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Abstract. A radio k-coloring of a graph G is an assignment f of positive integers (colors)
to the vertices of G such that for any two vertices u and v of G, the difference between their
colors is at least 1 + k − d(u, v). The span rck(f) of f is max{f(v) : v ∈ V (G)}. The radio
k-chromatic number rck(G) of G is min{rck(f) : f is a radio k-coloring of G}. In this paper,
in an attempt to prove a conjecture on the radio k-chromatic number of path, we determine the
radio k-chromatic number of paths Pn for k+ 5 ≤ n ≤ 7k−1

2
if k is odd and k+ 4 ≤ n ≤ 5k+4

2

if k is even.
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1 Introduction

All graphs considered in this paper are simple connected graphs. We use
standard graph theory terminology according to [10]. The channel assignment
problem is the problem of assigning frequencies to transmitters in some optimal
manner. Chartrand et al. [1] have introduced radio k-coloring of graphs as a
variation of channel assignment problem. A radio k-coloring of a graph G is an
assignment f of positive integers to the vertices of G such that |f(u)− f(v)| ≥
1 + k − d(u, v) for every pair u and v of vertices in G. The span of f is the
largest integer assigned by f and is denoted by rck(f). The radio k-chromatic
number rck(G) of G is the minimum among the spans of all radio k-colorings of
G. A radio k-coloring having span rck(G) is called a minimal radio k-coloring
of G. If k is the diameter d of G, then f is called a radio coloring of G and the
radio d-chromatic number is called the radio number of G, denoted by rn(G). A
radio (d−1)-coloring and the corresponding chromatic number are said to be an
antipodal coloring and the antipodal number ac(G) of G, respectively. A radio
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(d−2)-coloring and the radio (d−2)-chromatic number are referred as a nearly
antipodal coloring and the nearly antipodal number ac′(G) of G, respectively.

For any path Pk+1 (k ≥ 1), Liu and Zhu [9] have determined the radio

number as k2+3
2 if k is odd and k2+6

2 if k is even. Khennoufa and Togni [5] have

shown that ac(Pk+2) is k2+5
2 for an odd k > 2 and k2+6

2 for an even k > 3. Kola

and Panigrahi [6] have determined the nearly antipodal number of Pk+3 as k2+7
2

for an odd k > 4 and k2+8
2 for an even k > 5. Also, in [7], they have found the

radio k-chromatic number of Pk+4 as k2+9
2 for an odd k > 6 and given an upper

bound for the same as k2+10
2 for an even k > 7. Even though radio k-coloring

of a graph G is defined for k ≤ diam(G), it is studied for k > diam(G) as it is
useful in determining the radio k-chromatic number of larger graphs. For any
k ≥ n, Kchikech et al. [4] have proved that rck(Pn) = (n− 1)k − 1

2n(n− 2) + 1
if n is even and rck(Pn) = (n− 1)k − 1

2(n− 1)2 + 2 if n is odd.
For any path Pn and an integer k, 0 < k < n, Chartrand et al. [2] have given

an upper bound for rck(Pn) as below.

Theorem 1. [2] For 0 < k < n− 1,

rck(Pn) ≤

{
k2+2k+1

2 if k is odd,
k2+2k+2

2 if k is even.

Kchikech et al. [4] have proposed the following conjecture.

Conjecture 1. [4] For k ≥ 5,

lim
n→∞

rck(Pn) =

{
k2+2k+1

2 if k is odd,
k2+2k+2

2 if k is even.

In an attempt to prove Conjecture 1, Kola and Panigrahi [8] have given
upper bounds of rck(Pn) for different intervals of n as below.

Theorem 2. [8] For k ≥ 7 and 4 ≤ s ≤ bk+1
2 c

rck(Pk+s) ≤

{
k2+2s+1

2 if k is odd,
k2+2s+2

2 if k is even.

Theorem 3. [8] For any even k ≥ 6,

rck(Pn) ≤

{
k2+k+2

2 if n = 3k+2
2 ,

k2+k+2s+4
2 if (3+2s)k+2s+4

2 ≤ n ≤ (5+2s)k+2s+4
2 ,

where s = 0, 1, 2, . . . , k−42 .
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Theorem 4. [8] For any odd k ≥ 5,

rck(Pn) ≤

{
k2+k+2

2 if 3k+1
2 < n ≤ 5k−1

2 ,
k2+k+2s+4

2 if (5+2s)k+1
2 ≤ n ≤ (7+2s)k−1

2 , s = 0, 1, 2, . . . , k−52 .

