L^{r} inequalities for the derivative of a polynomial

Khangembam Babina Devi

Department of Mathematics, National Institute of Technology Manipur, Langol, Manipur 795004, India
khangembambabina@gmail.com

Kshetrimayum Krishnadas

Department of Mathematics, Shaheed Bhagat Singh College, University of Delhi 110017, India kshetrimayum.krishnadas@sbs.du.ac.in

Barchand Chanam

Department of Mathematics, National Institute of Technology Manipur, Langol, Manipur 795004, India
barchand_2004@yahoo.co.in

Received: 17.2.2021; accepted: 5.8.2021.
Abstract. Let $p(z)$ be a polynomial of degree n having no zero in $|z|<k, k \leq 1$, then Govil [Proc. Nat. Acad. Sci., 50, (1980), 50-52] proved

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{n}} \max _{|z|=1}|p(z)|
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain their maxima at the same point on the circle $|z|=1$, where

$$
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}
$$

In this paper, we not only obtain an integral mean inequality for the above inequality but also extend an improved version of it into L^{r} norm.

Keywords: Inequalities, Polynomials, Zeros, Maximum modulus, L^{r} norm
MSC 2020 classification: primary 30C15, secondary 30C10

1 Introduction

Let $p(z)$ be a polynomial of degree n . We define

$$
\begin{equation*}
\|p\|_{r}=\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}, \quad 0<r<\infty \tag{1.1}
\end{equation*}
$$

[^0]If we let $r \rightarrow \infty$ in (1.1) and make use of the well-known fact from analysis (see [18, ,19]) that

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}}=\max _{|z|=1}|p(z)| \tag{1.2}
\end{equation*}
$$

we can suitably denote

$$
\begin{equation*}
\|p\|_{\infty}=\max _{|z|=1}|p(z)| . \tag{1.3}
\end{equation*}
$$

Similarly, we can define

$$
\|p\|_{0}=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|p\left(e^{i \theta}\right)\right| d \theta\right\}
$$

and show that $\lim _{r \rightarrow 0^{+}}\|p\|_{r}=\|p\|_{0}$. It would be of further interest that by taking limit as $r \rightarrow 0^{+}$that the stated results on L^{r} norm inequalities holding for $r>0$, hold for $r=0$ as well.

The famous result of Bernstein [3] states that if $p(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq n\|p\|_{\infty} \tag{1.4}
\end{equation*}
$$

Inequality (1.4) can be obtained by letting $r \rightarrow \infty$ in the inequality

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{r} \leq n\|p\|_{r}, \quad r>0 \tag{1.5}
\end{equation*}
$$

Inequality (1.5) was proved by Zygmund [20] for $r \geq 1$ and by Arestov [1] for $0<r<1$.

If we restrict to the class of polynomials having no zero in $|z|<1$, then inequalities (1.4) and (1.5) can be respectively improved as

$$
\begin{gather*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{2}\|p\|_{\infty} \tag{1.6}\\
\left\|p^{\prime}\right\|_{r} \leq \frac{n}{\|1+z\|_{r}}\|p\|_{r}, \quad r>0 \tag{1.7}
\end{gather*}
$$

Inequality (1.6) was conjectured by Erdös and later verified by Lax [13] whereas inequality (1.7) was proved by de-Bruijn [5] for $r \geq 1$ and by Rahman and Schmeisser [16] for $0<r<1$.

As a generalization of (1.6), Malik (14] proved that if $p(z)$ is a polynomial of degree n having no zero in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{1+k}\|p\|_{\infty} \tag{1.8}
\end{equation*}
$$

whereas, under the same hypotheses of the polynomial $p(z)$, Govil and Rahman [11] extended inequality (1.8) to L^{r} norm by showing that

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{r} \leq \frac{n}{\|z+k\|_{r}}\|p\|_{r}, \quad r \geq 1 \tag{1.9}
\end{equation*}
$$

Gardner and Weems [9] and independently by Rather [17] showed that inequality (1.9) holds true for $0<r<1$ as well.

