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1 Introduction

There are many different definitions of fractional derivatives and related
functional spaces: this paper focuses the analysis on some classical pointwise
defined notions of fractional derivatives connected to integral or convolution
operators.
First, we introduce refined bilateral definitions of such fractional derivatives and
describe their basic properties; then we provide a definition of related Sobolev
and BV spaces.
The basic idea connecting various pointwise classical definitions is the remark
that, if u is a smooth function, then its classical derivative u(n) of integer order
n ≥ 1 is the n-th iteration of the derivative, while the integral or primitive∫ x

0 u(t) dt, evaluated at x > 0, is the “antiderivative”, or derivative of order −1;
hence the “derivative of order −n” can be defined as the n-th iteration of the
antiderivative:

u(−n)(x) =

∫ x

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · · ·

∫ tn−1

0
u(tn) dtn .
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The iterated integral above actually is an n-dimensional integral over the n
dimensional simplex Σn

x =
{

(t1, t2, . . . , tn) : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ x
}

u(−n)(x) =

∫
Σnx

u(tn) dt1 dt2 . . . dtn

by changing the order of integration and denoting Σn−1
x−t the (n−1)-dimensional

simplex provided by the intersection of Σn
x and the hyperplane tn = t, one gets

u(−n)(x) =

∫ x

0
|Σn−1
x−t |u(t) dt =

∫ x

0

(x− t)n−1

(n− 1)!
u(t) dt . (1.1)

By applying (1.1) with u(1) := u′ in place of u, one gets for integers n ≥ 1

u(−n+1)(x) =

∫ x

0

(x− t)n−1

(n− 1)!
u′(t) dt . (1.2)

By exploiting the identity Γ(n) = (n − 1)! and the fact that Euler Gamma
function Γ is defined for every z ∈ C with the exception of 0 and negative
integers, we can perform the substitution s = −n + 1 and allow s ∈ R in
order to extend relationship (1.2) to primitives of noninteger order s ∈ [−1, 0]
and derivatives of noninteger order s ∈ (0, 1) for a function u ∈ C1: e.g. the
fractional derivatives of order s of u is expressed as follows

u(s)(x) =

∫ x

0

(x− t)−s

Γ(1− s)
u′(t) dt s ∈ R, s < 1 , s not integer. (1.3)

We emphasize that condition s < 1 entails convergence of the integral, which is
actually the convolution of two L1

loc(R) functions with support in [0,+∞).
Indeed (1.3) provides a hint for the extension of pointwise noninteger or frac-
tional derivative of order s with 0 < s < 1: actually (1.3) is known in the
literature as the (left) Caputo fractional derivative of order s ([5],[19]).
Another classical definition is the (left) Riemann-Liouville fractional derivative
of order s, whose definition, for functions in L1(a, b), is as follows

RLD
s
a+[u](x) =

1

Γ(1− s)
d

dx

∫ x

a

u(t)

(x− t)s
dt a < x < b. (1.4)

Riemann-Liouville and Caputo derivatives are closely related, indeed they fulfil

RLD
s
0+[u](x) = u(s)(x) +

u(0)

Γ(1− s)
x−s 0 < s < 1 . (1.5)
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In the opposite direction, by the same tools, we can extend (1.1) to every real
s > 0, in place of strictly positive integers n:

u(−s)(x) =

∫ x

0

(x− t)s−1

Γ(s)
u(t) dt s > 0 . (1.6)

Indeed (1.6) is known as the (left) Riemann-Liouville fractional integral of order
s of u ([3],[19]). Moreover the right-hand side of (1.6) is the convolution of the
trivial extension of u in R with t1−sH(t)/Γ(s), where H denotes the Heaviside
function.
Actually formulae (1.3), (1.4) and (1.6) can be set for every x in (a, b) without
any differentiability assumption on u, provided the right-hand side Lebesgue
integrals exists finite, namely: u ∈ L1(a, b) is a sufficient condition to achieve
(1.6) defined a.e. on (a, b); u′ ∈ L1 is a sufficient condition to achieve (1.3)
defined a.e. on (a, b);

∫ x
a u(t)(x− t)−sdt∈L1 is a sufficient condition to achieve

(1.4) defined a.e. on (a, b).

In this paper we study some properties of classical Riemann-Liouville left
and right fractional derivatives Ds

+, Ds
−, which are inspired by (1.4) and de-

fined for non integer order s ∈ (0, 1) (see Definition 2.2), moreover we introduce
“bilateral” notions Ds

e, D
s
o, respectively “even” and “odd” (see Definition 2.3)

mainly focusing on the distributional interpretation of their limit as s tends
either to 0 or to 1 (see Lemmas 2.3, 2.4, and Remark 2.1).
In addition to these bilateral fractional derivatives suitable “bilateral” fractional
integrals Ise , Iso are introduced by Definitions 3.1 and 3.2 in such a way that, up
to a normalization, they represent respectively the inverse operators of Ds

e and
Ds
o (see Lemma 2.5).

Eventually, we introduce the notions of fractional Sobolev spaces W s,1 and frac-
tional Bounded Variation spaces BV s, associated to these bilateral derivatives
(see Definitions 4.3 and 5.2). The space W s,1 turns out to be the natural space
for data of Abel integral equations in order to make such equations well posed
problems: the forthcoming paper [15] is focused on the basic properties of these
functional spaces and comparison with their non-bilateral counterpart (see [6],
[12], [13]). The spaces W s,1 and BV s are introduced with the aim of provid-
ing a suitable functional framework for fractional variational models in image
analysis (see [2], [4], [7], [8], [9], [10], [11],[20]), which are the object of another
forthcoming paper [16].