Further, Kola and Panigrahi [8] have re-conjectured Conjecture 1 as below.

Conjecture 2. [8] For any integer k ≥ 5 and n ≥ n0, rck(Pn) = n0, where

n0 = k2+2k+2
2 if k is even and n0 = k2+2k+1

2 if k is odd.

In this article, we prove that the upper bounds given in Theorem 2 are exact.
Also, we show that the bounds in Theorem 3 when 3k+2

2 ≤ n ≤ 5k+4
2 and the

bounds in Theorem 4 when 3k+1
2 ≤ n ≤ 7k−1

2 , are exact.

2 Preliminaries

To obtain lower bounds for the radio k-chromatic number of the paths, we
use the lower bound technique for radio k-coloring given by Das et al. [3]. For
a subset S of the vertex set of a graph G, let N(S) be the set of all vertices of
G adjacent to at least one vertex of S.

Theorem 5. [3] If f is a radio k-coloring of a graph G, then

rck(f) ≥ |Dk| − 2p+ 2

p−1∑
i=0

|Li|(p− i) + α+ β, (2.1)

where Dk and Li’s are defined as follows. If k = 2p+ 1, then L0 = V (C), where
C is a maximal clique in G. If k = 2p, then L0 = {v}, where v is a vertex of G.
Recursively define Li+1 = N(Li)\(L0 ∪ L1 ∪ · · · ∪ Li) for i = 0, 1, 2, . . . , p − 1.
Let Dk = L0 ∪ L1 ∪ · · · ∪ Lp. The minimum and the maximum colored vertices
among the vertices of Dk are in Lα and Lβ, respectively.

From the proof of Theorem 5 in [3], it is easy to see that the right hand
side of (2.1) is actually counts the number of colors between minimum and
maximum colors (both inclusive) among the vertices of Dk and hence we have
the following theorem.

Theorem 6. Let G be a graph, and Li and Dk be as in Theorem 5. If f is
a radio k-coloring of G, and λmin ∈ Lα and λmax ∈ Lβ are the minimum and
the maximum colors respectively, assigned by f to the vertices of Dk, then

λmax − λmin + 1 ≥ |Dk| − 2p+ 2

p−1∑
i=0

|Li|(p− i) + α+ β.
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For a path Pn, if k is odd, we choose L0 as two adjacent vertices which are
at distance at least k−1

2 from the pendant vertices of Pn, and if k is even, we

choose L0 as one vertex which is at distance at least k
2 from the pendant vertices

of Pn. For k = 2p + 1, we get |Li| = 2 for all i = 0, 1, 2, . . . , p, and for k = 2p,
we get |L0| = 1 and |Li| = 2 for all i = 1, 2, 3, . . . , p. In any case, Dk induces
Pk+1 for which L0 is the center. Then Theorem 6 gives the theorem below.

Theorem 7. If f is a radio k-coloring of Pn, then

rck(f) ≥ λmax ≥

{
k2+3
2 + α+ β + λmin − 1 if k is odd,

k2+2
2 + α+ β + λmin − 1 if k is even.

3 Results

In this section, we determine the radio k-chromatic number of paths Pn
where k + 4 ≤ n ≤ 5k+4

2 if k is even and k + 5 ≤ n ≤ 7k−1
2 if k is odd. We use

Theorem 6 and Theorem 7 to get the lower bounds match those with the upper
bounds in Theorems 2, 3 and 4. We use the following lemmas in the sequel.

Lemma 1. If f is a radio k-coloring of a graph G with span λ, then there
exists a radio k-coloring g of G with span λ such that the vertices of G receiving
1 and λ by f receive λ and 1, respectively by g.

Proof. The radio k-coloring g of G defined as g(v) = λ + 1 − f(v) for every
vertex v of G is one of such colorings. QED

Lemma 2. If n1 and n2 are positive integers such that n1 < n2, then
rck(Pn1) ≤ rck(Pn2).

Theorem 8. If k ≥ 7 and 4 ≤ s ≤ bk+1
2 c, then

rck(Pk+s) =

{
k2+2s+1

2 if k is odd,
k2+2s+2

2 if k is even.