For the class of polynomials $p(z)$ of degree n having no zero in $|z|<k, k \leq 1$, the precise upper bound estimate for maximum of $\left|p^{\prime}(z)\right|$ on $|z|=1$, in general, does not seem to be easily obtainable. For quite sometime, it was believed that if $p(z)$ has no zero in $|z|<k, k \leq 1$, then the inequality analogous to 1.8 should be

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{1+k^{n}}\|p\|_{\infty} \tag{1.10}
\end{equation*}
$$

untill E.B. Saff gave the example $p(z)=\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)$ to counter this belief.
There are many extensions of inequality 1.9) (see Chan and Malik 6], Dewan and Bidkham [7], and Dewan and Mir [8]). However, for the class of polynomials having no zero in $|z|<k, k \leq 1$, Govil [10] proved inequality 1.10 with extra condition.

Theorem 1. If $p(z)$ is a polynomial of degree n having no zero in $|z|<k$, $k \leq 1$, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{1+k^{n}}\|p\|_{\infty} \tag{1.11}
\end{equation*}
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain their maxima at the same point on the circle $|z|=1$, where

$$
\begin{equation*}
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)} \tag{1.12}
\end{equation*}
$$

In this paper, we shall prove the following more general result which as a special case gives inequality (1.11). In fact, we prove

Theorem 2. If $p(z)$ is a polynomial of degree n having no zero in $|z|<k$, $k \leq 1$, then for every $r>0$,

$$
\begin{equation*}
k^{n} n\|p\|_{r} \leq\left\|z+k^{n}\right\|_{r}\left\{n\|p\|_{\infty}-\left\|p^{\prime}\right\|_{\infty}\right\} \tag{1.13}
\end{equation*}
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain their maxima at the same point on the circle $|z|=1$, where

$$
\begin{equation*}
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)} \tag{1.14}
\end{equation*}
$$

Further, we prove the following improved result which sharpens Theorem 2 . More precisely, we obtain

Theorem 3. If $p(z)$ is a polynomial of degree n having no zero in $|z|<k$, $k \leq 1$, then for every real or complex number α with $|\alpha|<1$ and for every $r>0$,

$$
\begin{equation*}
k^{n} n\left\|z^{n} \overline{p(z)}+\alpha \frac{m}{k^{n}}\right\|_{r} \leq\left\|z+k^{n}\right\|_{r}\left\{n\|p\|_{\infty}-\left\|p^{\prime}\right\|_{\infty}\right\}, \tag{1.15}
\end{equation*}
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain their maxima at the same point on the circle $|z|=1$, where

$$
\begin{equation*}
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)} \tag{1.16}
\end{equation*}
$$

and $m=\min _{|z|=k}|p(z)|$.
Letting $r \rightarrow \infty$ on both sides of (1.13), we readily get inequality (1.11) of Theorem 1 .

Remark 1. Further, taking limit as $r \rightarrow \infty$ on both sides of (1.15), we get

$$
\begin{equation*}
k^{n} n \max _{|z|=1}\left|z^{n} \overline{p(z)}+\alpha \frac{m}{k^{n}}\right| \leq\left(1+k^{n}\right)\left\{n \max _{|z|=1}|p(z)|-\max _{|z|=1}\left|p^{\prime}(z)\right|\right\} . \tag{1.17}
\end{equation*}
$$

Suppose z_{0} on $|z|=1$ be such that $\max _{|z|=1}|p(z)|=\left|p\left(z_{0}\right)\right|$. Then, in particular,

$$
\begin{equation*}
\left|z_{0}^{n} \overline{p\left(z_{0}\right)}+\alpha \frac{m}{k^{n}}\right| \leq \max _{|z|=1}\left|z^{n} \overline{p(z)}+\alpha \frac{m}{k^{n}}\right| \tag{1.18}
\end{equation*}
$$

