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Abstract. A radio k-coloring of a graph G is an assignment f of positive integers (colors)
to the vertices of G such that for any two vertices u and v of G, the difference between their
colors is at least 1 4+ k — d(u,v). The span rcg(f) of f is max{f(v) : v € V(G)}. The radio
k-chromatic number rc, (G) of G is min{rex(f) : f is a radio k-coloring of G}. In this paper,
in an attempt to prove a conjecture on the radio k-chromatic number of path, we determine the
radio k-chromatic number of paths P, for k+5 < n < % if kisodd and k+4 <n < %
if k is even.
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1 Introduction

All graphs considered in this paper are simple connected graphs. We use
standard graph theory terminology according to [10]. The channel assignment
problem is the problem of assigning frequencies to transmitters in some optimal
manner. Chartrand et al. [1] have introduced radio k-coloring of graphs as a
variation of channel assignment problem. A radio k-coloring of a graph G is an
assignment f of positive integers to the vertices of G such that |f(u) — f(v)| >
1+ k — d(u,v) for every pair u and v of vertices in G. The span of f is the
largest integer assigned by f and is denoted by rci(f). The radio k-chromatic
number r¢,(G) of G is the minimum among the spans of all radio k-colorings of
G. A radio k-coloring having span rci(G) is called a minimal radio k-coloring
of G. If k is the diameter d of G, then f is called a radio coloring of G and the
radio d-chromatic number is called the radio number of G, denoted by rn(G). A
radio (d—1)-coloring and the corresponding chromatic number are said to be an
antipodal coloring and the antipodal number ac(G) of G, respectively. A radio
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(d — 2)-coloring and the radio (d — 2)-chromatic number are referred as a nearly

antipodal coloring and the nearly antipodal number ac’(G) of G, respectively.
For any path Pyy; (kK > 1), Liu and Zhu [9] have determined the radio

number as @ if k£ is odd and @ if k& is even. Khennoufa and Togni [5] have

shown that ac(Py2) is @ for an odd k£ > 2 and @ for an even k£ > 3. Kola

. . . : 2
and Panigrahi [6] have determined the nearly antipodal number of Py 3 as %

for an odd k£ > 4 and @ for an even k > 5. Also, in [7], they have found the

. . 2
radio k-chromatic number of Py4 as %

bound for the same as @ for an even k > 7. Even though radio k-coloring
of a graph G is defined for k < diam(G), it is studied for k > diam(QG) as it is
useful in determining the radio k-chromatic number of larger graphs. For any
k > n, Kchikech et al. [4] have proved that rcy(P,) = (n — 1)k — in(n —2) + 1
if n is even and reg(P,) = (n — 1)k — 2(n — 1)? + 2 if n is odd.

For any path P, and an integer k, 0 < k < n, Chartrand et al. [2] have given
an upper bound for rcg(P,) as below.

Theorem 1. 2] For 0 <k <n-—1,

for an odd £ > 6 and given an upper

2 . .
E42ktl 1 ks odd,

reg(Pa) < : S
" % if kis even.

Kchikech et al. [4] have proposed the following conjecture.
Conjecture 1. [4] For k > 5,

lim reg(P,) =

n—o0

{k“gkﬂ if ks odd,

2 . .
% if k 1is even.

In an attempt to prove Conjecture 1, Kola and Panigrahi [8] have given
upper bounds of re¢(P,) for different intervals of n as below.

Theorem 2. [8] For k> 7 and 4 < s < L%J

2 . .
E2s+1 5 f K is odd,

rek(Prts) < 2 S
(Fets) {]“32‘*';”2 if k is even.

Theorem 3. [8] For any even k > 6,

k2+k+2 if n= 3k+2
2 - 2 0
TCk(Pn) < k24 k42544 Zf (3+2s)k+2s+4 <n< (5+2s)k+2s+4
2 2 — — 2

I

wheres:O,l,Q,...,%.
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Theorem 4. [8] For any odd k > 5,

2 . _
reu(P) < k+2k+2 if 3k2+1 <n< 51@217
k) = g24k42s44 ;0 (542s)k+1 7+25)k—1 k—5
+J2rs+ zf( 2) SnS%,s:O,l,Z...,

2 2

Further, Kola and Panigrahi [8] have re-conjectured Conjecture 1 as below.

Conjecture 2. [8] For any integer k > 5 and n > ng, rcg(Py,) = ng, where
nyg = % if k is even and ng = % if k is odd.
In this article, we prove that the upper bounds given in Theorem 2 are exact.
Also, we show that the bounds in Theorem 3 when %TH <n< % and the
3k+1

bounds in Theorem 4 when 55— <n < %, are exact.