2 Bilateral fractional integral and derivatives

In the sequel (a, b) ⊂ R is a non empty (possibly unbounded) open in-
terval, u is a real function of one variable and 0 < s < 1. The support of
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a function u is denoted by sptu. The notation d/dx stands for the classical
pointwise derivative, D denotes the distributional derivative with respect to
the variable x, for every open set A ⊂ R we denote by AC(A) the space of
absolutely continuous functions in A ([18]), which coincides with the Gagliardo-
Sobolev space W 1,1

G (A) = {u ∈ L1(A) | Du ∈ L1(A)}. Moreover, we set

ACloc(A) = W 1,1
G,loc(A) = {u ∈ L1

loc(A) | Du ∈ L1
loc(A)} and BV (A) = {u ∈

L1(A) | Du∈M(A)}, where M(A) are the bounded measures on A.
For reader’s convenience we recall the definition of Gagliardo’s fractional Sobolev
Spaces W s,1

G ([1], [14]): for any s ∈ (0, 1) we set

W s,1
G =

{
u ∈ L1(a, b) :

|u(x)− u(y)|
|x− y|1+s

∈ L1([a, b]× [a, b])

}
, (2.1)

which is a Banach space endowed with the norm

‖u‖
W s,1
G

=

[∫
[a,b]
|u(x)|dx +

∫
[a,b]

∫
[a,b]

|u(x)− u(y)|
|x− y|1+s

dx dy

]
,

and we recall the definition of the Riemann-Liouville fractional integral and
derivative of order s for L1-functions, whose standard references can be found
in the book by Samko and al. [19].

Definition 2.1. (Riemann-Liouville fractional integral)
Assume u ∈ L1(a, b) and s > 0.
The left-side and right-side Riemann-Liouville fractional integrals are defined
by setting respectively

RLI
s
a+[u](x) =

1

Γ(s)

∫ x

a

u(t)

(x− t)1−sdt , x ∈ [a, b] , (2.2)

RLI
s
b−[u](x) =

1

Γ(s)

∫ b

x

u(t)

(t− x)1−sdt , x ∈ [a, b] , (2.3)

Here Γ stands for the classical Gamma function [17].
Notice that RLI

1
a+[u](x) =

∫ x
a u(t) dt, and in general, for strictly positive integer

values of s = n ∈ N, we recover n-th order primitive vanishing together with all
derivatives up to order n− 1 at x = a.
Obviously, both RLI

s
a+[u] and RLI

s
b−[u] are absolutely continuous functions if

s ≥ 1; whereas they are only L1 functions if 0 < s < 1. Indeed they may have
jump discontinuities, as shown by next example.
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Example 2.1. Set (a, b) = (−1, 1), u(x) = H(x)/
√
x, s = 1/2. Then

RLI
1/2
−1+[u](x) =

1√
π

∫ x

−1

H(t)√
t
√
x− t

dt =

 0 if −1<x≤0,
1√
π

∫ x

0

H(t)√
t
√
x− t

dt if 0<x<1 .

x ∈ (−1, 0) ⇒ RLI
1/2
−1+[u](x) = 0 ,

x ∈ (0, 1) ⇒ RLI
1/2
−1+[u](x) =

1√
π

∫ 1

0

1√
t(1− t)

dt =
√
π .

Next we may define the Riemann-Liouville fractional derivative as in [3],[19].

Definition 2.2. (Riemann-Liouville fractional derivative)
Assume u ∈ L1(a, b) and 0 < s < 1.
The left Riemann-Liouville derivative of u at x ∈ [a, b] is defined by

RLD
s
a+[u](x) =

d

dx
RLI

1−s
a+ [u](x) =

1

Γ(1− s)
d

dx

∫ x

a

u(t)

(x− t)s
dt (2.4)

at values x such that it exists.
Similarly, we may define the right Riemann-Liouville derivative of u at x ∈ [a, b]
as

RLD
s
b−[u](x) = − d

dx
RLI

1−s
b− [u](x) =

−1

Γ(1− s)
d

dx

∫ b

x

u(t)

(t− x)s
dt (2.5)

at values x such that it exists.

In Lemma 2.6 we examine the case when above pointwise defined derivative
exists a.e. and defines an L1 function coincident with the distributional deriva-
tive, respectively of RLI

1−s
a+ [u] and RLI

1−s
b− [u].

In the sequel we omit the RL index and the endpoint of the interval without loss
of information, since in the sequel we do not consider other fractional derivatives
(as the Caputo or the Weyl ones) since the forthcoming results can be proved
in the same way for such derivatives. So we shortly write Is+[u], Is−[u], Ds

+[u]
and Ds

−[u] respectively in place of RLI
s
a+[u], RLI

s
b−[u], RLD

s
a+[u] and RLD

s
b−[u].

One of the disadvantages of the one-side Riemann-Liouville derivative (and
integral) is the fact that only one endpoint of the interval plays a role. If we aim
to plug such a (point-wise) “anisotropic” definition in a variational framework
we have to deal with boundary conditions. In other terms the interval bounds
(or the boundary in several dimensions) should play the same role. Therefore,
we introduce the bilateral fractional integral and derivative, though keeping
separate “even” and “odd” parts:
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Definition 2.3. For every u ∈ L1(a, b) we set the even and odd version of
bilateral fractional integrals and derivatives:

Ise [u](x) :=
1

2

(
Is+[u](x) + Is−[u](x)

)
= (2.6)

=
1

2 Γ(s)

∫ b

a

u(t)

|x− t|1−s
dt =

(u ∗ 1/|t|1−s)(x)

2 Γ(s)
,

Ds
e[u](x) :=

d

dx
I1−s
e [u](x) = (2.7)

=
1

2

(
Ds

+[u](x)−Ds
−[u](x)

)
=

d

dx

(u ∗ 1/|t|s)(x)

2 Γ(1− s)
,

Iso [u](x) :=
1

2

(
Is+[u](x)− Is−[u](x)

)
= (2.8)

=
1

2 Γ(s)

∫ b

a
u(t)

sign(x− t)
|x− t|1−s

dt =
(u ∗ sign(t)

|t|1−s )(x)

2 Γ(s)
,

Ds
o[u](x) :=

d

dx
I1−s
o [u](x) = (2.9)

=
1

2

(
Ds

+[u](x) +Ds
−[u](x)

)
=

d

dx

(u ∗ sign(t)/|t|s)(x)

2 Γ(1− s)
.

