
Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932

Note Mat. 42 (2022) no. 1, 1–35. doi:10.1285/i15900932v42n1p1

On the equivalence between moderate

growth-type conditions in the weight matrix

setting

Gerhard Schindli

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien,
Austria
gerhard.schindl@univie.ac.at

Received: 28.9.2021; accepted: 16.1.2022.

Abstract. We study the generalizations of the known equivalent reformulations of condition
moderate growth from the single weight sequence to the weight matrix setting. This condition,
also known in the literature under the name stability under ultradifferentiable operators, plays
a significant role in the theory of ultradifferentiable (and ultraholomorophic) function classes
defined in terms of weight sequences and its generalization becomes relevant when dealing with
classes defined by weight matrices. In the matrix setting, we prove that the different mixed
conditions are in general not equivalently satisfied anymore and we focus on weight matrices
associated with (associated) weight functions.
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1 Introduction

In the theory of ultradifferentiable (and ultraholomorphic) function spaces
defined by means of weight sequences M = (Mp)p several basic growth and
regularity assumptions on the weight M are arising frequently. One of the ”most
prominent and classical” conditions is moderate growth, denoted by (mg), which
reads as follows:

∃ C ≥ 1 ∀ p, q ∈ N : Mp+q ≤ Cp+qMpMq.

In [11] and in other places in the literature this requirement is denoted by (M.2)
and also known under the name stability under ultradifferential operators.

Assumption (mg) for M implies or even characterizes important and de-
sirable properties for the corresponding ultradifferentiable function classes of
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Roumieu type E{M} and of Beurling type E(M), e.g. having Cartesian closedness
as shown in [12].

In order to apply (mg) in proofs, several equivalent and useful variants of this
condition have been shown, see [18], [14], [15] and [20]. We summarize everything
in detail in Theorem 3.1, for the moment we recall that (mg) is equivalent to
having

∃ A ≥ 1 ∀ p ∈ N>0 : µp ≤ A(Mp)
1/p, (1.1)

with µp :=
Mp

Mp−1
. Thus (1.1) admits the possibility of comparing the sequences

of quotients and roots of a weight sequence M .

The second classical approach to introduce ultradifferentiable classes is by
using a weight function ω : [0,+∞) → [0,+∞), see [1] and [4]. Also in this
setting basic growth and regularity assumptions on the weight ω are required
in order to study the corresponding classes E{ω} and E(ω).

In [3] both methods have been compared and it has been shown that in
general both approaches are mutually distinct. For the case when the settings
coincide (mg) has become relevant. However, in general it is natural to ask the
following: When a statement is valid for one setting, can we prove the analogous
version in the other setting as well and (how) can the proofs be transferred?

Inspired by the results shown in [3], in [23] and [19] ultradifferentiable classes
E{M} and E(M) defined in terms of weight matrices M = {M (x) : x ∈ I},
I = R>0 denoting the index set, have been introduced. It has been shown that,
by using the weight matrixMω = {W (x) : x > 0} associated with a given weight
function ω, in this general framework one is able to treat both classical settings
in a uniform and convenient way but also more classes. For the contents of this
article we will not need the precise definitions of ultradifferentiable classes, we
refer to [19] for more details.

By using this method one is able to see the role of moderate growth in the
weight function world in a more precise way: Assuming (mg) for some/any W (x)

is a too strong requirement because in this case the class defined by Mω can
already be represented by a single weight sequence class defined in terms of
some arbitrary W (x). (Note: For the coincidence with the class defined by ω,
(2.9) is indispensable in order to absorb exponential growth but this property
is valid by the standard assumption ω(2t) = O(ω(t)), t→ +∞.)

However, by exploiting the definition of the sequences W (x), which is based
on the weight function approach derived in [4], and the convexity of the Young-
conjugate ϕ∗ω of the function ϕω := ω◦exp, one is able to see that automatically
the generalization of (mg) to a mixed condition is valid, see (2.8). And in gen-
eral, since the matrix setting involves a parameter/index, mixed versions of the



On the equivalence between moderate growth-type conditions 3

conditions arising in the weight sequence approach seem to be more natural and
sufficient and thus the direct generalizations of (mg) read as follows, see [19,
Section 4.1] and [23, Section 7.2]:

(M{mg}) ∀ x ∈ I ∃ C > 0 ∃ y ∈ I ∀ p, q ∈ N : M
(x)
p+q ≤ Cp+qM

(y)
p M

(y)
q ,

(M(mg)) ∀ x ∈ I ∃ C > 0 ∃ y ∈ I ∀ p, q ∈ N : M
(y)
p+q ≤ Cp+qM

(x)
p M

(x)
q .

Note that in the matrix setting naturally the conditions are arising pair-
wise, one has to treat conditions of Roumieu and of Beurling type, see e.g. [19,
Sect. 4.1].

Unfortunately, (M{mg}) and (M(mg)) are not ”sufficient enough” in order
to transfer known proofs and techniques from the weight sequence setting since
also knowledge on the mixed versions of the other conditions listed in Theorem
3.1 is relevant. Of course, a full generalization of Theorem 3.1 to the matrix
setting is desirable, but in our attempts we have only been able to prove some
partial results, see [24, Prop. 3.6], [23, Thm. 9.5.1, Thm. 9.5.3] and [20, Lemma
2.6]. More precisely, it is not clear how the generalizations of (1.1), see (4.1)
and (4.2), are related to (M{mg}) and (M(mg)) and this loss of information led
to the definition of an ”admissible weight matrix” given in [20, Def. 4.6].

The aim of this article is to study and compare these mixed conditions in
detail and to prove the failure of Theorem 3.1 in the matrix setting. Thus our
results will underline the difference between the weight matrix and single weight
sequence setting. More precisely, we show that the mixed version of (1.1), i.e.
condition (4.1) resp. (4.2), is in general violated.

In order to do so we focus on weight matrices MωM , where ωM denotes the
so-called associated weight function of a weight sequence M , see Section 2.3.
The advantage in this case is that all relevant information on the matrix MωM

can be expressed in terms of given M in a compact form. Hence we are able to
construct a counter-example in Theorem 4.8 and to characterize the situation
when the generalization of Theorem 3.1 for MωM is valid, see Proposition 4.4.
(By using the matrix Mω we can transfer this knowledge also to the weight
function case, see Proposition 4.7.)

For the sake of completeness let us mention that in the very recent paper
[10] it has been shown that conditions (M{mg}) and (M(mg)) can be expressed
equivalently by involving new mixed growth indices related to the concept of
mixed O-regular variation and by a condition involving the ”multi-index weight
matrix construction” from [23, Sect. 9.3] and [24] (generalizing the situation for
(mg) which has been studied in [8]).
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We summarize now the content of this paper.

After collecting and recalling all necessary definitions and assumptions on
weights in Section 2, in Section 3 we are gathering and extending the knowledge
on the parts of Theorem 3.1 which can be generalized to the matrix setting,
see Theorem 3.7. For this we have to introduce an auxiliary matrix, denoted by
Mmg, but for the weight matrix Mω this construction is superfluous and we
obtain a complete direct characterization, see Corollary 3.8.

Section 4 is dedicated to the study of the generalization of (1.1) and the fail-
ure of Theorem 3.1, see Prop. 4.4 and 4.7 and the counter-example constructed
in Section 4.4. Finally, in the Appendix 5 some new formulas for the quotients
of the sequences W (x), which are needed in the proof of the main statement, are
applied to the lim inf-conditions arising in [8, Thm. 3.11 (v)] (and generalizing
the strong non-quasianalyticity condition for weight sequences), see Proposition
5.1.

2 Weights and conditions

2.1 General notation

We write N := {0, 1, 2, . . . } and N>0 := {1, 2, 3, . . . }.

2.2 Weight sequences

Given a sequence M = (Mp)p ∈ RN
>0 we also use the notation µ = (µp)p

with µp :=
Mp

Mp−1
, p ≥ 1, µ0 := 1, and analogously for all other arising sequences.

M is called normalized if 1 = M0 ≤M1 holds true.

M is called log-convex if

∀ p ∈ N>0 : M2
p ≤Mp−1Mp+1,

equivalently if µ is nondecreasing. If M is log-convex and normalized, then both
p 7→Mp and p 7→ (Mp)

1/p are nondecreasing, (Mp)
1/p ≤ µp for all p ∈ N>0 and

finally MpMq ≤Mp+q for all p, q ∈ N.

For our purpose it is convenient to consider the following set of sequences

LC := {M ∈ RN
>0 : M is normalized, log-convex, lim

p→+∞
(Mp)

1/p = +∞}.

We see that M ∈ LC if and only if 1 = µ0 ≤ µ1 ≤ . . . and limp→+∞ µp = +∞
(e.g. see [19, p. 104]) and there is a one-to-one correspondence between M and
µ = (µp)p by taking Mp :=

∏p
i=0 µi.
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M has derivation closedness, denoted by (dc), if

∃ D ≥ 1 ∀ p ∈ N : Mp+1 ≤ Dp+1Mp ⇐⇒ µp+1 ≤ Dp+1.

In [11] this condition is denoted by (M.2′) and it is immediate that (mg) implies
derivation closedness.

We say that M has condition (β1) (introduced in [17]), if

∃ Q ∈ N≥2 : lim inf
p→+∞

µQp
µp

> Q.

Moreover, there for M ∈ LC it has been shown that (β1) is equivalent to
requiring (γ1), i.e.

sup
p∈N>0

µp
p

∑
k≥p

1

µk
< +∞.