2 Preliminaries

To obtain lower bounds for the radio k-chromatic number of the paths, we
use the lower bound technique for radio k-coloring given by Das et al. [3]. For
a subset S of the vertex set of a graph G, let N(S) be the set of all vertices of
G adjacent to at least one vertex of S.

Theorem 5. [3] If f is a radio k-coloring of a graph G, then

p—1
ren(f) = Dl = 2p+2) | Lil(p — i) + a + B, (2.1)
i=0
where Dy, and L;’s are defined as follows. If k = 2p+ 1, then Ly = V(C), where
C' is a mazimal clique in G. If k = 2p, then Lo = {v}, where v is a vertex of G.
Recursively define Liyv1 = N(L;)\(Lo ULy U---UL;) fori=0,1,2,...,p—1.
Let Dy, = LoU Ly U ---U Ly,. The minimum and the mazimum colored vertices
among the vertices of Dy, are in Lo and Lg, respectively.

From the proof of Theorem 5 in [3], it is easy to see that the right hand
side of (2.1) is actually counts the number of colors between minimum and
maximum colors (both inclusive) among the vertices of Dy and hence we have
the following theorem.

Theorem 6. Let G be a graph, and L; and Dy be as in Theorem 5. If f is
a radio k-coloring of G, and Apin € Lo and Apez € Lg are the minimum and
the maximum colors respectively, assigned by f to the vertices of Dy, then

p—1
Ama:p - )\mzn + 1 Z ‘Dk| - 2p+22 |Lz|(p_l) +OZ+B.
=0
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For a path P,, if k is odd, we choose L as two adjacent vertices which are
at distance at least % from the pendant vertices of P,,, and if k is even, we
choose Lg as one vertex which is at distance at least % from the pendant vertices
of P,. For k =2p+ 1, we get |L;|] =2 for all i =0,1,2,...,p, and for k = 2p,
we get |Lo| = 1 and |L;| = 2 for all ¢ = 1,2,3,...,p. In any case, Dy, induces
Py for which Ly is the center. Then Theorem 6 gives the theorem below.

Theorem 7. If f is a radio k-coloring of P, then

B3 L0t B4 Apin — 1 if k is odd,

re > Amaz >
k:(f)_ ma:r:_{k22+2+a+18+)\min_1 if k is even.

3 Results

In this section, we determine the radio k-chromatic number of paths P,
where k +4 <n < 5]“2—+4 ifkisevenand k +5<n < % if k£ is odd. We use
Theorem 6 and Theorem 7 to get the lower bounds match those with the upper
bounds in Theorems 2, 3 and 4. We use the following lemmas in the sequel.

Lemma 1. If f is a radio k-coloring of a graph G with span X\, then there
exists a radio k-coloring g of G with span A such that the vertices of G receiving
1 and X by f receive A and 1, respectively by g.

Proof. The radio k-coloring g of G defined as g(v) = A+ 1 — f(v) for every
vertex v of (G is one of such colorings.

Lemma 2. If ny and ns are positive integers such that ny < ng, then
rCk(Pry) < reg(Pry).

Theorem 8. I[fk>T7 and 4 < s < Lk—;lj, then

2 . .
425+l i ko s odd,

2
7k (Prts) = 12 . .
% if k£ 1is even.

Proof. Let f be a minimal radio k-coloring of path Py, : viv9vs ... vg4s With
span A. Let ¢ and j be the least positive integers such that f(v;) = 1 and
f(vj) = A. Without loss of generality, we assume that i < j.
Case : k=2p+1

To prove the result, depending on the positions of the maximum and the
minimum colored vertices, we choose a P11 subpath (Lg is the center of it) of
P, such that a+ 5 >s—1. If a4+ 8 > s — 1, we get the required lower bound
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and if  + 8 > s — 1, we get a contradiction to Theorem 2 (using Theorem
7). If i < s, then by considering the path v;v;41vit2 ... VigpUitpti - - - Vith, We
get o = % Now, by using Theorem 7, we get rcg(f) > % which is a
contradiction to Theorem 2 if s # k—;l If s <i < p+1, then by considering
the path vsvs11Vs42 ... VsqpUsipsi -+ - Vsyk, We get o > 5. If j > k4 1, then
by considering the path v;_pv;_g{1vj_ky2...Vj_p_1Vj_p... v, We get § > %
which is strictly greater than s — 1 if s # % Ifp+s<j<k+1, then
by considering the path vivavs ... vp41Vp42 ... V41, We get B > s — 1. Suppose
p+1<i<j<p+s.
Subcase (i): s = 21