So that

Is+[u] = Ise [u] + Iso [u] , Ds
+[u] = Ds

e[u] + Ds
o[u] , (2.10)

Is−[u] = Ise [u] − Iso [u] , Ds
−[u] = Ds

o[u] − Ds
e[u] . (2.11)

Whenever (a, b) 6= R the convolution in (2.6), (2.7), (2.8), (2.9) has to be under-
stood, without relabeling, as the convolution of the trivial extension of u (still
an L1(R) function) with either 1/|t|s or sign(t)/|t|s (both belonging to L1

loc(R)).
Also Is±[u](x), Ise [u](x), Iso [u](x) have to be understood, without relabeling, as
the natural extension for x ∈ R\[a, b], provided by the convolution of the trivial
extension of u with the corresponding kernels (here H denotes the Heaviside
function):

Is+[u] = u ∗ H(x)

Γ(s)|x|1−s
, Is−[u] = u ∗ H(−x)

Γ(s)|x|1−s
, (2.12)

Ise [u] = u ∗ 1

2Γ(s)|x|1−s
, Iso [u] = u ∗ sign(x)

2Γ(s)|x|1−s
, (2.13)
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namely

Is+[u](x) =
1

Γ(s)

∫ b

a

u(t)H(x− t)
|x− t|1−s

dt for every x ∈ R , (2.14)

Is−[u](x) =
1

Γ(s)

∫ b

a

u(t)H(t− x)

|x− t|1−s
dt for every x ∈ R , (2.15)

Ise [u](x) =
1

2 Γ(s)

∫ b

a

u(t)

|x− t|1−s
dt for every x ∈ R , (2.16)

Iso [u](x) =
1

2 Γ(s)

∫ b

a

u(t) sign(x− t)
|x− t|1−s

dt for every x ∈ R . (2.17)

In this way Is+[u], Is−[u], Ise [u], Iso [u] turn out to be Lploc
(
R) (hence Lp(I) for

any bounded interval I) for any 1 ≤ p < 1/(1 − s), since it is a convolution of
u ∈ L1(R) with an Lploc(R) kernel. Moreover we have the next result.

Lemma 2.1. If −∞ < a < b < +∞, u ∈ L∞(R), spt(u) ⊂ [a, b] and
0 < s < 1 then Is+[u], Is−[u], Ise [u], Iso [u] belong to L∞(R).

Proof. Due to previous remarks the functions Is±[u] are almost everywhere point-
wise defined L1

loc functions. Moreover we get

∣∣ Is±[u](x)
∣∣ ≤ ‖u‖L∞

Γ(s)

∫ b

a

dt

|x− t|1−s
=
‖u‖L∞
sΓ(s)

∣∣ |x− b|s−|x− a|s∣∣ , (2.18)

hence ∣∣ Is±[u](x)
∣∣ ≤ ‖u‖L∞

Γ(s)
max

(
|x− b|s−1, |x− a|s−1

)
|b− a| , (2.19)

Choose a real numberM such thatM>max(|a|, |b|) ; then Is±[u] ∈ L∞(−M,+M)
due to (2.18) and Is±[u] ∈ L∞

(
R \ (−M,+M)

)
due to (2.19). QED

Up to a conventional constant I1−s
e [u] is called Riesz potential of u. For our

purposes it is useful considering suitable normalization of these potentials:

1

cos(sπ/2)
Ise [u](x) =

1

2 Γ(s) cos(sπ/2)

∫ b

a

u(t)

|x− t|1−s
dt = As[u] , (2.20)

1

sin(sπ/2)
Iso [u](x) =

1

2 Γ(s) sin(sπ/2)

∫ b

a
u(t)

sign(x− t)
|x− t|1−s

dt = Bs[u], (2.21)

where 0 < s < 1, a < x < b, and for comparison we mention notation As, Bs as
defined in [19], eq. 12.44, eq.12.45.
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In order to clarify the meaning of definitions (2.6)-(2.17) and (2.20)-(2.21) one
can consider the case when (a, b) is replaced by R, e.g. u is defined on R and all
integrals over (a, b) are replaced by integrals over the whole real line.
Everything can be transferred back to (a, b) up to standard smooth corrections,
dependent only on boundary data and whose integrals are computed in (a, b):

Ise [l(u)], Iso [l(u)], Ds
e[l(u)], Ds

o[l(u)], where l(u) = u(a)+
u(b)− u(a)

b− a
(x−a).

So that if u ∈ W 1,2
G (R) := {u ∈ L2(R) : Du ∈ L2(R)}, where Du denote

the distributional derivative of u, then by setting ũ(x) = u(x) − l(u)(x), for
a < x < b, and denoting its trivial extension still by ũ without relabeling, we
get ũ ∈W 1,2

G (R), spt ũ ⊂ [a, b].
For functions u with domain in R we introduce the symmetric part (or “even”)
uxe and the antisymmetric (or “odd”) uxo of u with respect to the point x, as
follows:

uxe (t) := (1/2)
(
u(t) + u(2x− t)

)
, uxo(t) := (1/2)

(
u(t)− u(2x− t)

)
so that

u(t) = uxe (t) + uxo(t) ∀t, x ∈ R

By exploiting cancellation under integration and exchanges under derivation
of even and odd terms, we get the next statement.

Lemma 2.2. For every u ∈ C1
loc(R) and x ∈ R :

Ise [uxo ](x) = 0 , Iso [uxe ](x) = 0 Ds
e[u

x
e ](x) = 0 , Ds

o[u
x
o ](x) = 0 , (2.22)

which together with (2.10),(2.11) provides:

Is+[u](x) = Ise [uxe ](x) + Iso [uxo ](x) , (2.23)

Ds
+[u](x) = Ds

e[u
x
o ](x) +Ds

o[u
x
e ](x) , (2.24)

Is−[u](x) = Ise [uxe ](x)− Iso [uxo ](x) , (2.25)

Ds
−[u](x) = Ds

o[u
x
e ](x)−Ds

e[u
x
o ](x) . (2.26)

In the present paper we make extensive use of the Fourier transform defined
by

û(ξ) =

∫
R
e−iξxu(x)dx u ∈ L1(R) (2.27)

and the corresponding extension (namely, with the same choice of the constants)
when u is a tempered distribution.
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The meaning of all the above operators is clarified by subsequent Lemmas, which
rely on two identities concerning the Fourier transform, that are recalled here:

F
{

1

|x|s

}
(ξ) = 2 sin(s π/2) Γ(1− s) 1

|ξ|1−s
0 < s < 1 , (2.28)