In the literature (γ1) is also called ”strong nonquasianalyticity condition” and
in [11] it is denoted by (M.3) (in fact, there

µp
p is replaced by

µp
p−1 for p ≥ 2 but

which is equivalent to having (γ1)).

A weaker requirement than (β1) is

∃ Q ∈ N≥2 : lim inf
p→+∞

µQp
µp

> 1, (2.1)

which is arising in the main characterizing results in [3] and denoted by (β3) in
[23]. Conditions of this type are also showing up in [8, Thm. 3.11 (v)].

Let M,N ∈ RN
>0 be given, we write M�N if supp∈N>0

(
Mp

Np

)1/p
< +∞ and

call M and N equivalent, denoted by M≈N , if M�N and N�M . Property (mg)
is clearly preserved under ≈ and for (β1) this follows by the characterizations
obtained in [17].

If M≈N , then E{M} = E{N} and E(M) = E(N) as locally convex vector spaces,
see e.g. [19, Prop. 2.11 (1)].

Finally, write M ≤ N if Mp ≤ Np for all p ∈ N.

2.3 Associated weight function

Let M ∈ RN
>0 (with M0 = 1), then the associated function ωM : R≥0 →

R ∪ {+∞} is defined by

ωM (t) := sup
p∈N

log

(
tp

Mp

)
for t > 0, ωM (0) := 0.
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For an abstract introduction of the associated function we refer to [13, Chapitre
I], see also [11, Definition 3.1]. If lim infp→+∞(Mp)

1/p > 0, then ωM (t) = 0

for sufficiently small t, since log
(
tp

Mp

)
< 0 ⇔ t < (Mp)

1/p holds for all p ∈
N>0. Moreover under this assumption t 7→ ωM (t) is a continuous nondecreasing
function, which is convex in the variable log(t) and tends faster to infinity than
any log(tp), p ≥ 1, as t → +∞. limp→+∞(Mp)

1/p = +∞ implies that ωM (t) <
+∞ for each finite t which shall be considered as a basic assumption for defining
ωM .

By definition, the following is immediate: If M,N ∈ LC are given such that
M�N , then

∃ C ≥ 1 ∀ t ≥ 0 : ωN (t) ≤ ωM (Ct). (2.2)

We define the counting function ΣM by

ΣM (t) := |{p ∈ N>0 : µp ≤ t}|. (2.3)

It is known that for given M ∈ LC the functions ωM and ΣM are related by the
following integral representation formula, see [13, 1.8. III] and also [11, (3.11)]:

ωM (t) =

∫ t

0

ΣM (u)

u
du =

∫ t

µ1

ΣM (u)

u
du. (2.4)

Consequently, ωM vanishes on [0, µ1], in particular on the unit interval.
Finally, if M ∈ LC, then we can compute M by involving ωM as follows, see

[13, Chapitre I, 1.4, 1.8] and also [11, Prop. 3.2]:

Mp = sup
t≥0

tp

exp(ωM (t))
, p ∈ N. (2.5)

2.4 Weight functions

A function ω : [0,+∞)→ [0,+∞) is called a weight function (in the termi-
nology of [8, Section 2.1] and [9, Section 2.2]), if it is continuous, nondecreasing,
ω(0) = 0 and limt→+∞ ω(t) = +∞. If ω satisfies in addition ω(t) = 0 for all
t ∈ [0, 1], then we call ω a normalized weight function. For convenience we will
write that ω has (ω0) if it is a normalized weight.

Moreover we consider the following conditions; this list of properties has
already been used in [23].

(ω1) ω(2t) = O(ω(t)) as t→ +∞, i.e. ∃ L ≥ 1 ∀ t ≥ 0 : ω(2t) ≤ L(ω(t) + 1).

(ω3) log(t) = o(ω(t)) as t→ +∞.
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(ω4) ϕω : t 7→ ω(et) is a convex function on R.

(ω6) ∃ H ≥ 1 ∀ t ≥ 0 : 2ω(t) ≤ ω(Ht) +H.

Finally, we recall the strong non-quasianalyticity condition for weight func-
tions

∃ C ≥ 1 ∀ y ≥ 0 :

∫ +∞

1

ω(yt)

t2
dt ≤ Cω(y) + C. (2.6)

For convenience we define the set

W0 := {ω : [0,∞)→ [0,∞) : ω has (ω0), (ω3), (ω4)}.

For any ω ∈ W0 we define the Legendre-Fenchel-Young-conjugate of ϕω by

ϕ∗ω(x) := sup{xy − ϕω(y) : y ≥ 0}, x ≥ 0, (2.7)

with the following properties, e.g. see [4, Remark 1.3, Lemma 1.5]: It is convex
and nondecreasing, ϕ∗ω(0) = 0, ϕ∗∗ω = ϕω, limx→+∞

x
ϕ∗ω(x)

= 0 and finally x 7→
ϕω(x)
x and x 7→ ϕ∗ω(x)

x are nondecreasing on [0,+∞). Note that by normalization
we can extend the supremum in (2.7) from y ≥ 0 to y ∈ R without changing
the value of ϕ∗ω(x) for given x ≥ 0.

Let σ, τ be weight functions, we write σ�τ if τ(t) = O(σ(t)) as t→ +∞ and
call them equivalent, denoted by σ∼τ , if σ�τ and τ�σ. If σ∼τ , then E{σ} = E{τ}
and E(σ) = E(τ) as locally convex vector spaces, see e.g. [19, Cor. 5.17 (1)].

We recall the following known result, e.g. see [24, Lemma 2.8] resp. [9,
Lemma 2.4] and the references mentioned in the proofs there.

Lemma 2.1. Let M ∈ LC, then ωM ∈ W0 holds true and (ω6) for ωM if and
only if M has (mg).

2.5 Weight matrices

For the following definitions and conditions see also [19, Section 4].
Let I = R>0 denote the index set (equipped with the natural order), a weight

matrix M associated with I is a (one parameter) family of weight sequences
M := {M (x) ∈ RN

>0 : x ∈ I}, such that

∀ x ∈ I : M (x) is normalized, nondecreasing, M (x) ≤M (y) for x ≤ y.

We call a weight matrix M standard log-convex, denoted by (Msc), if

∀ x ∈ I : M (x) ∈ LC.
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Moreover, we have the corresponding sequences of quotients µ(x) given by µ
(x)
p :=

M
(x)
p

M
(x)
p−1

for p ∈ N>0, µ
(x)
0 := 1.

A matrix is called constant if M (x)≈M (y) for all x, y ∈ I. In particular,
M = {M} is constant (when formally setting M (x) = M for any x ∈ I).

Let M = {M (x) : x > 0} and N = {N (y) : y > 0} be given. We write
M{�}N if

∀ x > 0 ∃ y > 0 : M (x)�N (y),

and M(�)N if
∀ x > 0 ∃ y > 0 : M (y)�N (x).

We callM andN to beR-equivalent, ifM{�}N andN{�}M andB-equivalent,
if M(�)N and N (�)M.

If M and N are R-equivalent, then E{M} = E{N} and if they are B-
equivalent, then E(M) = E(N ) as locally convex vector spaces, see e.g. [19, Prop.
4.6 (1)].

Remark 2.2. Let a non-constant matrixM = {M (x) : x ∈ I} be given. Assume
that there exists x0 ∈ I such that M (y)≈M (x) for all x, y ≥ x0. Then, when
dealing with Roumieu type classes, we can replace M by N = {M (x0)} since
E{M} = E{Mx0}.

Similarly, when there exists x0 ∈ I such that M (y)≈M (x) for all x, y ≤ x0,
then in the Beurling setting we can replace M by N = {M (x0)} since E(M) =
E(Mx0 ).

In particular, these comments apply to the case when M consists of only
finitely many (w.l.o.g. pair-wise non-equivalent) sequences.

We summarize some facts which are shown in [19, Sect. 5] and [23, Sect. 4,
Sect. 5] and are needed in this work. All properties listed below are valid for
ω ∈ W0, except (2.9) for which (ω1) is necessary (and underlines the importance
of this condition in this context).

(i) The idea was that to each ω ∈ W0 we can associate a standard log-convex

weight matrix Mω := {W (l) = (W
(l)
p )p∈N : l > 0} by

W
(l)
p := exp

(
1
lϕ
∗
ω(lp)

)
.

For the corresponding sequence of quotients we write ϑ(l).

(ii) Mω satisfies

∀ l > 0 ∀ p, q ∈ N : W
(l)
p+q ≤W (2l)

p W (2l)
q . (2.8)
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so both (M{mg}) and (M(mg)) are satisfied.

(iii) (ω6) holds if and only if some/each W (l) satisfies (mg) if and only if
W (l)≈W (n) for each l, n > 0. Consequently (ω6) is characterizing the sit-
uation when Mω is constant.

(iv) In case ω has in addition (ω1), then Mω has also

∀ h ≥ 1 ∃ A ≥ 1 ∀ l > 0 ∃ D ≥ 1 ∀ p ∈ N : hpW (l)
p ≤ DW (Al)

p , (2.9)

and this estimate is crucial for proving E{Mω} = E{ω} and E(Mω) = E(ω)
as locally convex vector spaces.

(v) We have ω∼ωW (l) for each l > 0, more precisely

∀ l > 0 ∃Dl > 0 ∀ t ≥ 0 : lωW (l)(t) ≤ ω(t) ≤ 2lωW (l)(t) +Dl, (2.10)

see [23, Theorem 4.0.3, Lemma 5.1.3] and also [9, Lemma 2.5].