If i > p+1+41, then by choosing the path vivav3 ... vp41Vp42 ... Vit1, We get
a>1—1and 8 > I. By Theorem 7, we get rcg(f) > @+l—1+l = %
If j < p+1+1, then by choosing vsvs41Vs42 ... UsypUsqpti - - - Vkts Subpath,
we get 8 >1l—1and o > 1. So, o+ >s—1. Suppose p+1 <7 < p+
I+1 < j<p+s.lett=p+Il+1—-1I and j = p+1+ 1+ Iy where
1<y <land 1<y <I—1. Suppose that I; < l3. Then by considering the
path v1v2U3 ... Vpr1Vpt2 ... Vkt1, We get a = (p+1+1—11)—(p+2)=1-1 -1
and S = (p+1+1+1) —(p+2) =1+1y — 1. Now, by Theorem 7, rcg(f) >
@+l—l1—l+l+l2—1 = $+2l+(l2—l1)—2 > % Suppose that
[y > lo. Then by considering the path vsvs11Vst2 ... VsqpUsipit - - Vpts, We get
a=(p+2))—(p+l+1-1) =l+l1—1and B = (p+20)— (p+l+1+1l3) = 1—13—1.
So, a+ B > s — 1. If I = lo, then we choose Ly = {vp,vpt1} (we get the
path vivous...vE). So, we get |L,| =1 and |Ly| =2,t=0,1,...,p — 1. Also,
a+B8=p+l+1—-l1—p+1+p+i+1+iy—(p+1) =2l =s. Now, by Theorem

p—1
6, reu(f) > 2p+1—2p+2 3 2(p—t) + 1 = E242s5L
t=0

Subcase (ii): s =21 +1

If i > p+i+1orj < p+1+2, then as in Subcase (i), we get rcg(f) > %
So, we assume p+1 <i <p+l+1<p+i+2<j<p+s.Leti=p+i+1-1
and j=p+1+2+1s where 1 <[y <land 1 <Ily <1 —1. Rest of the proof is
similar to that of Subcase (i).
Case II: £ =2p

Analogous to Case I, depending on the positions of maximum and minimum
colored vertices, here also we choose a Py subpath such that o + 8 > s. If
i < s, then we choose the path v;v;11Vi42...Vitp ... Vigr. SO, We get o = %
and by Theorem 7, rci(f) > %, which is a contradiction to Theorem 2 if
s # % If s < i < p, then by choosing vsvVs41Vs42 - .. Vstp - - - Ustk sSubpath, we
get « > s. If 5 > k+ 1, then as in the Case I, we get contradiction only if
s # g Also, if j > p + s, then similar to Case I, we get S > s. Suppose that
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p+1<i<j<p+s.
Subcase (i): s = 21
If i > p+ 1, then by choosing the path vivavz...vp11 ... V41, We get a > 1
and 8 > 1+ 1. If j < p+1, then by considering the subpath vsvsy1vs42 ... vVsyp
. Usyg, weget f>1land a > 1+ 1. Suppose p+1<i<p+I1l<j<p+s. Let
i=p+l+1—-lLand j=p+1+41s, where 1 <[y <l and 1 <[y <. The cases
l1 < lg and l; > lp are similar to Subcase (i) of Case I. If I} = Iy, we choose
Ly = {vp}. So, we get |Lo| = |Lp| =1 and |Ly| =2,t=1,2,3,...,p — 1. Also,

04"1‘5_p+l+1—l1—p+p+l+lg—p:2l+1:s+1. Now by Theorem 6,
~1

_ k242542
reg(f) = 2p — %+ﬂp+222(—ﬂ+8+1_—7%<

Subcase (ii): s =21l + 1

Ifi>p+1+4+1orj<p+l, then as in Subcase (i), we get rcg(f) > %
So, we assume that p+1 < i < p+i+1 < p+l+2 < j < p+s.Leti = p+i+1-1
and j=p+1+ 141y where 1 <[y <land 0 <[y <l—1. Rest of the proof is
similar to that of Subcase (i). QED

Theorem 9. Ifk > 7 is even and n = 3’2—“, then reg(Py,) = %

Proof. From Theorem 8, we have rcg (P ) = % By Lemma 2 and Theorem

%
3, we get the result. QED

Theorem 10. Ifk > 7 is odd and 3’“2—“ <n< LQ_I, then reg(Pp) = %

Proof. From Theorem 8, we have rcg(Psks1) = % By Lemma 2 and The-
2

orem 4, we get the result. QED

Lemma 3. Let k > 7 be odd and f be a minimal radio k-coloring of P,
VIvy ... vy where n = EZLIf f(v;) = 1 and f(v;) = k2+72k+2, then {i,j} =
{k,n—k+1}.

