
Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932

Note Mat. 41 (2021) no. 2, 19–29. doi:10.1285/i15900932v41n2p19

Lr inequalities for the derivative of a

polynomial

Khangembam Babina Devi
Department of Mathematics, National Institute of Technology Manipur, Langol, Manipur
795004, India
khangembambabina@gmail.com

Kshetrimayum Krishnadas
Department of Mathematics, Shaheed Bhagat Singh College, University of Delhi 110017, India
kshetrimayum.krishnadas@sbs.du.ac.in

Barchand Chanam
Department of Mathematics, National Institute of Technology Manipur, Langol, Manipur
795004, India
barchand 2004@yahoo.co.in

Received: 17.2.2021; accepted: 5.8.2021.

Abstract. Let p(z) be a polynomial of degree n having no zero in |z| < k, k ≤ 1, then Govil
[Proc. Nat. Acad. Sci., 50, (1980), 50-52] proved

max
|z|=1

|p′(z)| ≤ n

1 + kn
max
|z|=1

|p(z)|,

provided |p′(z)| and |q′(z)| attain their maxima at the same point on the circle |z| = 1, where

q(z) = znp

(
1

z

)
.

In this paper, we not only obtain an integral mean inequality for the above inequality but also
extend an improved version of it into Lr norm.
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1 Introduction

Let p(z) be a polynomial of degree n. We define

‖p‖r =


2π∫
0

∣∣∣p(eiθ)∣∣∣r dθ


1
r

, 0 < r <∞. (1.1)
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If we let r →∞ in (1.1) and make use of the well-known fact from analysis (see
[18],[19]) that

lim
r→∞

 1

2π

2π∫
0

∣∣∣p(eiθ)∣∣∣r dθ


1
r

= max
|z|=1

|p(z)|, (1.2)

we can suitably denote
‖p‖∞ = max

|z|=1
|p(z)|. (1.3)

Similarly, we can define

‖p‖0 = exp

 1

2π

2π∫
0

log |p(eiθ)|dθ

,
and show that lim

r→0+
‖p‖r = ‖p‖0. It would be of further interest that by taking

limit as r → 0+ that the stated results on Lr norm inequalities holding for
r > 0, hold for r = 0 as well.

The famous result of Bernstein [3] states that if p(z) is a polynomial of
degree n, then

‖p′‖∞ ≤ n‖p‖∞. (1.4)

Inequality (1.4) can be obtained by letting r →∞ in the inequality

‖p′‖r ≤ n‖p‖r, r > 0. (1.5)

Inequality (1.5) was proved by Zygmund [20] for r ≥ 1 and by Arestov [1] for
0 < r < 1.

If we restrict to the class of polynomials having no zero in |z| < 1, then
inequalities (1.4) and (1.5) can be respectively improved as

‖p′‖∞ ≤
n

2
‖p‖∞, (1.6)

‖p′‖r ≤
n

‖1 + z‖r
‖p‖r, r > 0. (1.7)

Inequality (1.6) was conjectured by Erdös and later verified by Lax [13] whereas
inequality (1.7) was proved by de-Bruijn [5] for r ≥ 1 and by Rahman and
Schmeisser [16] for 0 < r < 1.

As a generalization of (1.6), Malik [14] proved that if p(z) is a polynomial
of degree n having no zero in |z| < k, k ≥ 1, then

‖p′‖∞ ≤
n

1 + k
‖p‖∞, (1.8)
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whereas, under the same hypotheses of the polynomial p(z), Govil and Rahman
[11] extended inequality (1.8) to Lr norm by showing that

‖p′‖r ≤
n

‖z + k‖r
‖p‖r, r ≥ 1. (1.9)

Gardner and Weems [9] and independently by Rather [17] showed that inequality
(1.9) holds true for 0 < r < 1 as well.

For the class of polynomials p(z) of degree n having no zero in |z| < k, k ≤ 1,
the precise upper bound estimate for maximum of |p′(z)| on |z| = 1, in general,
does not seem to be easily obtainable. For quite sometime, it was believed that
if p(z) has no zero in |z| < k, k ≤ 1, then the inequality analogous to (1.8)
should be

‖p′‖∞ ≤
n

1 + kn
‖p‖∞, (1.10)

untill E.B. Saff gave the example p(z) =
(
z − 1

2

) (
z + 1

3

)
to counter this belief.

There are many extensions of inequality (1.9) ( see Chan and Malik [6],
Dewan and Bidkham [7], and Dewan and Mir [8]). However, for the class of
polynomials having no zero in |z| < k, k ≤ 1, Govil [10] proved inequality (1.10)
with extra condition.