Proof. Let f be a minimal radio k-coloring of path Pk+s : v1v2v3 . . . vk+s with
span λ. Let i and j be the least positive integers such that f(vi) = 1 and
f(vj) = λ. Without loss of generality, we assume that i < j.
Case I: k = 2p + 1

To prove the result, depending on the positions of the maximum and the
minimum colored vertices, we choose a Pk+1 subpath (L0 is the center of it) of
Pn such that α+ β ≥ s− 1. If α+ β ≥ s− 1, we get the required lower bound
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and if α + β > s − 1, we get a contradiction to Theorem 2 (using Theorem
7). If i ≤ s, then by considering the path vivi+1vi+2 . . . vi+pvi+p+1 . . . vi+k, we

get α = k−1
2 . Now, by using Theorem 7, we get rck(f) ≥ k2+k+2

2 which is a

contradiction to Theorem 2 if s 6= k+1
2 . If s < i < p + 1, then by considering

the path vsvs+1vs+2 . . . vs+pvs+p+1 . . . vs+k, we get α ≥ s. If j ≥ k + 1, then
by considering the path vj−kvj−k+1vj−k+2 . . . vj−p−1vj−p . . . vj , we get β ≥ k−1

2

which is strictly greater than s − 1 if s 6= k+1
2 . If p + s < j < k + 1, then

by considering the path v1v2v3 . . . vp+1vp+2 . . . vk+1, we get β ≥ s− 1. Suppose
p+ 1 ≤ i < j ≤ p+ s.

Subcase (i): s = 2l

If i ≥ p+ l+1, then by choosing the path v1v2v3 . . . vp+1vp+2 . . . vk+1, we get

α ≥ l− 1 and β ≥ l. By Theorem 7, we get rck(f) ≥ k2+3
2 + l− 1 + l = k2+2s+1

2 .
If j ≤ p + l + 1, then by choosing vsvs+1vs+2 . . . vs+pvs+p+1 . . . vk+s subpath,
we get β ≥ l − 1 and α ≥ l. So, α + β ≥ s − 1. Suppose p + 1 ≤ i < p +
l + 1 < j ≤ p + s. Let i = p + l + 1 − l1 and j = p + l + 1 + l2 where
1 ≤ l1 ≤ l and 1 ≤ l2 ≤ l − 1. Suppose that l1 < l2. Then by considering the
path v1v2v3 . . . vp+1vp+2 . . . vk+1, we get α = (p+ l+ 1− l1)− (p+ 2) = l− l1−1
and β = (p + l + 1 + l2) − (p + 2) = l + l2 − 1. Now, by Theorem 7, rck(f) ≥
k2+3
2 + l− l1− 1 + l+ l2− 1 = k2+3

2 + 2l+ (l2− l1)− 2 ≥ k2+2s+1
2 . Suppose that

l1 > l2. Then by considering the path vsvs+1vs+2 . . . vs+pvs+p+1 . . . vk+s, we get
α = (p+2l)−(p+l+1−l1) = l+l1−1 and β = (p+2l)−(p+l+1+l2) = l−l2−1.
So, α + β ≥ s − 1. If l1 = l2, then we choose L0 = {vp, vp+1} (we get the
path v1v2v3 . . . vk). So, we get |Lp| = 1 and |Lt| = 2, t = 0, 1, . . . , p − 1. Also,
α+β = p+ l+1− l1−p+ 1+p+ l+1+ l2− (p+1) = 2l = s. Now, by Theorem

6, rck(f) ≥ 2p+ 1− 2p+ 2
p−1∑
t=0

2(p− t) + 1 = k2+2s+1
2 .

Subcase (ii): s = 2l + 1

If i ≥ p+l+1 or j ≤ p+l+2, then as in Subcase (i), we get rck(f) ≥ k2+2s+1
2 .

So, we assume p+ 1 ≤ i < p+ l+ 1 < p+ l+ 2 < j ≤ p+ s. Let i = p+ l+ 1− l1
and j = p+ l + 2 + l2 where 1 ≤ l1 ≤ l and 1 ≤ l2 ≤ l − 1. Rest of the proof is
similar to that of Subcase (i).

