,κ) are such that f(A) = g(A) = A and f |A = g|A, we have f = g.
Then we say A is a unifying set for (X,κ). A is a minimal unifying set if A is
a unifying set and no proper subset of A is a unifying set for (X,κ).

Remark 4. Observe:

� By taking g to be the identity function idX in Definition 11, we see that a
unifying set is a freezing set. We have not determined whether the converse
is true.
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� It is trivial that X is a unifying set for (X,κ). We are therefore interested
in finding minimal unifying sets. In light of the above, a minimal freezing
set is a “good candidate” for a minimal unifying set.

In the following, we study conditions for which a freezing set must be uni-
fying.

The desirability of the requirement that f(A) = g(A) = A in Definition 11
is illustrated in the following, in which this requirement is not met.

Example 1. Let X = [0,m]Z × [0, n]Z for m ≥ 2, n > 0. Let f, g : X → X
be the functions

f(x, y) = (0, y), g(x, y) =

{
(0, y) if x ∈ { 0,m };
(1, y) if 1 ≤ x ≤ m− 1,

We take

A = { (0, 0), (0, n), (m, 0), (m,n) }.

Note by Theorem 4, A is a minimal freezing set for (X, c1). We see easily that
f, g ∈ C(X, c1), f |A = g|A, f(A) = g(A) is a proper subset of A, and f 6= g.

The following shows that unifying sets are preserved by isomorphism.

Theorem 12. Let (X,κ) and (Y, λ) be digital images such that there exists
an isomorphism F : (X,κ)→ (Y, λ). If A is a unifying set for (X,κ) then F (A)
is a unifying set for (Y, λ).

Proof. Let f, g ∈ C(Y, λ) such that f(F (A)) = g(F (A)) = F (A) and f |F (A) =
g|F (A).

We have, by Theorem 2, f ′ = F−1 ◦ f ◦ F, g′ = F−1 ◦ g ◦ F ∈ C(X,κ), and
for a ∈ A we have f ◦ F (a) = g ◦ F (a), so

f ′(a) = F−1 ◦ f ◦ F (a) = F−1 ◦ g ◦ F (a),= g′(a).

Also, given b = F (a) for a ∈ A, by assumption we have f(b) = g(b), hence

f ′(a) = F−1(f(b)) = F−1(g(b)) = g′(a).

Since A is unifying, f ′ = g′. Therefore,

f = F ◦ f ′ ◦ F−1 = F ◦ g′ ◦ F−1 = g,

so F (A) is unifying for (Y, λ). QED

We have the following generalization of Proposition 1.
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Proposition 2. Let f, g : X → Y such that f and g are both (κ, λ)-
continuous. Suppose x0, x1 ∈ X and there is a κ-path P of length n in X from
x0 to x1. Suppose y0 = f(x0) = g(x0), y1 = f(x1) = g(x1), and there is a unique
shortest path Q of length n in Y from y0 to y1. Then f(P ) = g(P ) = Q and
f |P = g|P .

Proof. Since f(P ) and g(P ) must be λ-paths from y0 to y1, our uniqueness
and length restrictions imply f(P ) = g(P ) = Q. Continuity implies f |P =
g|P . QED

4.2 Cycles

Theorem 13. [11] Let n > 4. Consider a digital cycle Cn = {xm }n−1m=0 ⊂
Z2, where the members of Cn are indexed circularly. Let A = {xi, xj , xk } be a
set of distinct members of Cn such that Cn is a union of unique shorter paths
determined by these points. Then A is a minimal freezing set for Cn.

Theorem 14. The set A of Theorem 13 is a unifying set for (Cn, κ), and
any f ∈ C(X,κ) such that f(A) = A must be an isomorphism of (X,κ).

Proof. Let x̂ixj , x̂ixk, and x̂jxk be the unique shorter paths in Cn from xi to
xj , from xi to xk, and from xj to xk, respectively. Let B = { x̂ixj , x̂ixk, x̂jxk }.
Let f, g ∈ C(Cn, κ) such that

f(A) = g(A) = A and f |A = g|A. (4.1)

Suppose f 6= g. Consider the following cases.

� The members of B have distinct lengths. Without loss of generality,

length(x̂ixj) < length(x̂ixk) < length(x̂jxk). (4.2)

Since we have that both f(x̂ixj) and g(x̂ixj) are paths of length at most
length(x̂ixj) from f(xi) = g(xi) to f(xj) = g(xj), from (4.2) and Proposi-
tion 2, f(x̂ixj) = g(x̂ixj) and f |x̂ixj = g|x̂ixj is a bijection of x̂ixj . Indeed,
we must have that f and g coincide with idX on x̂ixj , for otherwise we
would have f(xi) = g(xi) = xj , f(xj) = g(xj) = xi, f(xk) = g(xk) = xk,
so f(x̂ixk) is a κ-path from xj to xk, contrary to (4.2). Then by (4.1) we
have f |A = g|A = idA, and from Proposition 2 it follows that f = g = idX .

� Suppose two members, but not all three, of B have the same length;
without loss of generality, length(x̂ixj) = length(x̂ixk). Then either f |A =
g|A = idA or f(xi) = g(xi) = xi, f(xj) = g(xj) = xk, and f(xk) = g(xk) =
xj . Then much as above, f = g is an isomorphism of (X,κ).
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� Suppose all three members of B have the same length. Then f |A = g|A is a
permutation of A. Much as above, it follows that f = g is an isomorphism
of (X,κ).