Theorem 1. If p(z) is a polynomial of degree n having no zero in |z| < k,
k ≤ 1, then

‖p′‖∞ ≤
n

1 + kn
‖p‖∞, (1.11)

provided |p′(z)| and |q′(z)| attain their maxima at the same point on the circle
|z| = 1, where

q(z) = znp

(
1

z

)
. (1.12)

In this paper, we shall prove the following more general result which as a
special case gives inequality (1.11). In fact, we prove

Theorem 2. If p(z) is a polynomial of degree n having no zero in |z| < k,
k ≤ 1, then for every r > 0,

knn‖p‖r ≤ ‖z + kn‖r
{
n‖p‖∞ − ‖p′‖∞

}
, (1.13)

provided |p′(z)| and |q′(z)| attain their maxima at the same point on the circle
|z| = 1, where

q(z) = znp

(
1

z

)
. (1.14)

Further, we prove the following improved result which sharpens Theorem 2.
More precisely, we obtain
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Theorem 3. If p(z) is a polynomial of degree n having no zero in |z| < k,
k ≤ 1, then for every real or complex number α with |α| < 1 and for every
r > 0,

knn
∥∥∥znp(z) + α

m

kn

∥∥∥
r
≤ ‖z + kn‖r

{
n ‖p‖∞ −

∥∥p′∥∥∞} , (1.15)

provided |p′(z)| and |q′(z)| attain their maxima at the same point on the circle
|z| = 1, where

q(z) = znp

(
1

z

)
(1.16)

and m = min
|z|=k

|p(z)|.

Letting r → ∞ on both sides of (1.13), we readily get inequality (1.11) of
Theorem 1.

Remark 1. Further, taking limit as r →∞ on both sides of (1.15), we get

knnmax
|z|=1

∣∣∣znp(z) + α
m

kn

∣∣∣ ≤ (1 + kn)

{
nmax
|z|=1

|p(z)| −max
|z|=1

∣∣p′(z)∣∣} . (1.17)

Suppose z0 on |z| = 1 be such that max
|z|=1
|p(z)| = |p(z0)|. Then, in particular,

∣∣∣zn0 p(z0) + α
m

kn

∣∣∣ ≤ max
|z|=1

∣∣∣znp(z) + α
m

kn

∣∣∣ . (1.18)

Now we can choose the argument of α suitably such that∣∣∣zn0 p(z0) + α
m

kn

∣∣∣ = |p(z0)|+ |α|m
kn
. (1.19)

Using (1.19) to (1.18), we have

|p(z0)|+ |α|m
kn
≤ max
|z|=1

∣∣∣znp(z) + α
m

kn

∣∣∣ . (1.20)

On combining (1.17) and (1.20), we have

knn

{
max
|z|=1

|p(z)|+ |α|m
kn

}
≤ (1 + kn)

{
nmax
|z|=1

|p(z)| −max
|z|=1

|p′(z)|
}
, (1.21)

which implies

max
|z|=1

|p′(z)| ≤ n

1 + kn

{
max
|z|=1

|p(z)| − |α|m
}
. (1.22)

If we take limit as |α| → 1 in (1.22), we get the following inequality proved
by Aziz and Ahmad [2, Theorem 3].
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Corollary 1. If p(z) is a polynomial of degree n having no zero in |z| < k,
k ≤ 1, then

‖p′‖∞ ≤
n

1 + kn
{‖p‖∞ −m} , (1.23)

provided |p′(z)| and |q′(z)| attain their maxima at the same point on the circle
|z| = 1, where

q(z) = znp

(
1

z

)
(1.24)

and m = min
|z|=k

|p(z)|.

Remark 2. For α = 0, inequality (1.22) reduces to inequality (1.11).

2 Lemmas.

For the proofs of the theorems, we require the following lemmas. The first
lemma is a special case of a result due to Govil and Rahman [11].

Lemma 1. If p(z) is a polynomial of degree n, then on |z| = 1

|p′(z)|+ |q′(z)| ≤ nmax
|z|=1

|p(z)|, (2.1)

where

q(z) = znp

(
1

z

)
.

Lemma 2. If p(z) is a polynomial of degree n having no zero in |z| < 1,
then for every R ≥ 1 and every r > 0,

2π∫
0

∣∣∣p(Reiθ)∣∣∣r dθ ≤ (Cr)
r

2π∫
0

∣∣∣p(eiθ)∣∣∣r dθ, (2.2)

where

Cr =

{
2π∫
0

∣∣1 +Rneiθ
∣∣r dθ} 1

r

{
2π∫
0

|1 + eiθ|r dθ
} 1
r

. (2.3)

Lemma 2 was proved by Boas and Rahman [4] for r ≥ 1 and by Rahman
and Schmeisser [16] for 0 < r < 1.
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Lemma 3. If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k,
k ≥ 1, then for every r > 0,

n‖p‖r ≤ ‖1 + knz‖r‖p′‖∞, (2.4)

where,

q(z) = znp

(
1

z

)
.