F
{

sign(x)

|x|s

}
(ξ) = − 2 i cos(s π/2) Γ(1− s) sign(ξ)

|ξ|1−s
0 < s < 1 , (2.29)

and on the notions of two distributions (respectively of order 1 and 2): principal
value of 1/x (notation p.v. 1

x) and finite part of 1/x2 (notation f.p. 1
x2

), whose
definitions are provided by duality: for any test function ϕ ∈ C∞0 (R) one has

〈p.v. 1

x
, ϕ〉 = lim

ε→0+

∫
|x|>ε

ϕ(x)

x
dx , (2.30)

〈 f.p. 1

x2
, ϕ 〉 = lim

ε→0+

(∫
|x|>ε

ϕ(x)

x2
dx− 2

ε
ϕ(0)

)
. (2.31)

Notice that both 1/|x|s and sign(x)/|x|s belong to L1
loc(R), for 0 < s < 1, hence

the convolution with any L1 function is well defined and belongs to L1
loc(R);

moreover sign(x)/|x|s → p.v. 1
x in S ′ as s→ 1−, while 1/|x|s has no limit in S ′

as s→ 1−, where S ′ denotes the space of tempered distributions.
Fractional derivatives degenerate developing singularities as s → 1−; neverthe-
less they can be made convergent to meaningful limits by suitable normalization.

Lemma 2.3. Assume 0 < s < 1 and u ∈W 1,2
G (R). Then

Ds
e[u]

sin(s π/2)
−→ F−1 { i ξ û(ξ) } = Du in L2(R) as s→ 1− , (2.32)

Ds
o[u]

cos(s π/2)
−→ F−1 { |ξ| û(ξ) } in L2(R) as s→ 1− , (2.33)

Ds
+[u] −→ Du in L2(R) as s→ 1− , (2.34)

Ds
−[u] −→ −Du in L2(R) as s→ 1− . (2.35)
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Proof. Since u ∈ W 1,2
G (R), we get (1 + |ξ|2)1/2 û(ξ) ∈ L2(R). Hence both

û(ξ) , |ξ| û(ξ) belong to L2(R), then |ξ|sû(ξ) ∈ L2(R) for every 0<s< 1, and by
(2.6),(2.28):

F
{
Ds
e[u](x)

sin(s π/2)

}
(ξ) =

1

2 Γ(1− s) sin(s π/2)
i ξ û(ξ) F

{
1

|x|s

}
(ξ) =

=
i ξ û(ξ)

2 Γ(1− s) sin(s π/2)

(
2 |ξ|s−1 Γ(1− s) sin(s π/2)

)
=

= i ξ |ξ|s−1 û(ξ) = i |ξ|s sign(ξ) û(ξ)
s→1−−→ i ξ û(ξ) = F {Du} ,

hence (2.32) follows by continuity of Fourier transform in L2.

Analogously by (2.8),(2.29),

F
{

Ds
o[u](x)

cos(s π/2)

}
(ξ) =

1

2 Γ(1− s) cos(s π/2)
i ξ û(ξ) F

{
sign(x)

|x|s

}
(ξ) =

=
i ξ û(ξ)

2 Γ(1− s) cos(s π/2)

(
− 2i |ξ|s−1 Γ(1− s) cos(sπ/2) sign(ξ)

)
=

= |ξ|s û(ξ)
s→1−−→ |ξ| û(ξ) .

Then (2.33) follows by continuity of Fourier transform in L2.
Eventually, since sin(sπ/2) → 1, cos(sπ/2) → 0 as s → 1− , (2.34) follows
by (2.32),(2.33) and Ds

+[u](x) = Ds
e[u](x) + Ds

o[u](x), while (2.35) follows by
(2.32),(2.33) and Ds

−[u](x) = Ds
o[u](x)−Ds

e[u](x). QED

Remark 2.1. Notice that relations (2.32),(2.34) and (2.35) tell that, as s→ 1−,
both Ds

+[u] (left Riemann-Liouville fractional derivative of order s of u) and
Ds
e[u] (even Riemann-Liouville fractional derivative of order s of u) converge in

L2 to the distributional derivative Du, while Ds
−[u] converges in L2 to −Du.

On the other hand relation (2.33) means thatDs
o[u] (odd Riemann-Liouville frac-

tional derivative of order s of u) fades as s→ 1− but, when suitably normalized
as Ds

o[u]/ cos(s π/2), it converges in L2 to the Gagliardo fractional derivative of
order 1 of u, say (−∆)1/2u := F−1 { |ξ| û(ξ) } .
If in addition u ∈ C2(R), this last convergence can be made even more explicit

Ds
o[u]

cos(s π/2)
→ F−1 {|ξ| û(ξ)} =

1

π

(
p.v.

1

x

)
∗Du = − 1

π

(
f.p.

1

x2

)
∗u (2.36)

in L2(R) as s→ 1− .
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Indeed, if u ∈ C2(R), then

|ξ| û(ξ) =
(
i ξ û(ξ)

) (
− i sign(ξ)

)
= F{Du} F

{
1

π

(
p.v.

1

x

)}
= (2.37)

=
1

π
F
{
Du ∗

(
p.v.

1

x

)}
= − 1

π
F
{
u ∗
(

f.p.
1

x2

)}
,

Notice that, by density of S(R) in W 1,2
G (R), we can exploit (2.36),(2.37) to set

a (unique extensions of the) definition of both convolutions

1

π

(
p.v.

1

x

)
∗Du = − 1

π

(
f.p.

1

x2

)
∗ u := F−1 { |ξ| û(ξ) } ∀u ∈W 1,2

G (R).

Fractional integrals degenerate producing singularities as s → 0+; indeed
the convolution term fulfils |x|s−1/(2Γ(s) cos(sπ/2)) → δ in S ′ as s → 0+;
nevertheless fractional integrals are convergent to meaningful limits by suitable
normalization.