In all cases, we concluded that f = g is an isomorphism of (X,κ). Thus A is a
unifying set for (X,κ). QED

4.3 Trees

A tree is a connected acyclic graph (X,κ). By acyclic we mean lacking any
closed curve of more than 2 points. The degree of a vertex x in X is the number
of distinct vertices y ∈ X such that x↔ y.

Theorem 15. [11] Let (X,κ) be a digital image such that the graph G =
(X,κ) is a finite tree with #X > 1. Let A be the set of vertices of G that have
degree 1. Then A is a minimal freezing set for G.

Theorem 16. Let (X,κ) be a digital image such that the graph G = (X,κ)
is a finite tree with #X > 1. Let A be the set of vertices of G that have degree 1.
Then A is a minimal unifying set for G. Also, if f ∈ C(X,κ) such that f(A) =
A, then f is an isomorphism of (X,κ).

Proof. Let a0 ∈ A. Since X is finite, we have that A is also finite - say, A =
{ ai }ni=0. Since G is a tree, for 0 < i ≤ n there is a unique shortest κ-path Pi in
X from a0 to ai. Let L = { `j }mj=1 be the set of distinct lengths of the members
of {Pi }ni=1, with

`1 < `2 < . . . < `m.

Let Lj = {Pi | length(Pi) = `j }. Let f, g ∈ C(X,κ) be such that f(A) =
g(A) = A and f |A = g|A. Since A is finite,

f |A = g|A : A→ A is a bijection. (4.3)

Every Pk of length `1 is the unique shortest κ-path in X from a0 to some
ak ∈ A \ { a0 }. Since f(Pk) is a path from f(a0) = g(a0) to f(ak) = g(ak),
our choice of `1 and Proposition 2 imply f |Pk

= g|Pk
, f(Pk) = g(Pk) has length

`1, and from (4.3) that f |L1 = g|L1 is a bijection of L1. It follows easily that
f |L1 = g|L1 is an isomorphism. This provides the base case of an induction
argument.

Suppose u ∈ Z, 0 ≤ u < m; f |Pk
= g|Pk

for every Pk ∈
⋃u
j=1 Lj ; and

f |⋃u
j=1 Lj

= g|⋃u
j=1 Lj

is a bijection of

u⋃
j=1

Lj . (4.4)
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Now consider Pk ∈ Lu+1. f(Pk) and g(Pk) are κ-paths in X from f(a0) = g(a0)
to f(ak) = g(ak) of length at most `u+1. By (4.3) and (4.4), f(Pk) and g(Pk)
cannot have length less than `u+1. Therefore, each of f(Pk) and g(Pk) belongs
to Lu+1. By the uniqueness condition that defines Lu+1 it follows that f |Pk

=
g|Pk

. By (4.3), f |Lu+1 = g|Lu+1 is a bijection. It follows from the above that

f |⋃u+1
j=1 Lj

= g|⋃u+1
j=1 Lj

is a bijection of
⋃u+1
j=1 Lj , and, further, an isomorphism.

This completes the induction. Since X =
⋃m
j=1 Lj , we have f = g. Since f

was chosen arbitrarily, A is a unifying set. Also, f is an isomorphism.
To show the minimality of A, we see easily that for any a ∈ A there is a κ-

retraction r : X → X \{ a }, so r and idX are members of C(X,κ) that coincide
on A \ { a }, r(A \ { a }) = idX(A \ { a }) = (A \ { a }), but r 6= idX . QED

4.4 Complete graphs

Theorem 17. Let (X,κ) be a digital image that is a complete graph, where
#X > 1. Let A ⊂ X. Then the following are equivalent.

(1) A = X.

(2) A is a unifying set for (X,κ).

(3) A is a freezing set for (X,κ).

Proof. 1)⇒ 2)⇒ 3): These implications are noted in Remark 4.
3)⇒ 1): Suppose otherwise. Then there exists x0 ∈ X\A. Let x1 ∈ X\{x0 }.

Let g : X → X be defined by

g(x) =

{
x for x 6= x0;
x1 for x = x0.

Since (X,κ) is a complete graph, g ∈ C(X,κ). Note g|A = idA. But since
g(x0) 6= x0, we have a contradiction of the assumption that A is freezing. The
contradiction gives us the desired conclusion. QED

4.5 Rectangles in Z2 with axis-parallel sides and c1

In this section, we study unifying sets for digital rectangles with axis-parallel
edges in Z2, using the c1 adjacency.

Proposition 3. [14] Let X ⊂ Z2. Let S be a minimal bounding curve for
X. Let p0 be the vertex of an interior angle of S, formed by axis-parallel edges
E1 and E2 of S, of measure 90◦ (π/2 radians). Let A be any of a freezing set
for (X, c1), a cold set for (X, c1), a freezing set for (X, c2), or a cold set for
(X, c2). Let X be 90◦-thick at p0. Then p0 ∈ A.
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Proposition 4. Let m > 1, n > 1, and X = [0,m]Z × [0, n]Z. Let A ⊂ X.
Then A is a freezing set for (X, c1) if and only if

A′ = { (0, 0), (m, 0), (0, n), (m,n) } ⊂ A.