Proof of Lemma 3. Since p(z) has all its zeros in |z| ≤ k, k ≥ 1, the poly-
nomial E(z) = p(kz) has all its zeros in |z| ≤ 1 and hence the polynomial

F (z) = znE(1
z ) has all its zeros in |z| ≥ 1. If zν , ν = 1, 2, 3, ......, n are the zeros

of F (z), then obviously |zν | ≥ 1, 1 ≤ ν ≤ n and

zF ′(z)

F (z)
=

n∑
v=1

z

z − zv
, (2.5)

so that for points eiθ, 0 ≤ θ < 2π, for which F (eiθ) 6= 0, we have

Re

(
eiθF ′(eiθ)

F (eiθ)

)
=

n∑
ν=1

Re

(
eiθ

eiθ − zν

)
≤ n

2
, (2.6)

which gives ∣∣∣∣∣eiθF ′
(
eiθ
)

nF (eiθ)

∣∣∣∣∣ ≤
∣∣∣∣∣1− eiθF ′

(
eiθ
)

nF (eiθ)

∣∣∣∣∣ , (2.7)

for points eiθ, 0 ≤ θ < 2π, for which F
(
eiθ
)
6= 0.

Inequality (2.7) is equivalent to∣∣∣F ′ (eiθ)∣∣∣ ≤ ∣∣∣nF (eiθ)− eiθF ′ (eiθ)∣∣∣ , (2.8)

for points eiθ, 0 ≤ θ < 2π, for which F
(
eiθ
)
6= 0. Also inequality (2.8) trivially

holds for the points eiθ, 0 ≤ θ < 2π, for which F
(
eiθ
)

= 0. Hence it follows that
for |z| = 1

|F ′(z)| ≤
∣∣nF (z)− zF ′(z)

∣∣ . (2.9)

Since E(z) has all its zeros in |z| ≤ 1, by Gauss Lucas Theorem E′(z) has all
its zeros in |z| ≤ 1 and hence the polynomial

zn−1E′
(

1

z

)
= nF (z)− zF ′(z) (2.10)

has all its zeros in |z| ≥ 1.
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From (2.10) it follows that the function

W (z) =
zF ′(z)

nF (z)− zF ′(z)
(2.11)

is analytic in |z| ≤ 1 with |W (z)| ≤ 1 for |z| ≤ 1 and W (0) = 0, hence the
function 1 +W (z) is subordinate to the function 1 + z for |z| ≤ 1. Hence, by a
well- known property of subordination [12], we have for every r > 0,

2π∫
0

∣∣∣1 +W (eiθ)
∣∣∣r dθ ≤ 2π∫

0

∣∣∣1 + eiθ
∣∣∣r dθ. (2.12)

Now,

1 +W (z) =
nF (z)

nF (z)− zF ′(z)
. (2.13)

For |z| = 1, we have from (2.10)

|E′(z)| =

∣∣∣∣∣zn−1E′
(

1

z

)∣∣∣∣∣ =
∣∣nF (z)− zF ′(z)

∣∣ . (2.14)

For |z| = 1, using equation (2.14), relation (2.13) gives

n|F (z)| = |1 +W (z)||nF (z)− zF ′(z)| = |1 +W (z)||E′(z)|. (2.15)

Combining (2.12) and (2.15), we have for every r > 0

nr
2π∫
0

∣∣∣F (eiθ)∣∣∣r dθ ≤
 2π∫

0

∣∣∣1 + eiθ
∣∣∣r dθ

{max
|z|=1

∣∣E′(z)∣∣}r . (2.16)

Using inequality (2.2) of Lemma 2 to F (z), we get for every k ≥ 1 and every
r > 0 ∫ 2π

0
|F (keiθ)|rdθ ≤ (Cr)

r

∫ 2π

0
|F (eiθ)|rdθ, (2.17)

where

Cr =

(
2π∫
0

∣∣1 + kneiθ
∣∣r dθ) 1

r

(
2π∫
0

|1 + eiθ|rdθ
) 1
r

.
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Since F (z) = znE

(
1

z

)
= znp

(
k

z

)
, we have for 0 ≤ θ < 2π

∣∣∣F (keiθ)∣∣∣ =
∣∣∣kneinθp(eiθ)∣∣∣ = kn

∣∣∣p(eiθ)∣∣∣ . (2.18)

From (2.16), (2.17) and (2.18), it follows that for every r > 0

knrnr
2π∫
0

∣∣∣p(eiθ)∣∣∣r dθ ≤nr (Cr)
r

2π∫
0

∣∣∣F (eiθ)∣∣∣r dθ
≤

 2π∫
0

∣∣∣1 + kneiθ
∣∣∣r dθ

{max
|z|=1

|E′(z)|
}r

. (2.19)