Lemma 2.4. Assume 0 < s < 1 , u ∈ L1(R) with û ∈ L1(R) and set the
constants in the Fourier transform such that û(ξ) =

∫
R exp(−iξx)u(x) dx . Then

1

cos(s π/2)
Ise [u](x) −→ u(x) uniformly in R as s→ 0+ , (2.38)

π

sin(s π/2)
Iso [u](x) −→ (p.v. 1/x) ∗ u in S ′(R) as s→ 0+ . (2.39)

Proof. Since u, û ∈ L1(R), we get u, û ∈ L∞(R), |ξ|−s û(ξ) ∈ L1(R) for
0 < s < 1, then by (2.6),(2.28) and dominated convergence Theorem:

F
{

1

cos(s π/2)
Ise [u](x)

}
(ξ) =

1

cos(s π/2)

û(ξ)

2Γ(s)
F
{

1

|x|1−s

}
(ξ) =

=
û(ξ)

2 Γ(s) cos(s π/2)

(
2 |ξ|−s Γ(s) cos(s π/2)

)
=

= |ξ|−s û(ξ)
s→0+−→ û(ξ) = F {u} in L1(R) ,

hence (2.38) follows by continuity of inverse Fourier transform from L1 to L∞.
Since u, û ∈ L1(R), we get u, û ∈ L∞(R), |ξ|−s û(ξ) ∈ L1(R) for 0 < s < 1,
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then by (2.8),(2.29)

F
{

1

sin(s π/2)
Iso [u](x)

}
(ξ) =

1

sin(s π/2)

û(ξ)

2Γ(s)
F
{

sign(x)

|x|1−s

}
(ξ) =

=
û(ξ)

2 Γ(s) sin(s π/2)

(
− 2 iΓ(s) sin(s π/2) sign(ξ) |ξ|−s

)
=

= − i sign(ξ) |ξ|−s û(ξ)
s→0+−→ û(ξ) = − i sign(ξ) û(ξ) =

=
1

π
F{(p.v. 1/x) ∗ u} in S ′(R) ,

hence (2.39) follows by continuity of inverse Fourier transform in S ′(R). QED

It is well known that, under suitable assumptions, the one sided operators
Ds
± are the right and left inverse respectively of operators Is± for functions de-

fined in the bounded interval (a, b).
Concerning the issue “whether Is is the right and/or left inverse of Ds, at least
up to a suitable constant, even in the case of bilateral definitions”, the next
lemma provides an answer by focusing the analysis separately on the even and
odd bilateral definitions.

Lemma 2.5. Assume 0 < s < 1 , u ∈ L1(R) .
If I1−s

o [u] ∈ ACloc(R), then

1

(cos(s π/2))2 Ise [Ds
o[u] ] = u . (2.40)

If I1−s
e [u] ∈ ACloc(R), then

1

(sin(s π/2))2 Iso [Ds
e[u] ] = u . (2.41)

If I1−s
o [Ise [u]] ∈ ACloc(R), then

1

(cos(s π/2))2 Ds
o [ Ise [u] ] = u . (2.42)

If I1−s
e [Iso [u]] ∈ ACloc(R), then

1

(sin(s π/2))2 Ds
e [ Iso [u] ] = u . (2.43)

Proof. By (2.28), (2.29), exploiting the associativity of convolution and the stan-
dard properties of the Fourier transform, we can perform the subsequent com-
putations.
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Assumption I1−s
o [u] ∈ ACloc(R) entails the derivative d/dx appearing in Ds

o

actually exists almost everywhere and coincides with the distributional deriva-
tive D, since D I1−s

o [u] is absolutely continuous with respect to the Lebesgue
measure.

F
{

1

(cos(s π/2))2 Ise [Ds
o[u] ]

}
(ξ) =

=
1

(cos(s π/2))2 F
{

1

4 Γ(s) Γ(1− s)
d

dx

(
u ∗ sign(x)

|x|s

)
∗ 1

|x|1−s

}
(ξ)

=
i ξ û(ξ)

4 (cos(s π/2))2 Γ(s) Γ(1− s)
F
{

sign(x)

|x|s

}
(ξ) F

{
1

|x|1−s

}
(ξ)

= i ξ û(ξ)
−i sign(ξ)

|ξ|1−s
1

|ξ|s
= û(ξ)

and (2.40) follows by inverse Fourier transform.
Assumption I1−s

e [u] ∈ ACloc(R) entails the derivative d/dx appearing in Ds
e

actually exists almost everywhere and coincides with the distributional deriva-
tive D, since D I1−s

e [u] is absolutely continuous with respect to the Lebesgue
measure.

F
{

1

(sin(s π/2))2 Iso [Ds
e[u] ]

}
(ξ) =

=
1

(sin(s π/2))2 F
{

1

4 Γ(s) Γ(1− s)
d

dx

(
u ∗ 1

|x|s

)
∗ sign(x)

|x|1−s

}
(ξ)

=
i ξ û(ξ)

4 (sin(s π/2))2 Γ(s) Γ(1− s)
F
{

1

|x|s

}
(ξ) F

{
sign(x)

|x|1−s

}
(ξ)

= i ξ û(ξ)
1

|ξ|1−s
−i sign(ξ)

|ξ|s
= û(ξ)

and (2.41) follows by inverse Fourier transform.
Assumption I1−s

o [Ise [u]] ∈ ACloc(R) entails the derivative d/dx appearing in Ds
o

actually exists almost everywhere and coincides with the distributional deriva-
tive D, since D I1−s

o [Ise [u]] is absolutely continuous with respect to the Lebesgue
measure.

F
{

1

(cos(s π/2))2 Ds
o [ Ise [u] ]

}
(ξ) =

=
1

(cos(s π/2))2 F
{

1

4 Γ(s) Γ(1− s)
d

dx

(
u ∗ 1

|x|1−s

)
∗ sign(x)

|x|s

}
(ξ)

=
i ξ û(ξ)

4 (cos(s π/2))2 Γ(s) Γ(1− s)
F
{

1

|x|1−s

}
(ξ) F

{
sign(x)

|x|s

}
(ξ)
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= i ξ û(ξ)
1

|ξ|s
−i sign(ξ)

|ξ|1−s
= û(ξ)

and (2.42) follows by inverse Fourier transform.
Assumption I1−s

o [Iso [u]] ∈ ACloc(R) entails the derivative d/dx appearing in Ds
e

actually exists almost everywhere and coincides with the distributional deriva-
tive D, since D I1−s

o [Iso [u]] is absolutely continuous with respect to the Lebesgue
measure.