Therefore, A′ is the only minimal freezing set for (X, c1).

Proof. If A is a freezing set, then by Proposition 3, A′ ⊂ A. Since A′ is a freezing
set by Theorem 10, it follows that A′ is unique as a minimal freezing set.

If A′ ⊂ A then, since A′ is a freezing set, A is a freezing set [11]. QED

Theorem 18. Let X = [−m,m]Z × [−n, n]Z. Let

A = { (−m,−n), (−m,n), (m,−n), (m,n) }.

Then A is a unifying set for (X, c1). Further, every f ∈ C(X, c1) such that
f(A) = A is an isomorphism.

Proof. Let f, g ∈ C(X, c1) be such that f(A) = g(A) = A and f |A = g|A. Let
B, T, L,R be the bottom, top, left, and right edges, respectively:

B = [−m,m]Z × {−n }, T = [−m,m]Z × {n },

L = {−m } × [−n, n]Z, R = {m } × [−n, n]Z.

Consider the following cases.

� m < n. Since f(A) = g(A) = A, we have that f(B), g(B), f(T ), and g(T )
are c1-paths of length at most 2m between distinct members of A, and
since the closest distinct members of A are joined by paths of length 2m,
f(B), g(B), f(T ), and g(T ) are paths of length 2m. Therefore, f(B∪T ) =
g(B ∪ T ) = B ∪ T . Continuity implies that for all (x, y) ∈ B ∪ T , one of
the following holds:

– f(x, y) = g(x, y) = (x, y), or

– f(x, y) = g(x, y) = (−x, y), or

– f(x, y) = g(x, y) = (x,−y), or

– f(x, y) = g(x, y) = (−x,−y).

Suppose the first case, f(x, y) = g(x, y) = (x, y) for (x, y) ∈ B ∪ T . Each
(x, y) ∈ X lies on the unique shortest c1-path between b = (x,−n) and
t = (x, n). Since f(b) = g(b) = b and f(t) = g(t) = t, we must have
f(x, y) = g(x, y) = (x, y) by Proposition 2. Thus f = g = idX . Similarly,
f = g is an isomorphism of (X, c1) in the other cases.
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� m > n. This case is similar to the case m < n, yielding the conclusion
that f = g is an isomorphism of (X, c1).

� m = n. In this case we have either f(B ∪ T ) = g(B ∪ T ) = B ∪ T or
f(B ∪ T ) = g(B ∪ T ) = L ∪ R. In the former case, f |B∪T and g|B∪T are
given by one of the four possibilities listed above; in the latter case, one
of the following holds. For (x, y) ∈ B ∪ T ,

– f(x, y) = g(x, y) = (y, x), or

– f(x, y) = g(x, y) = (y,−x), or

– f(x, y) = g(x, y) = (−y, x), or

– f(x, y) = g(x, y) = (−y,−x).

An argument like that used above shows that in each of these cases, f = g
is an isomorphism of (X, c1).

Thus all cases lead to the conclusion that that f = g, hence A is unifying;
and that f ∈ C(X, c1) such that f(A) = A implies f is an isomorphism of
(X, c1). QED

4.6 Rectangles in Z2 with slanted sides and c2

In this section, we study unifying sets for digital rectangles with slanted edges
in Z2, using the c2 adjacency. Our assertions are dual to those of section 4.5
and have proofs with common elements.

Proposition 5. Let X be a digital rectangle in Z2 with slanted edges. Let
B ⊂ X. Let B′ be the set of endpoints of edges of X. Then B is a freezing set
for (X, c2) if and only if B′ ⊂ B. Therefore, B′ is the only minimal freezing set
for (X, c2).

Proof. By Theorem 12, there is no loss of generality in assuming

B′ = { (0, 0), (m,m), (n,−n), (m+ n,m− n) } for some m,n ∈ N.

If B is a freezing set, then by Proposition 3, B′ ⊂ B. Since B′ is a freezing set
by Theorem 11, it follows that B′ is unique as a minimal freezing set. QED

Theorem 19. Let X be the digital rectangle with endpoints of edges in the
set

B = { (0, 0), (m,m), (n,−n), (m+ n,m− n) }.

Then B is a unifying set for (X, c2). Further, every f ∈ C(X, c2) such that
f(B) = B is an isomorphism.
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Proof. Let LR (lower right) be the edge of X from (n,−n) to (m+ n,m− n).
Let UL (upper left) be the edge of X from (0, 0) to (m,m). Let LL (lower left)
be the edge of X from (0, 0) to (n,−n). Let UR (upper right) be the edge of
X from (m,m) to (m+ n,m− n). For m < n, there are distinct isomorphisms
F1, F2, F3, F4 : S → S, where

S = LR ∪ UL ∪ LL ∪ UR

is the bounding curve of X, where F1 = idS , F2 reverses the orientations of UL
and LR, F3 interchanges UL and LR while preserving their orientations, and
F4 interchanges UL and LR and reverses their orientations.

Consider the following cases.