Now we can choose the argument of α suitably such that

$$
\begin{equation*}
\left|z_{0}^{n} \overline{\overline{p\left(z_{0}\right)}}+\alpha \frac{m}{k^{n}}\right|=\left|p\left(z_{0}\right)\right|+|\alpha| \frac{m}{k^{n}} \tag{1.19}
\end{equation*}
$$

Using (1.19) to (1.18), we have

$$
\begin{equation*}
\left|p\left(z_{0}\right)\right|+|\alpha| \frac{m}{k^{n}} \leq \max _{|z|=1}\left|z^{n} \overline{p(z)}+\alpha \frac{m}{k^{n}}\right| \tag{1.20}
\end{equation*}
$$

On combining (1.17) and 1.20, we have

$$
\begin{equation*}
k^{n} n\left\{\max _{|z|=1}|p(z)|+|\alpha| \frac{m}{k^{n}}\right\} \leq\left(1+k^{n}\right)\left\{n \max _{|z|=1}|p(z)|-\max _{|z|=1}\left|p^{\prime}(z)\right|\right\}, \tag{1.21}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{n}}\left\{\max _{|z|=1}|p(z)|-|\alpha| m\right\} . \tag{1.22}
\end{equation*}
$$

If we take limit as $|\alpha| \rightarrow 1$ in (1.22), we get the following inequality proved by Aziz and Ahmad [2, Theorem 3].

Corollary 1. If $p(z)$ is a polynomial of degree n having no zero in $|z|<k$, $k \leq 1$, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{1+k^{n}}\left\{\|p\|_{\infty}-m\right\} \tag{1.23}
\end{equation*}
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain their maxima at the same point on the circle $|z|=1$, where

$$
\begin{equation*}
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)} \tag{1.24}
\end{equation*}
$$

and $m=\min _{|z|=k}|p(z)|$.
Remark 2. For $\alpha=0$, inequality (1.22) reduces to inequality (1.11).

2 Lemmas.

For the proofs of the theorems, we require the following lemmas. The first lemma is a special case of a result due to Govil and Rahman [11].

Lemma 1. If $p(z)$ is a polynomial of degree n, then on $|z|=1$

$$
\begin{equation*}
\left|p^{\prime}(z)\right|+\left|q^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)|, \tag{2.1}
\end{equation*}
$$

where

$$
q(z)=z^{n} \overline{\left(\frac{1}{\bar{z}}\right)} .
$$

Lemma 2. If $p(z)$ is a polynomial of degree n having no zero in $|z|<1$, then for every $R \geq 1$ and every $r>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{r} d \theta \leq\left(C_{r}\right)^{r} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{r}=\frac{\left\{\int_{0}^{2 \pi}\left|1+R^{n} e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}}}{\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}}} \tag{2.3}
\end{equation*}
$$

Lemma 2 was proved by Boas and Rahman [4] for $r \geq 1$ and by Rahman and Schmeisser [16] for $0<r<1$.

Lemma 3. If $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, $k \geq 1$, then for every $r>0$,

$$
\begin{equation*}
n\|p\|_{r} \leq\left\|1+k^{n} z\right\|_{r}\left\|p^{\prime}\right\|_{\infty} \tag{2.4}
\end{equation*}
$$

where,

$$
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}
$$

Proof of Lemma 3. Since $p(z)$ has all its zeros in $|z| \leq k, k \geq 1$, the polynomial $E(z)=p(k z)$ has all its zeros in $|z| \leq 1$ and hence the polynomial $F(z)=z^{n} \overline{E\left(\frac{1}{\bar{z}}\right)}$ has all its zeros in $|z| \geq 1$. If $z_{\nu}, \nu=1,2,3, \ldots \ldots, n$ are the zeros of $F(z)$, then obviously $\left|z_{\nu}\right| \geq 1,1 \leq \nu \leq n$ and