F
{

1

(sin(s π/2))2 Ds
e [ Iso [u] ]

}
(ξ) =

=
1

(sin(s π/2))2 F
{

1

4 Γ(s) Γ(1− s)
d

dx

(
u ∗ sign(x)

|x|1−s

)
∗ 1

|x|s

}
(ξ)

=
i ξ û(ξ)

4 (sin(s π/2))2 Γ(s) Γ(1− s)
F
{

sign(x)

|x|1−s

}
(ξ) F

{
1

|x|s

}
(ξ)

= i ξ û(ξ)
−i sign(ξ)

|ξ|s
1

|ξ|1−s
= û(ξ)

and (2.43) follows by inverse Fourier transform. QED

For the sake of completeness here we provide also a direct proof that the one
sided fractional derivative is the inverse of the corresponding fractional integral,
in the framework of definitions extended to the whole real line: say (2.14),(2.15)
and

Ds
+[u](x) =

1

Γ(1− s)
d

dx

(
u ∗ H(x)

|x|s

)
, (2.44)

Ds
−[u](x) =

− 1

Γ(1− s)
d

dx

(
u ∗ H(−x)

|x|s

)
. (2.45)

Lemma 2.6. Assume 0 < s < 1 , u ∈ L1(R) . Then

Ds
+

[
Is+[u]

]
= u (2.46)

Ds
−
[
Is−[u]

]
= u . (2.47)

If in addition I1−s
+ [u] ∈ ACloc(R), then

Is+
[
Ds

+[u]
]

= u . (2.48)

If in addition I1−s
− [u] ∈ ACloc(R), then

Is−
[
Ds
−[u]

]
= u . (2.49)
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Proof. By (2.28), (2.29), H(x) = 1/2 + sign(x)/2 and H(−x) = 1/2− sign(x)/2

F
{
H(x)

|x|s

}
(ξ) = Γ(1− s) sin(sπ/2)− i cos(sπ/2) sign(ξ)

|ξ|1−s
0 < s < 1, (2.50)

F
{
H(−x)

|x|s

}
(ξ) = Γ(1− s) sin(sπ/2) + i cos(sπ/2) sign(ξ)

|ξ|1−s
0 < s < 1.

(2.51)
By (2.50), (2.51), exploiting the associativity of convolution and the standard
properties of the Fourier transform, we can perform the subsequent computa-
tions.
By the semigroup property of fractional integrals ( (2.21) and Thm 2.5) in [19])
I1−s

+

[
Is+[u]

]
= I1

+[u] =
∫ x
a u(t)dt ∈ ACloc(R). Hence the derivative d/dx ap-

pearing in representation (2.45) of Ds
+ actually exists almost everywhere and

coincides with the distributional derivative D, since D I1−s
+ [u] is absolutely con-

tinuous with respect to the Lebesgue measure.

F
{
Ds

+

[
Is+[u]

]}
(ξ) =

= F
{

1

Γ(s) Γ(1− s)
d

dx

(
u ∗ H(x)

|x|1−s

)
∗ H(x)

|x|s

}
(ξ)

=
i ξ û(ξ)

Γ(s) Γ(1− s)
F
{
H(x)

|x|1−s

}
(ξ) F

{
H(x)

|x|s

}
(ξ)

=
i ξ û(ξ)

Γ(s) Γ(1− s)
Γ(s)

(
cos(sπ/2)− i sin(sπ/2) sign(ξ)

)
|ξ|s

×

×
Γ(1− s)

(
sin(sπ/2)− i cos(sπ/2) sign(ξ)

)
|ξ|1−s

=

=
i ξ û(ξ)

|ξ|

(
sin(sπ/2) cos(sπ/2)

(
1− (sign(ξ))2

)
− i sign(ξ)

)
=

= û(ξ)

and (2.46) follows by inverse Fourier transform.
By the semigroup property of fractional integrals ( (2.21) and Thm 2.5 in [19])

I1−s
−

[
Is−[u]

]
= I1

−[u] =
∫ b
x u(t)dt ∈ ACloc(R). Hence the derivative d/dx ap-

pearing in representation (2.45) of Ds
+ actually exists almost everywhere and

coincides with the distributional derivative D, since D I1−s
− [u] is absolutely con-
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tinuous with respect to the Lebesgue measure.

F
{
Ds
−
[
Is−[u]

]}
(ξ) =

= F
{

− 1

Γ(s) Γ(1− s)
d

dx

(
u ∗ H(−x)

|x|1−s

)
∗ H(−x)

|x|s

}
(ξ)

=
− i ξ û(ξ)

Γ(s) Γ(1− s)
F
{
H(x)

|x|1−s

}
(ξ) F

{
H(x)

|x|s

}
(ξ)

=
− i ξ û(ξ)

Γ(s) Γ(1− s)
Γ(s)

(
cos(sπ/2) + i sin(sπ/2) sign(ξ)

)
|ξ|s

×

×
Γ(1− s)

(
sin(sπ/2) + i cos(sπ/2) sign(ξ)

)
|ξ|1−s

=

=
− i ξ û(ξ)

|ξ|

(
sin(sπ/2) cos(sπ/2)

(
1− (sign(ξ))2

)
+ i sign(ξ)

)
=

= û(ξ)

and (2.47) follows by inverse Fourier transform.
Assumption I1−s

+ [u] ∈ ACloc(R) entails the derivative d/dx appearing in rep-
resentation (2.44) of Ds

+ actually exists almost everywhere and coincides with
the distributional derivative D, since D I1−s

+ [u] is absolutely continuous with
respect to the Lebesgue measure.