Since for any given M ∈ LC we have ωM ∈ W0, see Lemma 2.1, it makes
sense to define the matrix associated with the weight ωM by

MωM := {M (l) : l > 0}.

Then we get

∀ p ∈ N : Mp = M (1)
p , (2.11)

which follows by applying (2.5) (see also the proof of [24, Thm. 6.4]):

M (1)
p := exp(ϕ∗ωM

(p)) = exp(sup
y≥0
{py − ωM (ey)}) = sup

y≥0
exp(py − ωM (ey))

= sup
y≥0

exp(py)

exp(ωM (ey))
= sup

t≥1

tp

exp(ωM (t))
= sup

t≥0

tp

exp(ωM (t))
= Mp.

For this recall that we have ωM (t) = 0 for 0 ≤ t ≤ 1, see (2.4).

Moreover, one has by definition

∀ l ∈ N>0 ∀ p ∈ N : M (l)
p = exp

(
1

l
ϕ∗ωM

(lp)

)
= (M

(1)
lp )1/l = (Mlp)

1/l. (2.12)

In particular (2.12) holds for the sequences W (l) ∈Mω (except the very last
equality).
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3 Moderate growth conditions for abstractly given
weight matrices

3.1 Known characterization for the single weight setting

For given M ∈ LC in the literature there exist several known equivalent
reformulations of (mg). We refer to [18, Lemma 5.3], [14], [15, Appendix B] and
finally to [20, Lemma 2.2] and summarize everything in the next statement (in
particular extending Lemma 2.1).

Theorem 3.1. Let M ∈ LC be given, then the following are equivalent:

(i) M has (mg),

(ii) M satisfies
∃ A ≥ 1 ∀ p ∈ N : M2p ≤ A2p(Mp)

2,

(iii) µ satisfies supp∈N
µ2p
µp

< +∞,

(iv) ωM satisfies (ω6),

(v) ΣM satisfies (ω6),

(vi) M has (1.1).

Concerning this result we remark that:

(a) (1.1) together with log-convexity and normalization ensure that the se-
quences of quotients and roots are comparable up to a constant.

(b) Condition (mg) enables a special flexibility: We consider the transforma-
tion

πs : (Mp)p 7→ (p!sMp)p, s ∈ R. (3.1)

By Stirling’s formula it is immediate to see that assertions (i), (ii), (iii)
and (vi) are preserved under πs for any s ∈ R. But note that in general for
s < 0 one will lose the assumption log-convexity and also (p!sMp)

1/p →
+∞ as p→ +∞ might be violated.

3.2 The abstract weight matrix setting

We want to see if resp. which parts of Theorem 3.1 can be generalized to
the weight matrix setting.

First, let us summarize the following consequences for conditions (M{mg})
and (M(mg)):
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(∗) Since M (x) ≤M (y) for x ≤ y, we can assume y ≥ x in (M{mg}) and y ≤ x
in (M(mg)). In both conditions we can take x = y if and only if M (x) has
(mg).

(∗) If M = {M}, resp. more generally if M = {M (x) : x ∈ I} is constant,
then M has (M{mg}) and/or (M(mg)) if and only if M has (mg) resp.

some/each M (x) has (mg).

(∗) If M ≡ Mω, with Mω being the matrix associated with a given weight
ω ∈ W0, then by (2.8) both (M{mg}) and (M(mg)) hold true.

(∗) Obviously, (M{mg}) is preserved under R-equivalence and (M(mg)) under
B-equivalence of weight matrices.

By combining [24, Prop. 3.6] and [23, Thm. 9.5.1, Thm. 9.5.3], we recall
the following known characterization in the matrix setting which gives a partial
generalization of Theorem 3.1.

Proposition 3.2. Let M = {M (x) : x ∈ I} be (Msc), then in the Roumieu
setting the following are equivalent:

(IR) M has (M{mg}),

(IIR) we get

∀ x ∈ I ∃ C > 0 ∃ y ∈ I ∀ p ∈ N : M
(x)
2p ≤ C

2p(M (y)
p )2,

(IIIR) we get

∀ x ∈ I ∃ H ≥ 1 ∃ y ∈ I ∀ t ≥ 0 : 2ωM(y)(t) ≤ ωM(x)(Ht) +H.

Moreover, in the Beurling setting, we have the following equivalences:

(IB) M has (M(mg)),

(IIB) we get

∀ y ∈ I ∃ C > 0 ∃ x ∈ I ∀ p ∈ N : M
(x)
2p ≤ C

2p(M (y)
p )2,

(IIIB) we get

∀ x ∈ I ∃ H ≥ 1 ∃ y ∈ I ∀ t ≥ 0 : 2ωM(x)(t) ≤ ωM(y)(Ht) +H.

Note:
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(∗) In particular, Proposition 3.2 applies to Mω, ω ∈ W0.

(∗) Assertion (IIIR) resp. (IIIB) in the previous result is the mixed (ω6)-
condition of the particular type. But even if all associated weight functions
are equivalent w.r.t. ∼, then in general we cannot conclude that (ω6) for
each/some ωM(x) is following.

(∗) It is straightforward to see (separately) that all arising assertions in the
previous result are stable under R- resp. B-equivalence of weight matrices,
for (IIIR) resp. (IIIB) we involve (2.2).

(∗) By Stirling’s formula it is also immediate that (IR), (IIR), (IB) and (IIB)
are preserved under the mapping πs, see (3.1).

Concerning the assertion (IIIR) resp. (IIIB) we can see the following result.

Proposition 3.3. Let M = {M (x) : x ∈ I} be (Msc).

We consider in the Roumieu setting the following assertions:

(IVR) M satisfies

∀ x ∈ I ∃ A ≥ 1 ∃ y ∈ I ∀ p ∈ N : µ
(x)
2p ≤ Aµ

(y)
p ,

(VR) we have

∀ x ∈ I ∃ A ≥ 1 ∃ y ∈ I ∀ t ≥ 0 : 2ΣM(y)(t) ≤ ΣM(x)(At).

Moreover, in the Beurling setting, we consider the following assertions:

(IVB) M satisfies

∀ x ∈ I ∃ A ≥ 1 ∃ y ∈ I ∀ p ∈ N : µ
(y)
2p ≤ Aµ

(x)
p ,

(VB) we have

∀ x ∈ I ∃ A ≥ 1 ∃ y ∈ I ∀ t ≥ 0 : 2ΣM(x)(t) ≤ ΣM(y)(At).

Then we get (IVR)⇔ (VR)⇒ (IIIR) and (IVB)⇔ (VB)⇒ (IIIB).

Proof. (IVR) ⇔ (VR) resp. (IVB) ⇔ (VB) follows by the definition of the
counting function ΣM in (2.3) and since each sequence is log-convex which is
equivalent to the fact that each sequence of quotients µ(x) is nondecreasing.
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(VR)⇒ (IIIR) resp. (VB)⇒ (IIIB) follows by involving the integral repre-
sentation formula (2.4), see also [20, Lemma 2.2] for the single weight sequence
case.

Alternatively, we can prove (IVR)⇒ (IIR) resp. (IVB)⇒ (IIB) analogously
as in [18, Lemma 5.3 (1) ⇒ (4)]. We only consider the Roumieu case in detail
and estimate by log-convexity for M (x) as follows:

M
(x)
2p = µ

(x)
1 · · ·µ

(x)
2p =

p∏
i=1

µ
(x)
2i−1µ

(x)
2i ≤

p∏
i=1

(µ
(x)
2i )2 ≤

p∏
i=1

A2(µ
(y)
i )2 = A2p(M (y)

p )2.

QED

Next we want to see if all assertions (IR) − (VR) resp. (IB) − (VB) are
equivalent or at least satisfied simultaneously. For this let now M = {M (x) :
x ∈ I} be given and assume that M is (Msc). Then, for technical reasons, we

introduce the ”shifted matrix” M̃ := {M̃ (x) : x ∈ I} by setting

M̃ (x)
p := (M

(x)
4p )1/4, p ∈ N. (3.2)

Note that M̃ is again (Msc) because

µ̃(x)p :=
M̃

(x)
p

M̃
(x)
p−1

= (µ
(x)
4p−3 · · ·µ

(x)
4p )1/4, p ∈ N>0, µ̃

(x)
0 := 1, (3.3)

see also [22, (2.6)].

Lemma 3.4. Let M = {M (x) : x ∈ I} be (Msc). Then we get

∀ x ∈ I : M (x) ≤ M̃ (x),

and the following conditions are equivalent:

(i) M is satisfying (M{mg}) resp. (M(mg)),

(ii) M̃ and M are R- resp. B-equivalent.

Proof. This follows immediately by a word-for-word repetition of the proof
given in [22, Lemma 2.2] (with C = 4 there) and by taking into account the
equivalences between (IR) and (IIR) resp. between (IB) and (IIB).

Recall that for any M ∈ LC and C ∈ N>0 we get that

∀ p ∈ N : (MCp)
1/C ≤ (M(C+1)p)

1/(C+1),

because p 7→ (Mp)
1/p is nondecreasing by log-convexity and normalization.