Case II: k = 2p

Analogous to Case I, depending on the positions of maximum and minimum
colored vertices, here also we choose a Pk+1 subpath such that α + β ≥ s. If
i ≤ s, then we choose the path vivi+1vi+2 . . . vi+p . . . vi+k. So, we get α = k

2

and by Theorem 7, rck(f) ≥ k2+k+2
2 , which is a contradiction to Theorem 2 if

s 6= k
2 . If s < i ≤ p, then by choosing vsvs+1vs+2 . . . vs+p . . . vs+k subpath, we

get α ≥ s. If j ≥ k + 1, then as in the Case I, we get contradiction only if
s 6= k

2 . Also, if j > p + s, then similar to Case I, we get β ≥ s. Suppose that
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p+ 1 ≤ i < j ≤ p+ s.

Subcase (i): s = 2l

If i > p+ l, then by choosing the path v1v2v3 . . . vp+1 . . . vk+1, we get α ≥ l
and β ≥ l + 1. If j ≤ p+ l, then by considering the subpath vsvs+1vs+2 . . . vs+p
. . . vs+k, we get β ≥ l and α ≥ l+ 1. Suppose p+ 1 ≤ i ≤ p+ l < j ≤ p+ s. Let
i = p+ l + 1− l1 and j = p+ l + l2, where 1 ≤ l1 ≤ l and 1 ≤ l2 ≤ l. The cases
l1 < l2 and l1 > l2 are similar to Subcase (i) of Case I. If l1 = l2, we choose
L0 = {vp}. So, we get |L0| = |Lp| = 1 and |Lt| = 2, t = 1, 2, 3, . . . , p − 1. Also,
α+ β = p+ l+ 1− l1 − p+ p+ l+ l2 − p = 2l+ 1 = s+ 1. Now by Theorem 6,

rck(f) ≥ 2p− 2p+ 2p+ 2
p−1∑
t=1

2(p− t) + s+ 1 = k2+2s+2
2 .

Subcase (ii): s = 2l + 1

If i > p+ l+ 1 or j ≤ p+ l, then as in Subcase (i), we get rck(f) ≥ k2+2s+1
2 .

So, we assume that p+1 ≤ i < p+l+1 < p+l+2 < j ≤ p+s. Let i = p+l+1−l1
and j = p+ l + 1 + l2 where 1 ≤ l1 ≤ l and 0 ≤ l2 ≤ l − 1. Rest of the proof is
similar to that of Subcase (i). QED

Theorem 9. If k > 7 is even and n = 3k+2
2 , then rck(Pn) = k2+k+2

2 .

Proof. From Theorem 8, we have rck(P 3k
2

) = k2+k+2
2 . By Lemma 2 and Theorem

3, we get the result. QED

Theorem 10. If k ≥ 7 is odd and 3k+1
2 ≤ n ≤ 5k−1

2 , then rck(Pn) = k2+k+2
2 .

Proof. From Theorem 8, we have rck(P 3k+1
2

) = k2+k+2
2 . By Lemma 2 and The-

orem 4, we get the result. QED

Lemma 3. Let k ≥ 7 be odd and f be a minimal radio k-coloring of Pn :
v1v2 . . . vn where n = 5k−1

2 . If f(vi) = 1 and f(vj) = k2+k+2
2 , then {i, j} =

{k, n− k + 1}.

Proof. Let f(vi) = 1 and f(vj) = λ where λ = k2+k+2
2 . Without loss of

generality, we assume that i < j. Let k = 2p + 1. To prove i = k and
j = n − k + 1, we first show that j − i = p or j − i = p + 1. If j − i < p or
p+1 < j−i ≤ k, then we choose the path vj−kvj−k+1vj−k+2 . . . vj−p−1vj−p . . . vj
if j > k, else we choose the path vivi+1vi+2 . . . vi+pvi+p+1 . . . vi+k. In any case,
we get one of α and β is k−1

2 and the other is at least 1. Now, by Theo-

rem 7, rck(f) ≥ k2+k+4
2 , which is a contradiction. Suppose that j − i > k.