F
{
Is+
[
Ds

+[u]
]}

(ξ) =

= F
{

1

Γ(s) Γ(1− s)
d

dx

(
u ∗ H(x)

|x|s

)
∗ H(x)

|x|1−s

}
(ξ)

=
i ξ û(ξ)

Γ(s) Γ(1− s)
F
{
H(x)

|x|s

}
(ξ) F

{
H(x)

|x|1−s

}
(ξ)

=
i ξ û(ξ)

Γ(s) Γ(1− s)
Γ(1− s)

(
sin(sπ/2)− i cos(sπ/2) sign(ξ)

)
|ξ|1−s

×

×
Γ(s)

(
cos(sπ/2)− i sin(sπ/2) sign(ξ)

)
|ξ|s

=

=
i ξ û(ξ)

|ξ|

(
sin(sπ/2) cos(sπ/2)

(
1− (sign(ξ))2

)
− i sign(ξ)

)
=

= û(ξ)

and (2.48) follows by inverse Fourier transform.
Assumption I1−s

− [u] ∈ ACloc(R) entails the derivative d/dx appearing in rep-
resentation (2.45) of Ds

− actually exists almost everywhere and coincides with
the distributional derivative D, since D I1−s

− [u] is absolutely continuous with
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respect to the Lebesgue measure.

F
{
Is−
[
Ds
−[u]

]}
(ξ) =

= F
{

− 1

Γ(s) Γ(1− s)
d

dx

(
u ∗ H(−x)

|x|s

)
∗ H(−x)

|x|1−s

}
(ξ)

=
− i ξ û(ξ)

Γ(s) Γ(1− s)
F
{
H(−x)

|x|s

}
(ξ) F

{
H(−x)

|x|1−s

}
(ξ)

=
− i ξ û(ξ)

Γ(s) Γ(1− s)
Γ(1− s)

(
sin(sπ/2) + i cos(sπ/2) sign(ξ)

)
|ξ|1−s

×

×
Γ(s)

(
cos(sπ/2) + i sin(sπ/2) sign(ξ)

)
|ξ|s

=

=
− i ξ û(ξ)

|ξ|

(
sin(sπ/2) cos(sπ/2)

(
1− (sign(ξ))2

)
+ i sign(ξ)

)
=

= û(ξ)

and (2.49) follows by inverse Fourier transform. QED

Remark 2.2. We emphasize that, in contrast to Lemma 2.5, in the last Lemma
both conditions I1−s

+

[
Is+[u]

]
= I1

+[u] =
∫ x
a u ∈ ACloc(R) and I1−s

−
[
Is−[u]

]
=

I1
−[u] ∈ ACloc(R), useful to achieve respectively (2.48) and (2.49), are au-

tomatically fulfilled here, due to semigroup property of σ → Iσ±. Whereas,
I1−s
o [Ise [u]] ∈ ACloc(R) and I1−s

e [Iso [u]] ∈ ACloc(R), had to be assumed there,
in order to achieve respectively (2.42), (2.43),

3 Basic properties of bilateral fractional derivatives

Results of the previous Section (mainly Lemmas 2.4 and 2.5) provide some
hints to suitably define the operators representing the bilateral versions of
Riemann-Liouville fractional derivatives and integrals.

Definition 3.1.(bilateral Riemann-Liouville fractional integral of order
s)

Is[u] =
1

cos(s π/2)
Ise [u] =

1

2 Γ(s) cos(sπ/2)

(
Is+[u] + Is−[u]

)
Definition 3.2.(bilateral Riemann-Liouville fractional derivative of order s)

Ds[u] =
1

cos(s π/2)
Ds
o[u] =

1

2 Γ(s) cos(sπ/2)

(
Ds

+[u] − Ds
−[u]

)
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In Definitions 3.1 and 3.2 we made one conventional choice of possible coef-
ficients.
Obviously, the alternative choice provided by subsequent definition (namely Is,
Ds in place of Is, Ds) would work as well.

Definition 3.3.

Is[u] =
1

sin(s π/2)
Iso [u] together with Ds[u] =

1

sin(s π/2)
Ds
e[u] .

Theorem 3.1. Assume 0 < s < 1 , u ∈ L1(R) .
If I1−s

o [u] ∈ ACloc(R), then

Is [Ds[u] ] = u . (3.1)

If I1−s[u] ∈ ACloc(R), then

Is [Ds[u] ] = u . (3.2)

If I1−s [Is[u]] ∈ ACloc(R), then

Ds [ Is[u] ] = u . (3.3)

If I1−s [Is[u]] ∈ ACloc(R), then

Dse [ Iso [u] ] = u . (3.4)

Proof. It is a straightforward consequence of Lemma 2.5, with notations intro-
duced by Definitions 3.1, 3.2, 3.3. QED

Using classical results on the left-hand and the right-hand side RL integral
[19] it is straightforward to get the following:

Proposition 3.1. For any s ∈ (0, 1), the following properties hold true.

(i) The fractional integral Is is a continuous operator from L1(a, b) into
Lq(a, b) with q ∈ [1, 1/(1− s)];

(ii) The fractional integral Is is a continuous operator from Lp(a, b) to Lp(a, b):

Is : Lp(a, b)→ Lp(a, b) ∀ p ≥ 1

‖Isu‖Lp(a,b) ≤ C(a, b, s, p)‖u‖Lp(a,b) .
(3.5)

(iii) Is is a continuous operator from Lp(a, b) into Lr(a, b) for every p ∈ [1, 1/s)
and r ∈ [1, p/(1− sp));
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(iv) For every u ∈ Lp(a, b), with p ≥ 1, we have

lim
s→0+

‖Isu− u‖Lp(a,b) = 0 . (3.6)

Next theorem concern the mapping properties of fractional integral on Lebesgue
and Hölder spaces.

Proposition 3.2. For any s ∈ (0, 1), we get

(i) For every p > 1/s the fractional integral Is is a continuous operator from

Lp(a, b) into C0,s− 1
p (a, b);

(ii) For p = 1/s the fractional integral Is is a continuous operator from Lp(a, b)
into Lr(a, b) with r ∈ [1,∞);

(iii) the fractional integral Is is a continuous operator from L∞(a, b) into
C0,s(a, b).

Here C0,s(a, b) denotes the space of Hölder continuous functions of order s:

C0,s(a, b) := {u | ∃C > 0 s.t. ∀x, y ∈ [a, b] |u(y)− u(x)| ≤ C |y − x|s }.

The proofs of the two previous propositions are clear since the claims hold for Is+
and Is− respectively (see [19]: Corollary 2 p.56, Theorem 3.5 p.66, Theorem 3.6
p.67, paragraph 3.3 p.91 and Thorem 14.2 with p = 1). The previous proposition
shows that the fractional integration improves the function regularity.