QED

The importance of this auxiliary matrix M̃ is given by the following result.
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Lemma 3.5. LetM = {M (x) : x ∈ I} be (Msc) and M̃ shall denote the matrix
defined in (3.2). Then we get:

∀ x ∈ I ∃ A ≥ 1 ∀ p ∈ N : µ
(x)
2p ≤ Aµ̃

(x)
p . (3.4)

Proof. By (3.3) we get µ̃
(x)
p = (µ

(x)
4p−3 · · ·µ

(x)
4p )1/4 for all p ≥ 1 and so

∀ p ≥ 2 : µ
(x)
2p ≤ µ̃

(x)
p ⇔ (µ

(x)
2p )4 ≤ µ(x)4p−3 · · ·µ

(x)
4p , (3.5)

which is valid because p 7→ µ
(x)
p is nondecreasing by log-convexity and since

2p ≤ 4p − 3 ⇔ 3
2 ≤ p. Hence, by choosing A ≥ 1 sufficiently large, we have

shown (3.4). QED

Let M = {M (x) : x ∈ I} be (Msc). Then we put (as a set)

Mmg :=M∪M̃.

Thus M⊆Mmg and by Lemma 3.4 we see:

(∗) M andMmg are R- resp. B-equivalent if and only ifM satisfies (M{mg})
resp. (M(mg)).

(∗) In this case we get E{M} = E{M̃} = E{Mmg} resp. E(M) = E
(M̃)

= E(Mmg).

(∗) However, note that Mmg is formally not a weight matrix as defined in
Section 2.5 since the pointwise order ≤ may fail in general.

Remark 3.6. Consider M≡Mω, with Mω being the matrix associated with a
given weight ω ∈ W0. Then by Lemma 3.4 and (2.8) the matrices Mω and M̃ω

are both R- and B-equivalent.
More precisely, by definition we see

∀ x > 0 ∀ p ∈ N : W̃ (x)
p =

(
W

(x)
4p

)1/4
= W (4x)

p . (3.6)

Consequently, (3.5) is consistent with [20, Lemma 2.6] and as sets one has

M̃ω (Mω and Mmg
ω =Mω.

However, by the R- and B-equivalence between M̃ω and Mω we see that all
matrices generate the same associated ultradifferentiable class of functions (as
locally convex vector spaces), i.e.

E{Mω} = E{M̃ω} = E{Mmg
ω } and E(Mω) = E

(M̃ω)
= E(Mmg

ω ),

see [19, Prop. 4.6]. If ω that has in addition (ω1), then E{Mω} = E{ω} and
E(Mω) = E(ω) as well.
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By involving Lemma 3.5 and the matrixMmg we can connect the conditions
listed in Propositions 3.2 and 3.3.

Theorem 3.7. Let M = {M (x) : x ∈ I} be (Msc). Then the following are
equivalent:

(i) The matrix M satisfies (M{mg}) resp. (M(mg)).

(ii) The matrix Mmg is R- resp. B-equivalent to M and all assertions (IR)−
(VR) resp. (IB)− (VB) are satisfied for Mmg.

Note that assertion (i) is preserved under R- resp. B-equivalence of weight
matrices.

Proof. (i) ⇒ (ii) By Proposition 3.2 the matrix M has (IR) − (IIIR) resp.
(IB) − (IIIB) and, as pointed out before, by Lemma 3.4 the matrices M and
Mmg are R- resp. B-equivalent. Hence, also Mmg satisfies (IR) − (IIIR) resp.
(IB)− (IIIB).

Moreover, note that (3.4) precisely yields both (IVR) and (IVB) considered

as a mixed condition between the matrices M and M̃, i.e. (IVR) and (IVB)
holds for the matrix Mmg.

Thus (ii) is shown by combining Proposition 3.2 and 3.3.

(ii) ⇒ (i) This follows immediately by the R- resp. B-equivalence and
Lemma 3.4 as commented before. QED

In the weight function setting, by taking into account Remark 3.6, we see
that the technical matrices M̃ω andMmg

ω are becoming superfluous and Theo-
rem 3.7 turns into the following ”more closed” statement.

Corollary 3.8. Let ω ∈ W0 be given and let Mω be the associated weight
matrix. Then all assertions listed in Propositions 3.2 and 3.3 of both types are
satisfied for Mω.

4 On the failure of the main characterizing result in
the weight matrix setting

The aim of this section is to see that for a given standard log-convex weight
matrix the full generalization of Theorem 3.1 will fail. In particular, we prove
that the generalization of (1.1) to the matrix setting is violated and we study
this behavior in detail for the matrix MωN , N ∈ LC.
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4.1 Quotient/root comparison conditions for weight matrices

First let us introduce the matrix-type generalizations of (1.1). We say that
an abstractly given weight matrix M = {M (x) : x ∈ I} has the quotient/root
comparison property of Roumieu type, if

∀ x ∈ I ∃ y ∈ I ∃ A ≥ 1 ∀ p ∈ N>0 : µ(x)p ≤ A(M (y)
p )1/p, (4.1)

and of Beurling type, if

∀ x ∈ I ∃ y ∈ I ∃ A ≥ 1 ∀ p ∈ N>0 : µ(y)p ≤ A(M (x)
p )1/p. (4.2)

When M is (Msc), then we get:

(∗) We can choose x = y in (4.1) and/or in (4.2) if and only if M (x) has (mg),
see Theorem 3.1.

(∗) When M = {M}, M ∈ LC, then M has (4.1) and/or (4.2) if and only if
M has (mg).

(∗) Similarly let us show now the following: When M is constant, then M
has (4.1) and/or (4.2) if and only if each M (x) has (mg).

On the one hand, if each M (x) has (mg), then the conclusion is clear by
Theorem 3.1.

Conversely, since all sequences are equivalent, (4.1) yields

µ(x)p ≤ A(M (y)
p )1/p ≤ AB(M (x)

p )1/p,

i.e. (1.1) for M (x) and so (mg) is verified.

(4.2) yields µ
(y)
p ≤ A(M

(x)
p )1/p ≤ AB(M

(y)
p )1/p and so (mg) is verified for

M (y). Since M (y)≈M (x) we get (mg) for M (x), too.

Remark 4.1. ForM being (Msc) we gather some more information concerning
these conditions:

(i) In the Roumieu case, by (4.1) we get that

∀ x ∈ I ∃ y ∈ I ∃ A ≥ 1 ∀ p ∈ N>0 ∀ z ≥ y :

µ(x)p ≤ A(M (y)
p )1/p ≤ A(M (z)

p )1/p ≤ Aµ(z)p . (4.3)

(4.3) yields that in the Roumieu case in (4.1) w.l.o.g. we have x ≤ y and
we can restrict to x, y ∈ N>0.
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(ii) In the Beurling case, (4.2) yields

∀ x ∈ I ∃ y ∈ I ∃ A ≥ 1 ∀ p ∈ N>0 ∀ x′ ≥ x :

µ(y)p ≤ A(M (x)
p )1/p ≤ A(M (x′)

p )1/p ≤ Aµ(x′)p . (4.4)

Here we are interested in small indices and so w.l.o.g. x = 1
n , n ∈ N>0.

The choice y > x in (4.2) would give (M
(y)
p )1/p ≤ µ

(y)
p ≤ A(M

(x)
p )1/p,

hence M (y)�M (x) ≤ M (y) and so M (y)≈M (x). But, as x → 0, this is
only possible if M is constant or if the Beurling assertion in Remark 2.2
applies, i.e. the matrix stabilizes at some sufficiently small index. In the
first case this means that each M (x) has (mg) (as shown before) and in
the second that all sequences with sufficiently small indices eventually have
(mg).

Summarizing, in (4.2) we can assume y ≤ x and restrict to y = 1
n1

for
some n1 ∈ N>0, n1 ≥ n.

(iii) By Stirling’s formula we see that (4.1) and (4.2) are preserved under the
mapping πs, see (3.1), i.e. (4.1) and/or (4.2) hold true simultaneously for

some/any matrix {(p!sM (x)
p )p∈N : x > 0}, s ∈ R. However, for s < 0 in

general the resulting matrix will be not (Msc) anymore.

In general (4.1) resp. (4.2) might be not preserved under R- resp. B-equiv-
alence. However, when we consider for given matricesM = {M (x) : x > 0} and
N = {N (y) : y > 0} the stronger relations

∀ x ∈ I ∃ y ∈ I ∃ A ≥ 1 ∀ p ∈ N : µ(x)p ≤ Aν(y)p ,

resp.

∀ x ∈ I ∃ y ∈ I ∃ A ≥ 1 ∀ p ∈ N : µ(y)p ≤ Aν(x)p ,

and if we denote the corresponding equivalence relation by {∼=} resp. (∼=), then
it is immediate to see that (4.1) is preserved under {∼=} and (4.2) under (∼=):
For the Roumieu case we get

∀ x ∈ I ∃ y ∈ I ∃ z ∈ I ∃ z1 ∈ I ∃ A,B,C ≥ 1 ∀ p ∈ N>0 :

ν(x)p ≤ Bµ(y)p ≤ AB(M (z)
p )1/p ≤ ABC(N (z1)

p )1/p,

and the Beurling case is similar.

Note:
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(∗) Even if we can choose x = y in (4.1) resp. (4.2), which amounts to the
fact that each sequence has (mg) (recall Theorem 3.1), then in the general
(non-constant) case it is not clear that automatically a weight matrix N
which is R- resp. B-equivalent to M has (4.1) resp. (4.2). (In general, N
will have (M{mg}) resp. (M(mg)).)

(∗) If M = {M}, then there is no difference between {∼=} resp. (∼=) and R-
resp. B-equivalence, i.e. equivalence: (4.1) and (4.2) are then precisely
(1.1) for M ∈ LC and so equivalent to (mg) which is preserved under ≈.
So each N ∈ LC satisfying N≈M has (mg) and so (1.1) too (see also [7,
Prop. 2.7, Rem. 2.8]).