Since E′(z) = kp′(kz), we have

max
|z|=1

|E′(z)| = kmax
|z|=1

∣∣p′(kz)∣∣ = kmax
|z|=k

|p′(z)|. (2.20)

If h(z) is a polynomial of degree n, then it is a simple deduction from the
maximum modulus principle [15] that

max
|z|=R≥1

|h(z)| ≤ Rn max
|z|=1

|h(z)|. (2.21)

Applying (2.21) to p′(z) for R = k ≥ 1 and using the result to (2.20), we have

max
|z|=1

|E′(z)| ≤ kn max
|z|=1

|p′(z)|. (2.22)

Using (2.22) to (2.19), we get

nr
2π∫
0

∣∣∣p(eiθ)∣∣∣r dθ ≤
 2π∫

0

∣∣∣1 + kneiθ
∣∣∣r dθ

{max
|z|=1

|p′(z)|
}r

, (2.23)

which is equivalent to

n

 2π∫
0

∣∣∣p(eiθ)∣∣∣r dθ


1
r

≤

 2π∫
0

∣∣∣1 + kneiθ
∣∣∣r dθ


1
r

max
|z|=1

|p′(z)|, (2.24)

which completes the proof of Lemma 3. QED
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3 Proofs of the Theorems

We first prove Theorem 3.

Proof of Theorem 3. Let p(z) be a polynomial of degree n having no zero in

|z| < k, k ≤ 1. Then q(z) = znp
(

1
z

)
has all its zeros in |z| ≤ 1/k, 1/k ≥ 1. If m′

denotes min
|z|= 1

k

|q(z)|, then

m′ = min
|z|= 1

k

|q(z)| = 1

kn
min
|z|=k

|p(z)| = m

kn
,

where m = min
|z|=k

|p(z)|. Now, for every real or complex number α with |α| < 1,

it follows by Rouche’s theorem that the polynomial

Q(z) = q(z) + αm′ = q(z) + α
m

kn
, (3.1)

has all its zeros in |z| ≤ 1
k , 1

k ≥ 1. Applying Lemma 3 to the polynomial Q(z),
we have for every r > 0

n

 2π∫
0

∣∣∣Q(eiθ)∣∣∣r dθ


1
r

≤

 2π∫
0

∣∣∣∣1 +
eiθ

kn

∣∣∣∣r dθ


1
r

max
|z|=1

|Q′(z)|,

which is equivalent to

knn

 2π∫
0

∣∣∣q(eiθ) + α
m

kn

∣∣∣r dθ


1
r

≤

 2π∫
0

∣∣∣kn + eiθ
∣∣∣r dθ


1
r

max
|z|=1

|q′(z)|. (3.2)

By Lemma 1, we have for |z| = 1

|p′(z)|+ |q′(z)| ≤ nmax
|z|=1

|p(z)|. (3.3)

Since |p′(z)| and |q′(z)| attain their maxima at the same point on |z| = 1, let z0

on |z| = 1 be such that max
|z|=1

|q′(z)| = |q′(z0)|, then

max
|z|=1

|p′(z)| = |p′(z0)|.

Now, in particular (3.3) gives

|q′(z0)|+ |p′(z0)| ≤ nmax
|z|=1

|p(z)|, (3.4)
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which implies

max
|z|=1

|q′(z)| ≤ nmax
|z|=1

|p(z)| −max
|z|=1

|p′(z)|. (3.5)

Using (3.5) to (3.2), we have

knn

 2π∫
0

∣∣∣q(eiθ) + α
m

kn

∣∣∣r dθ


1
r

≤

 2π∫
0

∣∣∣kn + eiθ
∣∣∣r dθ


1
r

×
{
nmax
|z|=1

|p(z)| −max
|z|=1

|p′(z)|
}
. (3.6)

From q(z) = znp

(
1

z

)
, we have

q
(
eiθ
)

= eniθp (eiθ). (3.7)

Using (3.7) to (3.6), we have

knn

 2π∫
0

∣∣∣eniθp (eiθ) + α
m

kn

∣∣∣r dθ


1
r

≤

 2π∫
0

∣∣∣kn + eiθ
∣∣∣r dθ


1
r

×
{
nmax
|z|=1

|p(z)| −max
|z|=1

|p′(z)|
}
, (3.8)

which completes the proof of Theorem 3. QED

Proof of Theorem 2. The proof of this theorem follows on the same lines as
that of Theorem 3 but instead of applying Lemma 3 to Q(z) given by (3.1), we

simply apply the same lemma to q(z) = znp(1
z ) and we omit it. QED
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