We get more precise results providing the function has an Hölder regularity
using Theorem 3.1 of [19].

Proposition 3.3. Let s, α ∈ (0, 1) and u ∈ C0,α(a, b) then the fractional
integral has the form

Is+[u] =
u(a)

Γ(1 + s)
(x− a)s + ψ(x) ,

where ψ ∈ C0,α+s(a, b) if α+s < 1 and ψ ∈ C1,α+s−1(a, b) ⊂ C1(a, b) if α+s > 1.

Proposition 3.4. Let s, α ∈ (0, 1) be such that s < α ≤ 1 and u ∈
C0,α(a, b); then there exists ψ+, ψ− ∈ C0,α−s(a, b)such that ψ+(a) = 0, ψ−(b) =
0 and

Ds[u](x) =
1

2Γ(1− s)

(
u(a)

(x− a)s
+

u(b)

(b− x)s

)
+ ψ+(x) + ψ−(x) .

Therefore Dsu exists for every s ∈ [0, α) and Dsu ∈ C0,α−s(a, b) for every u such
that u(a) = u(b) = 0.

Proof. The result comes directly from [19], Lemma 13.1 p.239. QED
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4 The bilateral fractional Sobolev space

To develop a satisfactory theory of Riemann-Liouville fractional Sobolev
spaces we introduced suitable function spaces in [3], by defining the Fractional
Sobolev spaces related to one-sided fractional derivatives as follows.

Definition 4.1. We recall the definitions of Riemann-Liouville Fractional Sobolev
spaces related to one-sided fractional derivatives, as introduced in [3], here we
confine to the case p = 1:

W s,1
+ (a, b) := {u ∈ L1(a, b) | I1−s

+ [u] ∈W 1,1
G (a, b) } , (4.1)

W s,1
− (a, b) := {u ∈ L1(a, b) | I1−s

− [u] ∈W 1,1
G (a, b) } . (4.2)

Explicitly, the properties u ∈ W s,1
± (a, b) entail respectively that the distri-

butional derivatives D
[
I1−s
± [u]

]
belong to L1(a, b).

Here we introduce the “even” and “odd” fractional Sobolev spaces.

Definition 4.2. The even/odd Riemann-Liouville Fractional Sobolev spaces,
respectively denoted by W s,1

e (a, b) and W s,1
o (a, b), are defined as follows

W s,1
e (a, b) := {u ∈ L1(a, b) | I1−s

e [u] ∈W 1,1
G (a, b) } . (4.3)

W s,1
o (a, b) := {u ∈ L1(a, b) | I1−s

o [u] ∈W 1,1
G (a, b) } , (4.4)

Next, we define the bilateral Riemann-Liouville Fractional Sobolev spaces,
with the aim to achieve a symmetric framework.

Definition 4.3. Bilateral Riemann-Liouville Fractional Sobolev space.
For every s ∈ (0, 1), we set W s,1(a, b) = W s,1

+ (a, b) ∩W s,1
− (a, b) , that is:

W s,1(a, b) := {u ∈ L1(a, b) | I1−s
+ [u] ∈W 1,1

G (a, b) and I1−s
− [u] ∈W 1,1

G (a, b)}.
(4.5)

The even/odd Riemann-Liouville Fractional Sobolev spaces are the object
of study in forthcoming paper [15].
It may appear surprising to choose such a definition since a natural one appar-
ently would be, referring to Definition 3.1:

W̃ s,1(a, b) := {u ∈ L1(a, b) | I1−s[u] ∈W 1,1
G (a, b)}. (4.6)

Though, at our knowlwdge, the space W̃ s,1 does not allow to recover suitable
representability results, analogous to the ones implied by Definition 2.4 of [3].
However, referring to Definition 4.3, by (2.10) and (2.11) we get

W s,1(a, b) = W s,1
+ (a, b) ∩W s,1

− (a, b) = W s,1
o (a, b) ∩W s,1

e (a, b) . (4.7)
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5 A fractional Bounded Variation space

In this section we need refinement of the Riemann-Liouville fractional deriva-
tive: simple substitution of the point-wise classical derivative with the distribu-
tional derivative

Definition 5.1. (distributional Riemann-Liouville fractional derivative)
Assume u ∈ L1(a, b) and 0 < s < 1.
The left Riemann-Liouville derivative of u at x ∈ [a, b] is defined by

RLD
s
a+[u](x) = Dx RLI

1−s
a+ [u](x) =

1

Γ(1− s)
Dx

∫ x

a

u(t)

(x− t)s
dt (5.1)

at values x such that it exists.
Similarly, we may define the right Riemann-Liouville derivative of u at x ∈ [a, b]
as

RLD
s
b−[u](x) = −Dx RLI

1−s
b− [u](x) =

−1

Γ(1− s)
Dx

∫ b

x

u(t)

(t− x)s
dt (5.2)

at values x such that it exists.

Remark 5.1. We emphasize that as long as these derivatives are evaluated on
absolutely continuous functions, as it was done in previous section, then Def-
inition 5.1 (based on Definitions 5.1 and 5.2) turns out to be equivalent to
Definition 4.1 (which was based on Definition 2.2). For this reason we keep the
same notations (RLD

s
a+, RLD

s
b− and the corresponding short forms Ds

+, Ds
−).

However, here we have evaluate it on functions of bounded variations, a setting
where actually the two Definitions are different.

Next, inspired by [6] where the non symmetric spaces are studied also in the
case of higher order derivatives, we introduce the bilateral Riemann-Liouville
Bounded Variation space, with the aim to achieve a symmetric framework.

Definition 5.2. The (bilateral) Riemann-Liouville Fractional Bounded Varia-
tion spaces. For every s ∈ (0, 1), we set

BV s = BV s
+ ∩BV s

− (5.3)

where
BV s

+ = {u ∈ L1(a, b) | I1−s
+ [u] ∈ BV (a, b)},

BV s
− = {u ∈ L1(a, b) | I1−s

− [u] ∈ BV (a, b)}.

The (bilateral) Riemann-Liouville Fractional Bounded Variation spaces are
the object of study in the forthcoming paper [15].
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