Next we show that by using these conditions we can prove Theorem 3.7
without involving the technical auxiliary matrices M̃ and Mmg.

Proposition 4.2. Let M = {M (x) : x ∈ I} be (Msc). Then we get:

(i) If M has in addition (4.1), then all Roumieu type assertions (IR)− (VR)
in Propositions 3.2 and 3.3 are equivalent.

(ii) If M has in addition (4.2), then all Beurling type assertions (IB)− (VB)
in Propositions 3.2 and 3.3 are equivalent.

Note that this result is slightly stronger than Theorem 3.7 (and Corollary
3.8) since there we get that (IR)−(VR) and/or (IB)−(VB) are satisfied simulta-
neously, which is sufficient knowledge for applications, however the equivalence
of all five conditions of the particular type has not been shown since the im-
plications (IIR) ⇒ (IVR) and (IIB) ⇒ (IVB) have not been verified for M
directly.

Proof. We only consider the Roumieu case in detail: When M is satisfying
(IIR), then by combining this with (4.1) and the fact that each sequence is
normalized we get:

∀ x ∈ I ∃ y, z ∈ I ∃ A,C ≥ 1 ∀ p ∈ N>0 :

µ
(x)
2p ≤ A(M

(y)
2p )1/(2p) ≤ AC(M (z)

p )1/p ≤ ACµ(z)p .

Hence (IVR) is verified (the case p = 0 yields µ
(x)
0 = 1 = µ

(y)
0 for any indices

x, y ∈ I). QED

Remark 4.3. Let M = {M (x) : x ∈ I} be (Msc). By inspecting the proof of
[15, Appendix B, (2) ⇔ (4)] and [18, Lemma 5.3 (4) ⇒ (3)] we see that the
quotient/root comparison properties of the particular type is related to (IIR)
resp. (IIB) as follows:
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(i) If M has (4.1), then by applying log-convexity for M (x) we can estimate
by

M
(x)
2p

M
(x)
p

= µ
(x)
p+1 · · ·µ

(x)
2p ≤ (µ

(x)
2p )p ≤ Ap(M (y)

2p )1/2,

consequently M satisfies

∀ x ∈ I ∃ y ∈ I ∃ A ≥ 1 ∀ p ∈ N :
M

(x)
2p

(M
(y)
2p )1/2

≤ ApM (x)
p .

(ii) If M has (IIR), then

(µ(x)p )p ≤ µ(x)p+1 · · ·µ
(x)
2p =

M
(x)
2p

M
(x)
p

≤ A2p (M
(y)
p )2

M
(x)
p

,

consequently M satisfies

∀ x ∈ I ∃ y ∈ I ∃ A ≥ 1 ∀ p ∈ N>0 : µ(x)p ≤ A

(
(M

(y)
p )2

M
(x)
p

)1/p

.

The statements for the Beurling case are analogous.

4.2 Weight matrices associated with associated weight func-
tions

We are interested now in studying the situation when the matrix is associated
with a weight function ω. Recall that in this case by Corollary 3.8 all assertions
listed in Propositions 3.2 and 3.3 hold true forMω and so, ifMω has in addition
(4.1) resp. (4.2) then we can apply Proposition 4.2. Recall that by the convexity
and increasing properties of ϕ∗ω we even have ϑ(x) ≤ ϑ(y) for x ≤ y, see [20,
Sect. 2.5].

As a special but interesting and concrete case we focus now on ω ≡ ωM ,
M ∈ LC.

First we characterize (4.1) and (4.2) forMωM in terms of a growth property
for M . More precisely we prove the following result.

Proposition 4.4. Let M ∈ LC be given and let MωM = {M (l) : l > 0} be the
matrix associated with ωM . Then the following are equivalent:

(aR) MωM satisfies

∃ A ≥ 1 ∃ c ≥ 1 ∀ x ∈ N>0 ∀ p ∈ N>0 : µ(x)p ≤ A(M (cx)
p )1/p. (4.5)
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(bR) MωM has the quotient/root comparison property of Roumieu type (4.1).

(aB) MωM satisfies

∃ c ≥ 1 ∀ x ∈ N>0 ∃ A ≥ 1 ∀ p ∈ N>0 : µ(1/(cx))p ≤ A(M (1/x)
p )1/p. (4.6)

(bB) MωM has the quotient/root comparison property of Beurling type (4.2).

(c) M satisfies

∃ d ∈ N>0 ∃ A ≥ 1 ∀ p ∈ N>0 : µp ≤ A(Mdp)
1/(dp). (4.7)

Conclusion: By combining this result with Corollary 3.8 we get that the
matrix MωM satisfies all matrix-type-generalizations of the assertions listed in
Theorem 3.1 (for both types) simultaneously if and only if M satisfies (4.7).

Note that:

(i) The mapping d 7→ (Mdp)
1/(dp) is nondecreasing for all p ∈ N>0 arbitrary

but fixed. So, if (4.7) is valid for some d0, then for all d ≥ d0 as well.

(ii) By Stirling’s formula, (4.7) is preserved under the mapping πs, s ∈ R, see
(3.1), by only changing the constant A but with the same choice for d.
However, when s < 0 then in general one might lose log-convexity for the
resulting sequence and also (p!sMp)

1/p → +∞ as p→ +∞ might fail.

(iii) By (i) and (ii) in Remark 4.1, in (4.1) we can restrict ourselves w.l.o.g.
to x, y ∈ N>0 with x ≤ y, whereas in (4.2) to x = 1/n and y = 1/n1 with
n, n1 ∈ N>0 and n1 ≥ n.

Proof. (aR)⇒ (bR) This is clear since in (4.5) both A and c are not depending
on given index x and by taking into account comment (iii) before.

(bR) ⇒ (c) By assumption MωM has (4.1) and by choosing x = 1 there we
get

∃ y ∈ N>0 ∃ A ≥ 1 ∀ p ∈ N>0 :

µ(1)p = µp ≤ A(M (y)
p )1/p = A(M (1)

yp )1/(yp) = A(Myp)
1/(yp),

where we have used (2.12) and (2.11). Thus (4.7) is shown with A = A and
d := y.

(c)⇒ (aR) First we show the following:

∀ x ∈ N>0 ∀ p ∈ N : µ(x)p ≤ µxp. (4.8)
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If p = 0, then we have the equality µ
(x)
0 = 1 = µ0. For all p, x ∈ N>0, by using

again (2.12) and (2.11), we get that

µ(x)p :=
M

(x)
p

M
(x)
p−1

=
(M

(1)
xp )1/x

(M
(1)
xp−x)1/x

=

(
Mxp

Mxp−x

)1/x

= (µxp−x+1 · · ·µxp)1/x ≤ (µxp)
x/x = µxp, (4.9)

where the last estimate holds by log-convexity for M . Combining (4.8) with
(4.7) it follows that

∃ A ≥ 1 ∃ d ∈ N>0 ∀ x, p ∈ N>0 :

µ(x)p ≤ µxp ≤ A(Mdxp)
1/(dxp) = A(M

(1)
dxp)

1/(dxp) = A(M (dx)
p )1/p,

hence (4.5) is verified with A = A and c := d.

Note that both A and d are only depending on given sequence M but not
on the index x.

(aB)⇒ (bB) This is clear since c is not depending on x (and by taking into
account again comment (iii)).

(bB) ⇒ (c) First we are showing the following formula which is ”dual” to
(4.8):

∀ y ∈ N>0 ∀ p ∈ N : µ(1/y)yp ≥ µ(1)p = µp. (4.10)

For y = 1 we trivially get equality for all p ∈ N and also for p = 0 because then

µ
(1/y)
0 = 1 = µ0. So let y ≥ 2 and p ≥ 1, then by definition, the log-convexity

for M (1/y) and again by (2.12) and (2.11) we obtain

µ(1/y)yp =
M

(1/y)
yp

M
(1/y)
yp−1

=
M

(1/y)
yp

M
(1/y)
yp−y

M
(1/y)
yp−2

M
(1/y)
yp−1

M
(1/y)
yp−3

M
(1/y)
yp−2

· · ·
M

(1/y)
yp−y

M
(1/y)
yp−y+1

=
M

(1/y)
yp

M
(1/y)
yp−y

1

µ
(1/y)
yp−1

1

µ
(1/y)
yp−2

· · · 1

µ
(1/y)
yp−y+1

≥ M
(1/y)
yp

M
(1/y)
yp−y

(
1

µ
(1/y)
yp

)y−1

=

(
M

(1)
p

M
(1)
p−1

)y (
1

µ
(1/y)
yp

)y−1
= (µp)

y

(
1

µ
(1/y)
yp

)y−1
.

We choose x = 1 in (4.2) and get

∃ y ∈ N>0 ∃ A ≥ 1 ∀ p ∈ N>0 : (Mp)
1/p = (M (1)

p )1/p ≥ 1

A
µ(1/y)p ,
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hence by taking into account (4.10)

∃ y ∈ N>0 ∃ A ≥ 1 ∀ p ∈ N>0 : (Myp)
1/(yp) ≥ 1

A
µ(1/y)yp ≥ 1

A
µp.

Consequently, we have verified (4.7) with d := y and A = A.

(c)⇒ (aB) Similarly, as in (4.8) we get

∀ x ∈ N>0 ∀ c ∈ N>0 ∀ p ∈ N>0 : µ(x)p ≥ µ
(x/c)
c(p−1), (4.11)

because

(µ(x)p )c =

(
M

(x)
p

M
(x)
p−1

)c
=

M
(x/c)
cp

M
(x/c)
c(p−1)

= µ
(x/c)
cp−c+1 · · ·µ

(x/c)
cp ≥

(
µ
(x/c)
c(p−1)

)c
.