� m < n. Since f(B) = g(B) = B, we have that f(UL), g(UL), f(LR), and
g(LR) are c2-paths of length at most m between distinct members of B,
and since the closest distinct members of B are joined by paths of length
m, f(UL), g(UL), f(LR), and g(LR) are paths of length m. Therefore,
f(UL∪LR) = g(UL∪LR) = UL∪LR. Proposition 2 implies that for all
(x, y) ∈ UL ∪ LR, f(x, y) = g(x, y) = Fi(x, y) for some index i.

Suppose the first case,

f(x, y) = g(x, y) = F1(x, y) = (x, y) for (x, y) ∈ UL ∪ LR.

Consider the following cases.

– Suppose (x, y) ∈ X lies on the unique shortest c2-path (a slanted
path) between some d1 ∈ UL and some d2 ∈ LR. Since f(dj) =
g(dj) = dj for j ∈ { 1, 2 }, we must have f(x, y) = g(x, y) = (x, y) by
Proposition 2.

– Otherwise, each of the points in

W = {(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)}

is adjacent to (x, y) and lies on a slanted unique shortest c2-path
between a point in UL and a point in LR (see Figure 8). By continuity
and the previous case, W ⊂ Fix(f)∩Fix(g). By Lemma 1, it follows
that (x, y) ∈ Fix(f) ∩ Fix(g)

Thus f = g = idX . Similarly, f = g is an isomorphism of (X, c2) if

f(x, y) = g(x, y) = F2(x, y) for (x, y) ∈ UL ∪ LR,

f(x, y) = g(x, y) = F3(x, y) for (x, y) ∈ UL ∪ LR, or

f(x, y) = g(x, y) = F4(x, y) for (x, y) ∈ UL ∪ LR.
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� m > n. This case is similar to the case m < n, and we similarly conclude
that f = g is an isomorphism of (X, c2).

� m = n. Here, in addition to the isomorphisms F1, F2, F3, F4 discussed
above, we also have isomorphisms R1, R2, R3, R4 of (X, c2) that rotate
the edges of X by 90◦ (π/2 radians) either clockwise or counterclockwise,
either preserving or reversing the orientations of both UL and LR. An
argument like that used above shows that in each of these cases, f = g is
an isomorphism of (X, c2).

Thus all cases lead to the conclusion that f = g, hence B is unifying; and that
f ∈ C(X, c2) such that f(B) = B implies f is an isomorphism of (X, c2). QED

4.7 Generalized normal product

In this section, we consider unifying sets for Cartesian products of digital
images using the normal product adjacency.

We have the following generalization of the normal product adjacency [2]
for the Cartesian product of two graphs.

Definition 12. [25, 8] Let u, v ∈ N, 1 ≤ u ≤ v. Let (Xi, κi) be digital
images, i ∈ { 1, . . . , v). Let xi, yi ∈ Xi, x = (x1, . . . , xv), y = (y1, . . . , yv). Then
x ↔ y in the generalized normal product adjacency NPu(κ1, . . . , κv) if for at
least 1 and at most u indices i, xi ↔κi yi and for all other indices j, xj = yj .

Remark 5. For u = v = 2, the generalized normal product adjacency
coincides with the normal product adjacency. Sabidussi [25] uses strong for what
we call the generalized normal product adjacency; we prefer the latter name,
as “strong” also appears in the literature for what we call the normal product
adjacency.

The following generalizes a result in [16, 7].

Theorem 20. [8] Let fi : (Xi, κi) → (Yi, λi), 1 ≤ i ≤ v. Then the product
map

f = Πv
i=1fi : (Πv

i=1Xi, NPv(κ1, . . . , κv))→ (Πv
i=1Yi, NPv(λ1, . . . , λv))

given by f(x1, . . . , xv) = (f1(x1), . . . , fv(xv)) is continuous if and only if each
fi is continuous.

Theorem 21. Let ∅ 6= Ai ⊂ Xi, where (Xi, κi) is a digital image, 1 ≤ i ≤
v ∈ N. Let A = Πv

i=1Ai, X = Πv
i=1Xi. If A is a unifying set for (X,NPv(κ1, . . . ,

κv)) then for each i, Ai is a unifying set for (Xi, κi).
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Proof. Suppose A is a unifying set for (X,NPv(κ1, . . . , κv)). For all i, let fi, gi ∈
C(Xi, κi) be such that fi(Ai) = gi(Ai) = Ai and fi|Ai = gi|Ai . Then by Theo-
rem 20, f = f1×· · ·×fv and g = g1×· · ·×gv are members of C(X,NPv(κ1, . . . ,
κv)). Further, given a = (a1, . . . , av) ∈ A, there exist a′i ∈ Ai such that
fi(a

′
i) = gi(a

′
i) = ai, and therefore we have f(A) = g(A) = A and f |A = g|A.

Since A is unifying, we have f = g, and therefore fi = gi for all i. Thus Ai is
unifying. QED

5 Shy maps that are retractions

Shy maps in digital topology were introduced in [5] and studied further
in [6, 17, 7, 8, 9]. A version of shy maps for topological spaces was introduced
in [10].

Definition 13. [5] Let f : (X,κ) → (Y, λ) be a continuous function of
digital images. We say f is shy if

� for each y ∈ f(X), f−1(y) is connected, and

� for every y0, y1 ∈ f(X) such that y0 and y1 are adjacent, f−1({ y0, y1 }) is
connected.