If the color λ is not used in the path vivi+1vi+2 . . . vi+pvi+p+1 . . . vi+k, using
Theorem 7, we get a contradiction. Suppose the color λ is used in the path
vivi+1vi+2 . . . vi+pvi+p+1 . . . vi+k, say f(vt) = λ. Since t − i ≤ k, t − i = p or
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t− i = p+ 1. Since f(vt) = f(vj) = λ, t+k < j ≤ n. If the color 1 is not used in
the path vtvt+1vt+2 . . . vt+pvt+p+1 . . . vt+k, using Theorem 7, we get a contradic-
tion. Suppose the color 1 is used in the path vtvt+1vt+2 . . . vt+pvt+p+1 . . . vt+k,
say f(vl) = 1. Since l − t ≤ k, l − t is p or p + 1. Since f(vi) = f(vl) = 1,
l− i ≥ k+ 1. Therefore l− i = k+ 1. Now, the minimum color used in the path
vi+1vi+2vi+3 . . . vl−1 (path on k vertices) is not less than p + 2. So, the colors

available to color the path vi+1vi+2vi+3 . . . vl−1 is from p + 2 = k+3
2 to k2+k+2

2 .

Since rck(Pk) = k2+3
2 and k2+k+2

2 − k+3
3 +1 = k2+1

2 , the path vi+1vi+2vi+3 . . . vl−1
cannot be colored. Therefore in any case, j− i 6> k and hence j− i = p or p+ 1.

Next, we show that k ≤ i < j ≤ n− k + 1 and j − i 6= p. For that, we first
prove that the colors 1 and λ are used only once by f . Suppose f(vl) = 1 for
some l 6= i. Since f(vi) = 1, l ≥ i + k + 1 and hence l > j. So, l − j is p or
p+ 1. Therefore l − i = l − j + j − i ≤ k + 1 and hence l − i = k + 1. Now, the
minimum color used in the path vi+1vi+2vi+3 . . . vl−1 (path on k vertices) is not
less than p + 2. So, the colors available to color the path vi+1vi+2vi+3 . . . vl−1
is from p + 2 = k+3

2 to k2+k+2
2 . Since rck(Pk) = k2+3

2 and k2+k+2
2 − k+3

3 + 1 =
k2+1
2 , the path vi+1vi+2vi+3 . . . vl−1 cannot be colored. Hence the color 1 is

assigned to only vi and by Lemma 1, the color λ is assigned only to vj . If i < k,
then vi+1, vi+2vi+3 . . . vn is a path of at least 3k+1

2 vertices. Since rck(P 3k+1
2

) =

k2+k+2
2 = λ and the color 1 is not used in the path vi+1, vi+2vi+3 . . . vn, we get a

contradiction. Hence i ≥ k. Suppose that j > n−k+1. Then v1v2v3 . . . vj−1 is a

path of at least 3k+1
2 vertices and rck(P 3k+1

2
) = k2+k+2

2 = λ. But maximum color

used for a vertex of v1v2v3 . . . vj−1 is at most λ − 1, which is a contradiction.
Therefore k ≤ i < j ≤ n − k + 1. If j − i = p, then i = k, j = k + p or
i = k + 1, j = k + p + 1. If i = k and j = k + p, then by considering the
path vk+pvk+p+1vk+p+2 . . . vk+2pvk+2p+1 . . . vn, we get β = k−1

2 and the color
1 is not used for vk+pvk+p+1vk+p+2 . . . vn. Now, by using Theorem 7, we get

rck(f) ≥ k2+k+4
2 , which is a contradiction. If i = k + 1 and j = k + p + 1,

then for the path v1v2v3 . . . vp+1vp+2 . . . vk+1, the color k2+k+2
2 is not used and

α = k−1
2 . Now, by Theorem 7, we get rck(f) ≥ k2+k+4

2 , which is a contradiction.
Therefore, j − i = p+ 1, that is, i = k and j = n− k + 1. QED

Theorem 11. If k ≥ 7 is odd, then rck(Pn) = k2+k+4
2 , where 5k+1

2 ≤ n ≤
7k−1
2 .

Proof. Let n = 5k+1
2 , Pn : v1v2v3 . . . vn and λ = k2+k+2

2 . Suppose rck(Pn) = λ.
Let f be a minimal radio k-coloring of Pn. Now, f restricted to v1v2v3 . . . vn−1
is a minimal radio k-coloring of Pn−1. By Lemma 3, we get {f(vk), f(vn−k)} =
{1, λ}. By restricting f to the path v2v3 . . . vn and using Lemma 3, we get
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{f(vk+1), f(vn−k+1)} = {1, λ}. Therefore, rck(Pn) ≥ k2+k+4
2 and hence by The-

orem 4, rck(Pn) = k2+k+4
2 . QED

Lemma 4. Let k = 2p > 7 and f be a minimal radio k-coloring of Pn :
v1v2 . . . vn where n = 3k+2

2 . If f(vi) = 1 and f(vj) = k2+k+2
2 , then {i, j} =

{p+ 1, n− p}.