By applying (4.11) to x = 1 and by involving (4.7) we can find A ≥ 1 and
d ∈ N>0 such that for any x, c, p ∈ N>0 we get the following estimation:

µ
(1/c)
c(p−1) ≤ µ

(1)
p = µp ≤ A(Mdp)

1/(dp) = A(M
(1)
dp )1/(dp) = A(M

(1/x)
xdp )1/(xdp).

So let x ∈ N>0 be arbitrary but from now on fixed. Then set c = 2xd and so for
all q ∈ N>0, q ≥ 2, we have

(M
(1/x)
xdq )1/(xdq) ≥ 1

A
µ
(1/(2xd))
2xd(q−1) ≥

1

A
µ
(1/(2xd))
xdq ,

which holds by log-convexity for M1/(2xd) and since 2xd(q − 1) ≥ xdq ⇔ q ≥ 2.
This proves (4.6) for the choice c := 2d, A = A and all p ∈ N>0 such that
p = xdq for some q ∈ N>0, q ≥ 2. Next let xdq < p < xd(q + 1), q ≥ 2, and

since p 7→ (M
(l)
p )1/p is nondecreasing for each l > 0 we estimate as follows:

(M (1/x)
p )1/p ≥ (M

(1/x)
xdq )1/(xdq) ≥ 1

A
µ
(1/(2xd))
xdq ≥ 1

AB
µ
(1/(8xd))
2xdq

≥ 1

AB
µ
(1/(8xd))
xd(q+1) ≥

1

AB
µ(1/(8xd))p . (4.12)

Apart from the log-convexity for M (1/(8xd)) and 2xdq ≥ xd(q + 1) ⇔ q ≥ 1 we
have used (3.4) and (3.6) and so the constant B is here also depending on given
index x. By increasing the constant B (if necessary) we finally get (4.12) also for
1 ≤ p < 2xd. Thus (4.6) is verified when choosing the constant AB (depending
on given x) and for c we set c := 8d not depending on the index x. QED

Remark 4.5. Let M ∈ LC, we give now several comments on the new char-
acterizing condition (4.7). Since p 7→ (Mp)

1/p is nondecreasing, (4.7) can be
viewed as an almost/generalized moderate growth condition for given M .
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(i) First, we recall the following equivalences (by combining Theorem 3.1,
Lemma 2.1 and (iii) in Section 2.5):

(∗) (4.7) holds with d = 1, i.e. (1.1) is valid,

(∗) Theorem 3.1 applies to M ,

(∗) Theorem 3.1 applies to some/each sequence M (x),

(∗) M (x)≈M (y) for all x, y > 0, i.e.MωM is constant (in particular, each
M (x) is equivalent to M ≡M (1)).

(ii) (4.7) for d ≥ 2 can be satisfied for very fast increasing sequences (in par-
ticular when (mg) is violated). For this let q > 1 and consider Mp := qp

n

for n ∈ N≥2. Thus for n = 2 we obtain the so-called q-Gevrey sequences.
Then for p ∈ N>0 one has

µp = qp
n−(p−1)n = qp

n−
∑n

k=0 (nk)p
k(−1)n−k

= q−
∑n−1

k=0 (nk)p
k(−1)n−k

,

and so µp = qnp
n−1+O(pn−2), whereas (Mdp)

1/(dp) = q(dp)
n−1

. Hence (4.7)
follows, e.g. for n = 2 we get µp = q2p−1 ≤ (Mdp)

1/(dp) = qdp for all p ∈ N
by choosing some d ≥ 2.

Note that none of such sequences has (mg), for n ≥ 3 even derivation
closedness is violated since µp ≤ Dp for all p ∈ N resp. log(Mp) = O(p2)
as p → ∞ fails for all such values. Those sequences are arising in the
weight matrices of the weights ωs(t) := max{0, log(t)s}, s > 1, see [20,
Sect. 5.5] and the references therein.

(iii) But even for much faster growing sequences we can have (4.7) with d = 2:
Let

Mp := ee
p
, p ≥ 1, M0 := 1,

then (Mdp)
1/(dp) = ee

dp/(dp) for all d, p ≥ 1 and µp = ee
p−ep−1

= ee
p−1(e−1)

for p ≥ 2 and µ1 = M1 = ee. Hence for all p ≥ 2

µp ≤ A(Mdp)
1/(dp) ⇔ ep−1(e− 1) ≤ log(A) +

edp

dp

⇔ dp(e−1(e− 1)− log(A)/ep) = dp(1− e−1 − log(A)/ep) ≤ ep(d−1),

which holds true for all p ≥ 2 even with d = 2 by taking any A ≥ 1 (even
the choice A = 1 is sufficient). For p = 1 we have with d = 2 that

ee = µ1 ≤ (M2)
1/2 = ee

2/2.



24 G. Schindl

Summarizing, the new characterizing condition (4.7) motivates the following
definition:

For given M ∈ LC (or even assume M ∈ RN
>0) let the moderate growth index

g(M) be defined by

g(M) := min{d ∈ N>0 : (4.7) holds true},

and let us set g(M) := +∞ if (4.7) is violated. So

(i) g(M) = 1 holds if and only if M has (mg).

(ii) g(M) < +∞ if and only if MωM has (4.1) and/or (4.2), i.e. if and only
if the matrix MωM satisfies all generalizations of the assertions listed in
Theorem 3.1 for both types.

(iii) Note that this index is preserved under the mapping πs, s ∈ R.

Next we study how (4.7) is transformed under the equivalence relation be-
tween weight sequences.

Lemma 4.6. Let M,N ∈ RN
>0 be given with M0 = N0 = 1 and assume that

M≈N . Moreover assume that M has (4.7), then N has to satisfy

∃ d ∈ N>0 ∃ A,C ≥ 1 ∀ p ∈ N>0 :

νp ≤ AC2p(Ndp)
1/(dp) ⇔ Np ≤ AC2p(Ndp)

1/(dp)Np−1, (4.13)

where d and A are the parameters arising in (4.7), i.e. only depending on given
M , and C is coming from the equivalence ≈, hence also depending on N .

Proof. The equivalence between M and N yields

∃ C ≥ 1 ∀ p ∈ N>0 : µp =
Mp

Mp−1
≥ Np

Cp
1

Cp−1Np−1
=

1

C2p−1 νp.

Consequently we get 1
C2p−1 νp ≤ µp ≤ A(Mdp)

1/(dp) ≤ AC(Ndp)
1/(dp) and so

(4.13) is shown. QED

Note that:

(i) It is straightforward to see that (4.13) is stable under equivalence of weight
sequences and it is also preserved under the mapping πs, s ∈ R (uniformly
with the same choice for d).

(ii) If N ∈ LC, then (dc) does immediately imply (4.13).

(iii) However, the converse implication fails in general: For this consider the
sequence in (iii) in Remark 4.5, so (4.13) follows with d = 2 and A = C =
1, but (dc) fails.
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4.3 Weight matrices associated with general weight functions

We turn now to the weight function situation and the matrix Mω.

Proposition 4.7. Let ω ∈ W0 be given and let Mω = {W (l) : l > 0} be the
associated weight matrix.

Then the following are equivalent:

(i) Mω satisfies the quotient/root comparison property of Roumieu type (4.1)
and/or of Beurling type (4.2),

(ii) we have

∃ A ≥ 1 ∃ c ≥ 1 ∀ x ∈ N>0 ∀ p ∈ N>0 : ϑ(x)p ≤ A(W (cx)
p )1/p,

(iii) we have

∃ c ≥ 1 ∀ x ∈ N>0 ∃ A ≥ 1 ∀ p ∈ N>0 : ϑ(1/(cx))p ≤ A(W (1/x)
p )1/p,

(iv) we have

∃ d ∈ N>0 ∃ A ≥ 1 ∀ p ∈ N>0 : ϑ(1)p ≤ A(W
(1)
dp )1/(dp),

(v) the matrixMω
W (1)

associated with the weight ωW (1) ∈ W0 satisfies the quo-

tient/root comparison property of Roumieu type (4.1) and/or of Beurling
type (4.2).

Conclusion: The equivalence between (i) and (v) yields that the information
about the desired properties (4.1) and/or (4.2) for Mω is already encoded in a
matrix associated with an associated weight function, i.e. in the single sequence
W (1).

Proof. (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) This follows by a word-for-word repetition
of the proof given in Proposition 4.4 by using M (x) ≡ W (x) and µ(x) ≡ ϑ(x),
see Section 2.5. (We only have to skip the additional information W (1) ≡ M ,
ϑ(1) ≡ µ, see (2.11).)

(iv) ⇔ (v) This follows directly by applying Proposition 4.4 to W (1) ≡
M . QED
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4.4 A counter-example

We are now constructing a (counter)-example for which the matrixMωM as-
sociated with ωM violates both (4.1) and (4.2). So, in the general (non-constant)
case, the generalization of Theorem 3.1 ([20, Lemma 2.2]) to the mixed setting
fails.

Theorem 4.8. There exist N ∈ LC such that N violates (4.7) (i.e. g(N) =
+∞).

By Proposition 4.4 this is equivalent to the fact that the matrix MωN asso-
ciated with ωN does not have (4.1) and/or (4.2).

In particular, N violates (mg) equivalently MωN is non-constant, see (i) in
Remark 4.5.