We say a point p of a connected graph G = (X,κ) is an articulation point
of G if (X \ { p }, κ) is not connected.

Theorem 22. Let (X,κ) be a connected digital image. Let ∅ 6= R ⊂ X. Let

A =

{
p ∈ R | p is an articulation point of K ∪R

for some κ-component K of X \R

}
. (5.1)

Then there is a unique function r : X → R that is a shy κ-retraction.

Proof. For x ∈ X \ R, let px ∈ A be the articulation point for the union of R
and the κ-component Kx of X \R containing x. Let r : X → X be the function

r(x) =

{
x if x ∈ R;
px if x ∈ X \R.

Clearly, r(X) = R and r|R = idR. It is easily seen that r−1(px) \ { px } = Kx

is a union of κ-component of X \ R separated by px, and r−1(y) = { y } for
y ∈ R \ A. It follows that r ∈ C(X,κ) and r is a retraction of X to R. By 5.1,
r−1(px) = {px} ∪Kx is connected. It follows easily that r is shy.

Suppose f ∈ C(X,κ) is a shy retraction of X to R. If there exists x0 ∈ X \R
such that x1 = f(x0) 6= px0 , then px0 separates the points x0, x1 ∈ f−1(x1),
contrary to the assumption that f is shy. The uniqueness of r as a shy retraction
follows. QED
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Corollary 1. Let (X,κ) be a digital image that is a tree. Let (R, κ) be a
nonempty subtree of (X,κ). Then there is a unique function r : X → R that is
a shy κ-retraction.

Proof. It is trivial that if R = X, we can take r = idX . Otherwise, we take A
as in (5.1). The assertion follows from Theorem 22. QED

For topological spaces, we have the following.

Definition 14. [10] Let X and Y be topological spaces and let f : X → Y .
Then f is shy if f is continuous and for every path-connected Y ′ ⊂ f(X),
f−1(Y ′) is a path-connected subset of X. �

By using an argument similar to the proof of Theorem 22, we get the fol-
lowing.

Theorem 23. Let X be a connected topological space. Let ∅ 6= A ⊂ R ⊂ X
such that each p ∈ A separates R and a component of X \ R. Then there is a
unique continuous function r : X → R that is a shy retraction.

6 Approximate fixed points

Suppose A ⊂ X and A is a κ-freezing set for X. By definition, if f ∈ C(X,κ)
and A ⊂ Fix(f), then f = idX , i.e., X = Fix(f). If we weaken the hypothesis
so that instead of assuming A ⊂ Fix(f) we assume every point of A is an
approximate fixed point of f , might we reach the weaker conclusion that every
point of X is an approximate fixed point of f? The answer is not generally
affirmative; we give a counterexample below. We also examine basic examples
for which an affirmative answer is shown.

6.1 Wedge of cycles

In this section, we show that a wedge of cycles X can support a freezing set
A and a continuous self-map f such that every point of A is an approximate
fixed point of f , but not every point of X is an approximate fixed point of f .

Theorem 24. [11] Let Cm and Cn be cycles, with m > 4, n > 4, where
Cm = {xi }m−1i=0 , Cn = {x′i }

n−1
i=0 , with the members of Cm and Cn indexed

circularly. Let x0 = x′0 be the wedge point of X = Cm ∨Cn. Let xi, xj ∈ Cm and
x′k, x

′
p ∈ Cn be such that Cm is the union of unique shorter paths determined by

xi, xj , x0 and Cn is the union of unique shorter paths determined by x′k, x
′
p, x
′
0.

Then A = {xi, xj , x′k, x′p } is a freezing set for X.

Example 2. Let X = C6∨Cm, where C6 = {xi }5i=0 and Cn = {x′i }
n−1
i=0 are

c2-simple closed curves in Z2, with the members of C6 and Cn indexed circularly.
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Figure 7. [12] The map f of Example 2. Points are labeled by their indices as
in the Example. The cycle with points p = (x, y) for x ≤ 0 represents C6, for
which {x0, x2, x4 } is a c2-freezing set; the cycle with points p = (x, y) for x ≥ 0
represents Cm (here, m = 8, and {x′0, x′3, x′6 } is a c2-freezing set for C8, so
A = {x2, x4, x′3, x′6 } is a c2-freezing set for C6∨C8). Arrows connect p and f(p)
for points p 6∈ Fix(f). Each point of A is a c2-approximate fixed point of f .

By Theorems 13 and 24, if k and p are chosen so that {x′0, x′k, x′p } is a freezing
set for Cn, then we can take A = {x2, x4, x′k, x′p } to be a freezing set for (X, c2).
Now take f : X → X to be the function

f(x) =


x0 if x = x3;
x1 if x = x2;
x5 if x = x4;
x otherwise.

See Figure 7. One sees easily that f ∈ C(X, c2), that every member of A is a
c2-approximate fixed point of f , but x3 is not a c2-approximate fixed point of f .

6.2 Disks in (Z2, c1)

Lemma 2. Let q0, q1 ∈ X ⊂ Z2. Suppose there is a horizontal or vertical
c1-path P in X from q0 to q1. Let f : P → X be c1-continuous, such that
q0 and q1 are c1-approximate fixed points of f . Then every member of P is a
c1-approximate fixed point of f .