Proof. Let f(vi) = 1 and f(vj) = λ where λ = k2+k+2
2 . Without loss of gen-

erality, we assume that i < j. To prove i = p + 1 and j = n − p, we first
show that j − i = p. Suppose that j − i < p. If j > k, then by choos-
ing vj−kvj−k+1vj−k+2 . . . vj−p . . . vj path and if i ≤ p + 1, then by choosing
vivi+1vi+2 . . . vi+p . . . vi+k path, we get α+ β ≥ k

2 + 1, a contradiction, by The-

orem 7, to the fact that rck(f) = k2+k+2
2 . If i ≥ d3p+1

2 e, then by considering

L0 = {vp} and using Theorem 6, we get a contradiction as α + β ≥ k
2 + 2. If

j ≤ d3p+1
2 e, then by considering the path vp+1vp+2vp+3 . . . v2p+1 . . . vn we get

a contradiction. So, p + 1 < i < d3p+1
2 e < j ≤ k. Let i = d3p+1

2 e − l1 and

j = d3p+1
2 e+ l2. By applying Theorem 6 with L0 = {v2p+2} if l1 ≥ l2 and with

L0 = {vp} if l1 < l2, we get a contradiction to the fact that rck(f) = k2+k+2
2 .

Therefore j − i 6< p. If j − i > p, then by considering an appropriate subpath of
k+ 1 vertices (starting with vi or ending with vj), again we get a contradiction.
Therefore j − i = p.

Next, we show that i = p + 1 and j = n − p. For that, we first show
that the colors 1 and λ are not repeated. Suppose f(vl) = 1 for some l 6=
i. Then l ≥ i + k + 1 and l − j = p. Therefore l = j + p = i + 2p =
i + k, which is a contradiction. Hence the color 1 is assigned to only vi and
by Lemma 1, the color λ is assigned only to vj . Suppose that i ≤ p. Then
vi+1vi+2vi+3 . . . vi+p+1 . . . vi+k+1 does not contain the color 1. Let λmin be the
minimum color used in vi+1vi+2vi+3 . . . vi+p+1 . . . vi+k+1, say f(vt) = λmin. Since

rck(Pk+1) = k2+6
2 and the maximum color used is k2+k+2

2 , λmin ≤ p − 1. Now,
p− 2 ≥ λmin− 1 ≥ 2p+ 1− d(vi, vt) = 2p+ 1− (t− i), that is t ≥ i+ p+ 3. So,
α = t− (i+p+ 1) = (t− i)− (p+ 1) ≥ 2p+ 1−λmin+ 1− (p+ 1) = p+ 1−λmin
and β = 1. Now, by Theorem 7, we get rck(f) ≥ k2+2

2 + p + 1 − λmin + 1 +

λmin − 1 = k2+k+4
2 which is a contradiction. Similarly, by considering the path

vj−k−1vj−kvj−k+1 . . . vj−p−1 . . . vj−1, we get a contradiction if j > n− p. There-
fore j = n− p and i = p+ 1. QED

Theorem 12. If k > 7 is even, then rck(Pn) = k2+k+4
2 , where 3k+4

2 ≤ n ≤
5k+4
2 .

Proof. Similar to the proof of Theorem 11, using Lemma 4. QED



On the Radio k-chromatic Number of Paths 45

4 Conclusion

For any non-trivial class of graphs, the radio k-chromatic number is not
known for arbitrary k, in fact, little has been done when k ≤ diam(G)− 2. One
of the possible reasons could be that finding rck(G) is difficult for smaller values
of k, in general. As far as we know, rck(G) has been studied for k ≤ diam(G)−3
only when G = Pn. In this article, we have determined rck(Pn) for k ≥ 2n+1

7 if
k is odd and for k ≥ 2n−4

5 if k is even. From Theorem 11 and Theorem 12, for

the infinite path P∞, rck(P∞) ≥ k2+k+4
2 which improves the lower bound given

by Das et al. [3] by one, a step towards Conjecture 1.
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