In addition, we can obtain some more properties:

(a) N can be chosen to be strong non-quasianalytic, i.e. N is satisfying (β1).
In this case, ωN has (2.6) (strong non-quasianalyticity condition) as well,
see [11, Proposition 4.4], which means that ωN is even a strong weight in
the notion of [2].

On the other hand N can also be chosen to be quasianalytic, i.e. N is
satisfying ∑

p≥1

1

νp
= +∞.

(b) N can be chosen such that even (4.13) is violated.

Proof. We start with the following construction. Let N be given by

Np := exp(f(p)), f : [0,+∞)→ [0,+∞), (4.14)

with f being the convex (continuous) function defined as follows: The graph of
f is consisting of all straight lines connecting the points {(aj , f(aj)) : j ≥ 1}
with (aj)j≥1 being a sequence in N. The slope of the (straight) line connecting
the points (aj , f(aj)) and (aj+1, f(aj+1)) is denoted by bj ∈ R>0. By using
this construction in order to get N ∈ LC we require that j 7→ bj is (strictly)
increasing and such that limj→∞ bj = +∞. The strategy is to construct this
graph step-wise subject to growth restrictions on (aj)j and (bj)j . So, when given
the values aj , f(aj), aj+1 and bj , then we set f(aj+1) := bj(aj+1 − aj) + f(aj)
which determines automatically f(p) for aj + 1 ≤ p ≤ aj+1 − 1.

For the sequence (aj)j≥1 let us assume

a1 := 0, j(aj + 1) ≤ aj+1, ∀ j ≥ 1. (4.15)
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First we set

f(a1) = f(0) := 0,

hence N0 = 1 follows, and then

b1 > 0 arbitrary, bj > bj−1, bj ≥
j2(aj + 1) + f(aj)

aj
, j ≥ 2. (4.16)

This choice for j ≥ 2 is possible since the value f(aj) is only depending on given
points a1, . . . , aj and slopes b1, . . . , bj−1 and so limj→∞ bj = +∞ follows, too.
Thus N ∈ LC is verified.

N satisfies (4.7) if and only if

∃ d ∈ N>0 ∃ A ≥ 1 ∀ p ∈ N>0 : dp(f(p)− f(p− 1)− log(A)) ≤ f(dp).

We prove that this condition is impossible.
Let now d ∈ N>0, d ≥ 2, and A ≥ 1 be given, arbitrary (large) but from now

on fixed. Then for all l ≥ d ≥ 2 the choice p = al + 1 yields f(p)− f(p− 1) = bl
and

f(dp) = f(al) + bl(dp− al) = f(al) + bl(d(al + 1)− al),

because d(al + 1) ≤ l(al + 1) ≤ al+1 by the choice of (al)l, see (4.15).
Thus

d(al + 1)(bl − log(A)) ≤ f(al) + bl(d(al + 1)− al)
⇔ d(al + 1) log(A) ≥ −f(al) + albl

⇔ d(al + 1) log(A) + f(al)

al
≥ bl,

a contradiction as l→∞ by the choices of the numbers bl, see (4.16).

However, it is not clear that N has (a) and/or (b).
In order to get the strong non-quasianalyticity part of (a) we recall the

following technique, see also [9, Example 7.10] where a similar construction for
N has been considered:

Since N is log-convex we clearly get lim infp→∞
νQp

νp
≥ 1 for any Q ∈ N>0.

But note that (β1), i.e. lim infp→∞
νQp

νp
> Q and even lim infp→∞

νQp

νp
> 1 is

violated for any Q ∈ N≥2 by the requirement j(aj + 1) ≤ aj+1 for all j ≥ 1: We
have νp = exp(bi) for all p with aj ≤ p− 1 < p ≤ aj+1.

However, when considering N̂ := (p!2Np)p∈N = π2(N) and so multiplying N
(or any log-convex sequence) point-wise with p!2, then one can always ensure
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(β1) because

∀ Q ∈ N≥2 : lim inf
p→∞

ν̂Qp
ν̂p

= lim inf
p→∞

Q2 νQp
νp
≥ Q2 > Q.

Thus N̂ has (β1) and, as pointed out above, N̂ also violates (4.7). Consequently,
by Proposition 4.4 the matrix associated with ω

N̂
also violates both (4.1) and

(4.2).

In order to guarantee the quasianalyticity part of (a) it is enough to assume
that the sequence (aj)j satisfies in addition

∀ j ≥ 1 : aj+1 ≥
bj
j
− aj . (4.17)

This is possible since by (4.16) the slope bj is only depending on b1, . . . , bj−1
and on a1, . . . , aj . Because νp = bj for all p ∈ N with aj + 1 ≤ p ≤ aj+1, j ≥ 1,
by (4.17) we get ∑

p≥1

1

νp
=
∑
j≥1

aj+1 − aj
bj

≥
∑
j≥1

1

j
= +∞.

Finally we turn to (b) and the aim is to modify slightly the construction of
N in order to violate not only (4.7) but also (4.13). For this we assume that the
sequence of slopes (bj)j≥1 satisfies

bj ≥
f(aj) + j2(aj + 1) + 2j2(aj + 1)2

aj
, ∀ j ≥ 2, (4.18)

which is stronger than (4.16) above.

Note that N has (4.13) if ∃ d ∈ N≥2 ∃ A,C ≥ 1 ∀ p ∈ N>0 :

νp ≤ AC2p(Ndp)
1/(dp) ⇔ dp(f(p)− f(p− 1)− log(A)− 2p log(C)) ≤ f(dp).

Let now d ∈ N>0, A,C ≥ 1 be given, arbitrary (large) but from now on
fixed. Then for all l ≥ d ≥ 2 the choice p = al + 1 yields

(f(p)−f(p−1)−log(A)−2p log(C))dp = (bl−log(A)−2(al+1) log(C))d(al+1),

whereas f(dp) = f(al) + bl((al + 1)d− al) (recall the choice in (4.15)). Then

(bl − log(A)− 2(al + 1) log(C))d(al + 1) ≤ f(al) + bl((al + 1)d− al)
⇔ − log(A)d(al + 1)− 2(al + 1)2d log(C) ≤ f(al)− albl

⇔ bl ≤
f(al) + log(A)d(al + 1) + 2 log(C)d(al + 1)2

al
,
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which leads to a contradiction as l →∞ by the modified choice of bl in (4.18).
Thus in this case even (4.13) is violated for N .

Of course, a combination of (a) and (b) is possible when considering for
the constructed sequence in (b) again N̂ := (p!2Np)p∈N, since again N̂ has
to violate (4.13) too, resp. by considering for (aj)j again the modified choice
(4.17). QED

Theorem 4.8 yields the following consequences when considering the matrix
MωN .

(i) Assumptions (4.1) and (4.2) are in general not guaranteed for weight ma-
trices Mω associated with Braun-Meise-Taylor weight functions ω and
hence have to be assumed in addition when required in proofs and argu-
ments, see e.g. in [20] and the additional assumptions [21, Cor. 9, (28),
(29)], (28) corresponds to (4.1) and (29) to (4.2).

(ii) However, in the weight function setting we point out that one may avoid
this (technical) problem when using different arguments: For this one
should compare [21, Corollary 9] with [21, Thm. 11] and the more general
result [5, Thm. 4.8].

(iii) Based on this observation a conjecture of the author has been that for
weight functions that are concave (resp. equivalent to a concave weight),
the associated matrix does always have (4.1) and (4.2). In particular this
fact should then be true for strong weights since each strong weight is
equivalent to a concave one by [16, Prop. 1.3]. However, (a) in Theorem
4.8 shows that this conjecture is not true.

(iv) (a) in this result also shows that both requirements (4.1) and (4.2) are
independent of the notion of (non)quasianalyticity for weight sequences,
associated weight functions and their associated matrices, see [11, Lemma
4.1] and [24, Sect. 4, Cor. 4.8].

We close by summarizing some more facts for N ∈ LC satisfying (a) and/or
(b) in Theorem 4.8.

Lemma 4.9. Let N ∈ LC be a sequence as constructed in Theorem 4.8. Then
we get:

(i) If N is in addition strong non-quasianalytic, then for any L ∈ LC satis-
fying L≈N we get ωN∼ωL and the matrices MωN and MωL are both R-
and B-equivalent.
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(ii) If N has in addition (b), then even for each L ∈ LC being equivalent to
N the matrix MωL associated with the weight ωL also violates both (4.1)
and (4.2).

Proof. (i) First, L≈N and the characterizations obtained in [17] yield (β1) for
L as well. Then [11, Proposition 4.4] applied to N and L implies that both
weights ωM and ωL are strong and it is known that each strong weight function
is equivalent to a concave weight, more precisely to κω(y) :=

∫ +∞
1

ω(yt)
t2

dt, see
[16, Prop. 1.3]. In particular both weights are having (ω1), too. So [9, Remark
3.3] yields ωN∼ωL, see also [24, Lemma 3.18 (1)].

The fact that MωN and MωL are both R- and B-equivalent follows from
ωN∼ωL and [19, Lemma 5.16].

(ii) This follows by Lemma 4.6 and Proposition 4.4. QED

5 On the generalized strong non-quasianalyticity con-
dition

By exploiting the formulas for the quotient sequences in the the proof of
Proposition 4.4 we obtain the following statement.