Proof. Without loss of generality, P is horizontal, q0 = (0, 0), and q1 = (n, 0)
for some n ∈ N. Suppose there exists q = (x, 0) ∈ P such that q is not a c1-
approximate fixed point of f . Then |x − p1(f(q))| > 1; or |p2(f(q))| > 1; or
|x− p1(f(q))| = 1 and |p2(f(q))| = 1.

If |x− p1(f(q))| > 1 then either p1(f(q)) > x+ 1 or p1(f(q)) < x− 1.
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� Suppose p1(f(q)) > x+1. Then by Lemma 1 we would have p1(f(q0)) > 1,
contrary to the assumption that q0 = (0, 0) is an approximate fixed point.

� If p1(f(q)) < x − 1, then by Lemma 1 we would have p1(f(q1)) < n − 1,
contrary to the assumption that q1 = (n, 0) is an approximate fixed point.

Suppose |p2(f(q))| > 1. Without loss of generality, p2(f(q)) > 1, as the case
p2(f(q)) < 1 can be handled similarly. Since c1-adjacent points differ in only
one coordinate and the qi as approximate fixed points implies |p2(f(qi)| ≤ 1,
i ∈ { 0, 1 }, there are at least 4 indices j for which p2(f(xj)) 6= p2(f(xj+1))
and therefore at most n − 4 indices j for which p1(f(xj)) 6= p1(f(xj+1)).
This is a contradiction, since x0 and x1 being approximate fixed points im-
plies p1(f(x0)) ≤ 1 and p1(f(x1) ≥ n − 1, so at least n − 2 indices j would
satisfy p1(f(xj)) 6= p1(f(xj+1)).

Suppose |x − p1(f(q))| = 1 and |p2(f(q))| = 1. Without loss of generality,
p1(f(q)) = x + 1 and p2(f(q)) = 1. By the c1-continuity of f and Lemma 1
it follows that p1(f(q0)) ≥ 1. Since q0 is a c1-approximate fixed point of f ,
f(q0) = (1, 0). Thus, f(P ) has length at least x+1, contrary to P having length
x.

Thus every case yields a contradiction brought about by assuming there
is a point of P that is not an approximate fixed point of f . The assertion
follows. QED

Theorem 25. Let Vi ⊂ X ⊂ Z2, i ∈ { 1, . . . , n } where each Vi is a thick
convex disk. Let X ′ =

⋃n
i=1 Vi. Let Ci be a bounding curve of Vi. Let A1,i be the

set of endpoints of maximal axis-parallel segments of Ci. Let A2,i be the union
of maximal slanted segments of Ci.

(1) A = (X \X ′) ∪
⋃n
i=1(A1,i ∪A2,i) is a freezing set for (X, c1).

(2) Suppose f ∈ C(X, c1) such that every point of A is a c1-approximate fixed
point of f . Then every point of X is a c1-approximate fixed point of f .

Proof. Assertion 1) is Theorem 10. To prove assertion 2), we argue as follows.
Let S be a maximal digital segment of a bounding curve Ci for Vi. If S

is horizontal or vertical, then by Lemma 2, every point of S is a c1-approxi-
mate fixed point of f . If S is slanted, then S ⊂ A, so every point of S is a
c1-approximate fixed point of f . Thus each point of Ci, is a c1-approximate
fixed point of f .

For x ∈ X \ A, there is a horizontal segment P containing x such that the
endpoints of P belong to

⋃n
i=1Ci, and therefore are approximate fixed points

of f . By Lemma 2, every point of P is a c1-approximate fixed point of f . Thus,
every point of X is a c1-approximate fixed point of f . QED
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Remark 6. Theorems 10 and 25 simplify when X ′ = X, in which case
A =

⋃n
i=1(A1,i ∪ A2,i). They might be applied in this case when i 6= j implies

Vi ∩ Vj is empty, a single point, or a common edge of Vi and Vj .

6.3 Disks in (Z2, c2)

We show in this section that disks in (Z2, c2) yield results similar to those
shown in section 6.2 for the c1 adjacency.

Lemma 3. Let q0, q1 ∈ X ⊂ Z2. Suppose there is a slanted c2-path P in
X from q0 to q1. Let f : P → X be c2-continuous, such that q0 and q1 are
c2-approximate fixed points of f . Then every member of P is a c2-approximate
fixed point of f .

Proof. Without loss of generality, the slope of P is 1. Without loss of generality,
q0 = (0, 0) and q1 = (n, n) for n = length(P ). Suppose there exists p ∈ P
that is not a c2-approximate fixed point of f . Then |p1(f(p)) − p1(p)| > 1 or
|p2(f(p))− p2(p)| > 1.

� If |p1(f(p)) − p1(p)| > 1 then either p1(f(p)) − p1(p) > 1 or p1(p) −
p1(f(p)) > 1.

– If p1(f(p)) − p1(p) > 1 then by Lemma 1, 1 < p1(f(q0)) − p1(q0) =
p1(f(q0)), contrary to the assumption that q0 is an approximate fixed
point.

– If p1(p)− p1(f(p)) > 1, then by Lemma 1, 1 < p1(q1)− p1(f(q1)) =
n− p1(f(q1)), or p1(f(q1)) < n− 1, contrary to the assumption that
q1 is an approximate fixed point.