Proof. Let f(v;) = 1 and f(v;) = A where A\ = ]‘32+72k+2 Without loss of
generality, we assume that ¢ < j. Let £k = 2p 4+ 1. To prove ¢ = k and
j=mn—k+1, we first show that j —i =porj—i=p+1.If j—i <por
p+1 < j—i < k, then we choose the path v;_rvj_g41Vj_k42...Vjp_1Vj_p...V;
if j > k, else we choose the path v;v;11vi42 ... VitpVitps1 ... Vitk. In any case,
we get one of « and f is % and the other is at least 1. Now, by Theo-
rem 7, rep(f) > 1‘32+72k“'4, which is a contradiction. Suppose that j — ¢ > k.
If the color A is not used in the path v;v;11vVi42 ... VigpVifps1 ... Vitr, using
Theorem 7, we get a contradiction. Suppose the color A is used in the path
ViVi41Vi42 - - - VigpVitptl - - - Uik, say f(vg) = A Since t —i < k, t —i = p or
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t—i=p+1. Since f(v) = f(vj) = A\, t+k < j < n. If the color 1 is not used in
the path vivi41Vi42 . . . VigpVigppt1 - - - Veyk, using Theorem 7, we get a contradic-
tion. Suppose the color 1 is used in the path vV 1Vi42 .. VigpVtqpt1 - - - Vighs
say f(v) = 1. Since Il —t < k, I —tis p or p+ 1. Since f(v;) = f(v) = 1,
[l —1> k+1. Therefore ] —i = k+ 1. Now, the minimum color used in the path
Vit1Vi420i43 ... Vj—1 (path on k vertices) is not less than p + 2. So, the colors
available to color the path v;41v;12vi43...vj_1 is from p 4 2 = % to %
Since rcg(Py) = k22+3 and k2+2k+2 —%4—1 = @, the path v; 1 1v; 412013 ... 11
cannot be colored. Therefore in any case, j —4 % k and hence j—i =por p+ 1.

Next, we show that £k <i < j<n—k+1and j—i# p. For that, we first
prove that the colors 1 and A are used only once by f. Suppose f(v;) = 1 for
some [ # i. Since f(v;) = 1,1 > i+ k+ 1 and hence [ > j. So, | — j is p or
p+ 1. Therefore | —i=1—j+j—i<k+1and hencel —i =k + 1. Now, the
minimum color used in the path v;;1v;12vi4+3...v_1 (path on k vertices) is not

less than p + 2. So, the colors available to color the path v;{1v;42vi13...v1_1
k+3 k24 k+2 k243 k2+k+2 _ k+3 _
7 1073 2 2 5 +1

and

is from p + 2 = . Since rcg(Py) =

k241
2

, the path v;41v;42v43...v;—1 cannot be colored. Hence the color 1 is

assigned to only v; and by Lemma 1, the color A is assigned only to v;. If i < k,

then v; 41, vi12vi13 ... v, is a path of at least L;l vertices. Since reg(Pskir) =
2

2 . .
k+72k+2 = X and the color 1 is not used in the path v; 41, v;10vi43 ... vy, We get a

contradiction. Hence 7 > k. Suppose that j > n—k+1. Then vivavs...vj_1 is a

path of at least L;l vertices and rcg(Pskt1) = % = A. But maximum color
2

used for a vertex of vivouz...vj_1 is at most A — 1, which is a contradiction.
Therefore k < i < j<n—-k+1.1Ifj—i=mp, theni =%, j =k+por
t=k+1,j=k+p+1.Ifi =k and j = k + p, then by considering the
path Vg pVkypr1Vitpt2 - - - Ve 2pVkg2p sl - - - Uny We get § = % and the color
1 is not used for vy pUk4pt1Vkips2 ... vn. Now, by using Theorem 7, we get
reg(f) > k2+72k+4, which is a contradiction. If i = k+1 and j = k+p + 1,

k2 +k42 -
then for the path vivovs ... vpr1Vpy2 ... Vk41, the color % is not used and

a= % Now, by Theorem 7, we get rci(f) > %, which is a contradiction.