Proposition 5.1. Let ω ∈ W0 be given and let Mω = {W (l) : l > 0} be the
associated weight matrix. For any x > 0 and any given β ≥ 0 (fixed) we consider
the following growth property:

∃ Q ∈ N>0 : lim inf
p→+∞

ϑ
(x)
Qp

ϑ
(x)
p

> Qβ, (5.1)

i.e. [8, Thm. 3.11 (v)] for W (x). In particular, the choice β = 0 yields (2.1)
(condition (β3)) and β = 1 yields (β1) for W (x). Then we get:

(I) For any β ≥ 0 the following are equivalent:

(i) There exists x > 0 such that W (x) satisfies (5.1).

(ii) There exists x > 0 such that for all c ∈ N>0 the sequences W (cx)

satisfy (5.1) (uniformly with the same choice for Q).

(II) Moreover, the following are equivalent:

(i) There exists x > 0 such that W (x) satisfies (5.1) with β = 0 (i.e.
(2.1), (β3)).
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(ii) There exists x > 0 such that for all c ∈ N>0 the sequences W (cx) and
W (x/c) satisfy (5.1) with β = 0.

Proof. The implications (I)(ii)⇒ (i) and (II)(ii)⇒ (i) are trivial (take c = 1).

(I)(i)⇒ (ii) Let x > 0 be such that W (x) has (5.1) with some Q ∈ N>0 (in
fact one has to take Q ≥ 2). Then for all c ∈ N>0 and p ∈ N>0 we obtain (see
(4.9))

ϑ(cx)p =
W

(cx)
p

W
(cx)
p−1

=

 W
(x)
cp

W
(x)
c(p−1)

1/c

= (ϑ
(x)
c(p−1)+1 · · ·ϑ

(x)
cp )1/c,

and for p = 0 we have clearly the equality 1 = 1.

By assumption lim infp→∞
ϑ
(x)
Qp

ϑ
(y)
p

> Qβ and by the above identity

ϑ
(cx)
Qp

ϑ
(cx)
p

=

ϑ(x)Qcp−c+1 · · ·ϑ
(x)
Qcp

ϑ
(x)
cp−c+1 · · ·ϑ

(x)
cp

1/c

.

For all 1 ≤ l ≤ c we have

Qcp− c+ l ≥ Q(cp− c+ l)⇔ Qcp− c+ l ≥ Qcp−Qc+Ql⇔ Q(c− l) ≥ (c− l),

and so by this and log-convexity for W (x) we obtain

lim inf
p→∞

ϑ
(cx)
Qp

ϑ
(cx)
p

≥
c∏
i=1

lim inf
p→∞

ϑ
(x)
Qcp−c+i

ϑ
(x)
cp−c+i

1/c

≥
c∏
i=1

lim inf
p→∞

ϑ
(x)
Q(cp−c+i)

ϑ
(x)
cp−c+i

1/c

> Qβ,

verifying (5.1) for W (cx) with the same Q.

(II)(i) ⇒ (ii) The proof for W (cx) is a particular case of (I)(i) ⇒ (ii) and
we have only to deal with W (x/c).

By inspecting the proof of (4.10) we see that the following equality holds
true:

ϑ(x/c)cp =
W

(x/c)
cp

W
(x/c)
cp−1

=
W

(x/c)
cp

W
(x/c)
cp−c

1

ϑ
(x/c)
cp−1

1

ϑ
(x/c)
cp−2

· · · 1

ϑ
(x/c)
cp−c+1

=

(
W

(x)
p

W
(x)
p−1

)c
1

ϑ
(x/c)
cp−1

1

ϑ
(x/c)
cp−2

· · · 1

ϑ
(x/c)
cp−c+1

. (5.2)
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This implies

∀ x > 0 ∀ c ∈ N>0 ∀ p ∈ N>0 : ϑ(x)p = (ϑ(x/c)cp ϑ
(x/c)
cp−1 · · ·ϑ

(x/c)
cp−c+1)

1/c,

and so by involving the log-convexity for W (x/c) and since Qcp ≤ 2Qc(p− 1)⇔
2 ≤ p we can estimate as follows (for any x > 0, c,Q ∈ N>0 and p ≥ 2):

ϑ
(x)
Qp

ϑ
(x)
p

=

ϑ(x/c)Qcp ϑ
(x/c)
Qcp−1 · · ·ϑ

(x/c)
Qcp−c+1

ϑ
(x/c)
cp ϑ

(x/c)
cp−1 · · ·ϑ

(x/c)
cp−c+1

1/c

≤
ϑ
(x/c)
Qcp

ϑ
(x/c)
cp−c+1

≤
ϑ
(x/c)
2Qc(p−1)

ϑ
(x/c)
c(p−1)

. (5.3)

Since by assumption lim infp→+∞
ϑ
(x)
Qp

ϑ
(x)
p

> 1 we have verified (5.1) with β = 0

for W (x/c) when choosing Q′ := 2Q and restricting in the lim inf to all q ∈ N
satisfying q = c(p− 1) for some p ≥ 2.

If now c(p − 1) < q < cp for some p ≥ 2, then by log-convexity for W (x/c)

and (5.3) applied to p′ := 2(p− 1) + 1 = 2p− 1 we get

ϑ
(x)
Q(2p−1)

ϑ
(x)
2p−1

≤
ϑ
(x/c)
4Qc(p−1)

ϑ
(x/c)
2c(p−1)

≤
ϑ
(x/c)
4Qc(p−1)

ϑ
(x/c)
cp

≤
ϑ
(x/c)
4Qq

ϑ
(x/c)
q

,

since 2c(p− 1) ≥ cp⇔ p ≥ 2. Altogether, we have shown that

lim inf
p→+∞

ϑ
(x/c)
4Qp

ϑ
(x/c)
p

> 1,

i.e. (5.1) for W (x/c) with β = 0 when taking Q′ := 4Q. QED

Remark 5.2. Concerning this result we point out:

(i) Proposition 5.1 can be applied to ω ≡ ωM provided M ≡ M (1) ∈ LC is
satisfying (5.1).

(ii) Proposition 5.1 gives a partial answer to the following conjecture of the
author: Growth and regularity properties hold for some W (x) if and only
if for any W (x), analogously as it is known for (mg), see (iii) in Sect. 2.5.
More precisely, we expect that W (x) has (β1) or (2.1) for some x > 0 if
and only if each W (x) ∈Mω does so.

However, (I) in Proposition 5.1 is sufficient for the Roumieu-case since the
matrix {W (cx) : c ∈ N>0} is R-equivalent toMω (when x > 0 being fixed).
Analogously, (II) is also sufficient for the Beurling case since {W (x/c) :
c ∈ N>0} is B-equivalent to Mω (when x > 0 being fixed).
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(iii) In this context recall that all W (x) have (β1) for the weights ωs(t) :=
max{0, log(t)s}, s > 1, see [20, Prop. 5.14], and each ωs has (2.6). Note
that (β1) for M implies that ωM has (2.6), see [11, Prop. 4.4].

(iv) Finally, concerning (II) in Proposition 5.1 we recall:

By (2.10) we get ω∼ωW (l) for each l > 0. (5.1) for β = 0 and for W (l)

yields property (ω1) for ωW (l), see [3, Lemma 12, (2) ⇒ (4)]. Hence, if
some W (x) has (II)(i), then (ω1) follows for ω and for any ωW (l) since
this property is clearly preserved under ∼.

Note that the proof of (II)(i) ⇒ (ii) shows the following: Assume that
W (x) satisfies (5.1) for some β ≥ 0 with the choice Q. Then each W (x/c),
c ∈ N>0, has (5.1) with the uniform choice Q′ := 4Q for β′ := β(1 −
log(4)/ log(4Q)), hence 0 ≤ β′ ≤ β.

By combining this information we close with the following application: Let
M ∈ LC be given and satisfying

(I) (β1),

(II) (4.7),

(III) and finally
∃ A ≥ 1 ∀ p ∈ N : µp+1 ≤ Aµp. (5.4)

Note that (mg) ⇒ (5.4) ⇒ (dc) and in general each implication cannot be
reversed, see [6, Rem. 2.1.36, p. 78]. The so-called q-Gevrey sequences (qp

2
)p≥0,

q > 1, satisfy all these requirements.

Let us show that the matrix M′ωM
:= {M (c) : c ∈ N>0}, which is R-

equivalent to MωM , is ”admissible” in the notion of [20, Def. 4.6] (and so ωM
is an ”admissible” weight function).

First, by (4.9) it is immediate to see that each M (c) has (5.4) as well since by
iterating this property we get µcp+i ≤ Acµcp−c+i for all p, c ∈ N>0 and 1 ≤ i ≤ c
and so

µ
(c)
p+1 = (µcp+1 · · ·µcp+c)1/c ≤ (Acµcp−c+1 · · ·Acµcp)1/c = Acµ(c)p .

Then [20, Def. 4.6 (1), (5)] for M′ωM
hold by definition and Corollary 3.8,

whereas [20, Def. 4.6 (4)] follows by (II) and Proposition 4.4. The first part
of Proposition 5.1 applied to β = 1 and (I) yield that each M (c), c ∈ N>0,
has (β1) (i.e. is strongly non-quasianalytic). So M′ωM

consists only of strong

non-quasianalytic sequences and thus each M (c) is equivalent to its so-called
”descendant” S(c), see [20, Sect. 4.1]. Hence [20, Def. 4.6 (2)] is valid, too.



34 G. Schindl

Finally, [20, Def. 4.6 (3)] follows since as shown before each µ(c) has (5.4)
and since the equivalence between M (c) and its descendant S(c) even holds on
the level of the corresponding quotient sequences, see [20, Lemma 4.2 (1), (5)].

Summarizing we can apply [20, Cor. 5.5] as well as the characterizing result
[20, Thm. 5.12] to M′ωM

.
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