� If |p2(f(p))− p2(p)| > 1 then, similarly, we obtain contradictions.

Since all cases yield contradictions, the hypothesis of a p ∈ P that is not a c2-
approximate fixed point of f must be false. This completes the proof. QED

The following is a dual to Theorem 25.

Theorem 26. Let Vi ⊂ X ⊂ Z2, i ∈ { 1, . . . , n } where each Vi is a thick
convex disk. Let X ′ =

⋃n
i=1 Vi. Let Ci be a bounding curve of Vi. Let B1,i be the

union of maximal horizontal and maximal vertical segments of Ci. Let B2,i be
the set of endpoints of maximal slanted segments of Ci.

(1) B = (X \X ′) ∪
⋃n
i=1(B1,i ∪B2,i) is a freezing set for (X, c2).

(2) Suppose f ∈ C(X, c2) such that every point of B is a c2-approximate fixed
point of f . Then every point of X is a c2-approximate fixed point of f .
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Proof. Assertion 1) is Theorem 11. To prove assertion 2), we argue as follows.

By Lemma 3, every slanted segment of Ci is made up entirely of c2-approx-
imate fixed points of f . Since B by hypothesis consists of c2-approximate fixed
points of f , it follows that Ci is made up entirely of c2-approximate fixed points
of f .

Lemma 3 lets us conclude that if x ∈ X such that x lies on a slanted segment
P that connects two points of B, then x is a c2-approximate fixed point of f .

This leaves us to consider points p = (x0, y0) ∈ X such that p does not lie
either on an axis-parallel segment of B or on a slanted segment P that connects
two points of B. Such a point must be in the interior of X and therefore is c2-
adjacent to its 4 c1-neighbors q1 = (x0−1, y0), q2 = (x0+1, y0), q3 = (x0, y0−1),
and q4 = (x0, y0 + 1), each of which lies on a slanted segment joining members
of S (see Figure 8). Therefore, by Lemma 3, q1, q2, q3, and q4 are approximate
fixed points of f .

Suppose p is not a c2-approximate fixed point of f . Then either

|p1(f(p))− x0| > 1 or |p2(f(p))− y0| > 1.

� Suppose |p1(f(p))− x0| > 1. Then either

p1(f(p))− x0 > 1 or x0 − p1(f(p)) > 1.

– Suppose p1(f(p))−x0 > 1. Then by the continuity of f and Lemma 1,
p1(q1) − p1(f(q1)) > 1, contrary to q1 being an approximate fixed
point of f .

– Suppose x0−p1(f(p)) > 1. Then by the continuity of f and Lemma 1,
p1(q2) − p1(f(q2)) > 1, contrary to q2 being an approximate fixed
point of f .

� Similarly, we obtain a contradiction if |p2(f(p))− y0| > 1.

Since all cases yield a contradiction when we assume p is not a c2-approximate
fixed point of f , this hypothesis must be incorrect. The assertion follows. QED

Remark 7. Theorems 11 and 26 simplify when X ′ = X, in which case
B =

⋃n
i=1(B1,i ∪ B2,i). They might be applied in this case when i 6= j implies

Vi ∩ Vj is empty, a single point, or a common edge of Vi and Vj .

6.4 Trees

In this section, we use a result about freezing sets for trees to obtain a result
about approximate fixed points for trees.
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Figure 8. The point (1,0) in the digital image shown above does not lie on a
slanted segment that joins 2 points of the boundary curve shown darkly.

Theorem 27. [11] Let (X,κ) be a digital image such that the graph G =
(X,κ) is a finite tree with #X > 1. Let D1 be the set of vertices of G that have
degree 1. Then D1 is a minimal freezing set for G.

Lemma 4. Let (X,κ) be a digital image such that the graph G = (X,κ) is a
finite tree. Let f ∈ C(X,κ). Let a, b ∈ X be such that a and b are κ-approximate
fixed points of f . Let P be the unique shortest path in G from a to b. Then
f(P ) ⊂ P ∪ N(X, a, κ) ∪ N(X, b, κ) and every point of P is a κ-approximate
fixed point of f .

Proof. Whithout loss of generality, a 6= b. Let P = {xi }ni=0 such that x0 = a,
xn = b, and xi ↔κ xj if and only if |i− j| = 1.

� Suppose f(a) = a. Let us show that

f(b) ∈ {xn−1, b } ⊂ P. (6.1)

We know that f(b) ∈ N∗(X, b, κ). If (6.1) is false, then f(P ) = P ∪{ f(b) }
is the unique shortest path in G from a = f(a) to f(b). But P ∪ { f(b) }
has length n+ 1, and #P = n+ 1 implies length(f(P )) ≤ n, so we have a
contradiction brought about by negating (6.1). Thus (6.1) is established.