Therefore, j —i =p+ 1, thatis, =k and j =n —k + 1. QED

Theorem 11. If k > 7 is odd, then rcg(P,) = %, where L;'l <n<
Tk—1
OB

Proof. Let n = L;l’ P, : v1v9v3...v, and A = W Suppose rcg(Pp) = A
Let f be a minimal radio k-coloring of P,. Now, f restricted to vivovs...v,_1
is a minimal radio k-coloring of P,_1. By Lemma 3, we get {f(vg), f(vn—k)} =
{1, A}. By restricting f to the path wvyvs...v, and using Lemma 3, we get
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{f(vi+1), f(vn,kﬂ)l = {1, A}. Therefore, rci(P,) > % and hence by The-
orem 4, rcg(P,) = %. QED

Lemma 4. Let kK = 2p > 7 and f be a minimal mdgo k-coloring of P, :
V1V ... v, where n = 32 If f(v;) = 1 and f(v;) = =2 then {i,j} =

Proof. Let f(v;) = 1 and f(vj) = X\ where A = % Without loss of gen-
erality, we assume that ¢ < j. To prove i = p+ 1 and j = n — p, we first
show that j — ¢ = p. Suppose that j —¢ < p. If j > k, then by choos-
ing vj_gVj_k41Vj—k4+2...Vj—p...v; path and if i« < p + 1, then by choosing
ViVit1Vi42 - - - Vigp - - - Uitk Path, we get o+ 5 > % + 1, a contradiction, by The-
orem 7, to the fact that rcg(f) = % Ifi > (%L then by considering
Ly = {v,} and using Theorem 6, we get a contradiction as a + § > % + 2. If
j < [?’J'E—HL then by considering the path vpy1vpoUpys...V2pt1 ... vy We get
a contradiction. So, p +1 < i < [3p2—+11 < j <k Leti= [37’—;“11 — 1y and
j= f%} + l5. By applying Theorem 6 with Lo = {vgp42} if I > I and with
Ly = {vp} if l; < Iz, we get a contradiction to the fact that rci(f) = %
Therefore j —i £ p. If j —i > p, then by considering an appropriate subpath of
k+1 vertices (starting with v; or ending with v;), again we get a contradiction.
Therefore j — i = p.

Next, we show that ¢ = p+ 1 and j = n — p. For that, we first show
that the colors 1 and A\ are not repeated. Suppose f(v;) = 1 for some [ #
i. Then | > i+ k+1and |l —j = p. Therefore | = j+p = i+ 2p =
i + k, which is a contradiction. Hence the color 1 is assigned to only v; and
by Lemma 1, the color A is assigned only to v;. Suppose that i < p. Then
Vit 1Vi42Vi43 - - - Vigpt1 - - - Viykt1 does not contain the color 1. Let A, be the
minimum color used in Vi {10i420i43 . . . Vigpt1 - - - Vitht1, 58y f(Vr) = Apin. Since
reg(Pry1) = @ and the maximum color used is %, Amin < p— 1. Now,
P—22>Apin—12>2p+1—d(vi,v) =2p+1—(t —1i), that is t > i+ p+ 3. So,
a=t—(i+p+1)=({t—i)—(p+1) 2 2p+ 1= Apin+1—(p+1) =p+1—Anin
and 8 = 1. Now, by Theorem 7, we get reg(f) > @ +p+1—pin +1+
Amin — 1 = % which is a contradiction. Similarly, by considering the path
Vjk—1Vj—kVj—k41 - - - Vj—p—1-..Vj—1, we get a contradiction if j > n — p. There-
fore j=n—pandi=p+1. QED

Theorem 12. If k > 7 is even, then rcg(P,) = %, where L;“L <n<

Sk+4
5 -

Proof. Similar to the proof of Theorem 11, using Lemma 4. QED
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4 Conclusion

For any non-trivial class of graphs, the radio k-chromatic number is not
known for arbitrary k, in fact, little has been done when k < diam(G) — 2. One
of the possible reasons could be that finding rci(G) is difficult for smaller values
of k, in general. As far as we know, rci(G) has been studied for k < diam(G)—3
only when G = P,. In this article, we have determined rcg(P,) for k > 2”—7“ if

k is odd and for k > 2”75_4 if k£ is even. From Theorem 11 and Theorem 12, for

the infinite path Pu, 7 (Ps) > % which improves the lower bound given
by Das et al. [3] by one, a step towards Conjecture 1.
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