It follows that f(P ) ⊂ P . Now suppose for some k that xk is not an
approximate fixed point of f . Then f(xk) = xm for some m such that
|k−m| > 1. Without loss of generality, m−k > 1. Then by continuity and
since G is acyclic, f(xk) must “pull” [21] f(a) = f(x0) so that f(a) = xt
for some t > 1, contrary to a being an approximate fixed point of f . The
contradiction establishes that each point of P must be an approximate
fixed point of f , and f(P ) ⊂ P .
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� Suppose f(a) 6∈ P . Recall we are assuming f(b) ∈ N∗(X, b, κ), so f(b) ∈
{xn−1, b } or f(b) 6∈ P . We claim f(b) = xn−1. For otherwise, f(P ) =
{ f(a) 6= x0, a = x0, x1, . . . , xn = b, f(b) } where f(b) may be equal to b,
so #f(P ) ∈ {n+ 2, n+ 3 } while #P = n+ 1, a contradiction. Therefore,
f(b) = xn−1. By the acyclicity of G, it follows that f(P ) = { f(a) } ∪
{xi }mi=0, where m ∈ {n − 1, n }. As in the case f(a) = a, it follows
that every point of P is an approximate fixed point of f , and f(P ) ⊂
P ∪N(X, a, κ).

� Suppose f(a) ∈ P \ { a }. Since a is an approximate fixed point of f ,
it follows that f(a) = x1. Since f(b) ∈ N(X, b, κ), it follows as in the
previous cases that every point of P is an approximate fixed point of f ,
and f(P ) ⊂ P ∪N(X, b, κ).

This establishes the assertion. QED

Theorem 28. Let (X,κ) be a digital image such that the graph G = (X,κ)
is a finite tree with #X > 1. Let D1 be the set of vertices of G that have degree
1. Then D1 is a minimal freezing set for (X,κ), and given a freezing set A for
G, we have D1 ⊂ A.

Proof. That D1 is a freezing set comes from Theorem 27. The assertion is trivial
for #X ∈ { 1, 2 }, so let us assume #X ≥ 3. Then D1 6= ∅ 6= X \D1. Let a ∈ D1

and let x0 ∈ D1 \ { a }. Consider x0 as the root vertex of X. Then the function
f : X → X given by

f(x) =

{
x for x 6= a;
parent(a) for x = a,

is easily seen to be a member of C(X,κ). Further, if A is any freezing set for
(X,κ), then f |A\{ a } = idA\{ a }, so A \ { a } is not a freezing set. Thus, D1 is a
minimal freezing set that is contained in every freezing set for (X,κ). QED

Theorem 29. Let (X,κ) be a digital image such that the graph G = (X,κ)
is a finite tree. Let A be a freezing set for G. Suppose f ∈ C(X,κ) is such that
for each a ∈ A, a is an approximate fixed point of f . Then for all x ∈ X, x is
an approximate fixed point of f .

Proof. The assertion is trivial for #X ∈ { 1, 2 }, so assume #X ≥ 3. Let D1 be
the set of vertices of G that have degree 1. By Theorem 28, D1 is a freezing set
contained in A. Therefore, there is no loss of generality in assuming A = D1.

Let f ∈ C(X,κ) such that for each d ∈ D1, d is an approximate fixed point
of f . We can choose x0 ∈ D1 as a root of X. Since x ∈ X implies x is on the
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unique shortest path in G from x0 to some d ∈ D1, it follows from Lemma 4
that x is an approximate fixed point of f . QED

6.5 Cycles

Theorem 30. Let (Cn, κ) be a digital cycle of n distinct points, n ∈ N,
n > 4, with Cn = {xi }n−1i=0 , such that xi ↔κ xj if and only if j = (i ± 1)
mod n. Let A = {xu, xv, xw } be a set of distinct members of Cn such that Cn
is a union of unique shorter paths determined by these points. Let f ∈ C(Cn, κ)
be such that every member of A is an approximate fixed point of f . Then every
member of Cn is an approximate fixed point of f , and f is an isomorphism.

Proof. Note by Theorem 13, A is a minimal freezing set for (Cn, κ).
First, we show that f must be a surjection. Without loss of generality, 0 ≤

u < v < w < n. Suppose B is the unique shorter path in Cn from xu to xv.
Since we must have #f(B) ≤ #B and xu and xv are approximate fixed points,
we must have f(xu) ∈ {xu−1, xu, xu+1 } and f(xv) ∈ {xv−1, xv, xv+1 } (indices
reduces modn).

Suppose f(xu) = xu. We must have

#f(B) ≤ #B = v − u+ 1 ≤ n/2,

so f(xv) ∈ {xv−1, xv }. If f(xv) = xv−1, then we must have f(xw) = xw−1, hence
(proceeding with increasing indices, mod n,) f(xu−1) = xu−2, so f would be
discontinuous at the adjacent pair xu−1 and xu. Thus we would have f(xv) = xv
and f(xw) = xw. Thus f |A = idA. Since A is freezing, it follows that f = idX .

If f(xu) = xu−1 or f(xu) = xu+1, we can apply a rotation r(xi) = x(i−1) mod n

(respectively, r(xi) = x(i+1) mod n), which is an isomorphism. Then by the
above, r ◦ f = idX is an isomorphism, so

f = r−1 ◦ r ◦ f = r−1 ◦ idX = r−1

is an isomorphism, with each member of A an approximate fixed point.
Thus, in all cases, each member of A is an approximate fixed point of f ,

which must be an isomorphism. QED

7 Further remarks

When a member of C(X,κ) has restricted behavior on a subset A of X,
the restriction may have a powerful effect on the behavior of f |X\A. We have
examined instances of this phenomenon with respect to freezing and cold sets,
retractions, and shy maps, on a variety of basic digital images.
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