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=\sum_{v=1}^{n} \frac{z}{z-z_{v}} \tag{2.5}
\end{equation*}
$$

so that for points $e^{i \theta}, 0 \leq \theta<2 \pi$, for which $F\left(e^{i \theta}\right) \neq 0$, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{e^{i \theta} F^{\prime}\left(e^{i \theta}\right)}{F\left(e^{i \theta}\right)}\right)=\sum_{\nu=1}^{n} \operatorname{Re}\left(\frac{e^{i \theta}}{e^{i \theta}-z_{\nu}}\right) \leq \frac{n}{2} \tag{2.6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\left|\frac{e^{i \theta} F^{\prime}\left(e^{i \theta}\right)}{n F\left(e^{i \theta}\right)}\right| \leq\left|1-\frac{e^{i \theta} F^{\prime}\left(e^{i \theta}\right)}{n F\left(e^{i \theta}\right)}\right| \tag{2.7}
\end{equation*}
$$

for points $e^{i \theta}, 0 \leq \theta<2 \pi$, for which $F\left(e^{i \theta}\right) \neq 0$.
Inequality (2.7) is equivalent to

$$
\begin{equation*}
\left|F^{\prime}\left(e^{i \theta}\right)\right| \leq\left|n F\left(e^{i \theta}\right)-e^{i \theta} F^{\prime}\left(e^{i \theta}\right)\right|, \tag{2.8}
\end{equation*}
$$

for points $e^{i \theta}, 0 \leq \theta<2 \pi$, for which $F\left(e^{i \theta}\right) \neq 0$. Also inequality (2.8) trivially holds for the points $e^{i \theta}, 0 \leq \theta<2 \pi$, for which $F\left(e^{i \theta}\right)=0$. Hence it follows that for $|z|=1$

$$
\begin{equation*}
\left|F^{\prime}(z)\right| \leq\left|n F(z)-z F^{\prime}(z)\right| \tag{2.9}
\end{equation*}
$$

Since $E(z)$ has all its zeros in $|z| \leq 1$, by Gauss Lucas Theorem $E^{\prime}(z)$ has all its zeros in $|z| \leq 1$ and hence the polynomial

$$
\begin{equation*}
z^{n-1} \overline{E^{\prime}\left(\frac{1}{\bar{z}}\right)}=n F(z)-z F^{\prime}(z) \tag{2.10}
\end{equation*}
$$

has all its zeros in $|z| \geq 1$.

From 2.10 it follows that the function

$$
\begin{equation*}
W(z)=\frac{z F^{\prime}(z)}{n F(z)-z F^{\prime}(z)} \tag{2.11}
\end{equation*}
$$

is analytic in $|z| \leq 1$ with $|W(z)| \leq 1$ for $|z| \leq 1$ and $W(0)=0$, hence the function $1+W(z)$ is subordinate to the function $1+z$ for $|z| \leq 1$. Hence, by a well- known property of subordination [12], we have for every $r>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+W\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta \tag{2.12}
\end{equation*}
$$

Now,

$$
\begin{equation*}
1+W(z)=\frac{n F(z)}{n F(z)-z F^{\prime}(z)} \tag{2.13}
\end{equation*}
$$

For $|z|=1$, we have from 2.10

$$
\begin{equation*}
\left|E^{\prime}(z)\right|=\left|z^{n-1} \overline{E^{\prime}\left(\frac{1}{\bar{z}}\right)}\right|=\left|n F(z)-z F^{\prime}(z)\right| \tag{2.14}
\end{equation*}
$$

For $|z|=1$, using equation (2.14), relation (2.13) gives

$$
\begin{equation*}
n|F(z)|=|1+W(z)|\left|n F(z)-z F^{\prime}(z)\right|=|1+W(z)|\left|E^{\prime}(z)\right| \tag{2.15}
\end{equation*}
$$

Combining 2.12 and 2.15 , we have for every $r>0$

$$
\begin{equation*}
n^{r} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{r} d \theta \leq\left(\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right)\left\{\max _{|z|=1}\left|E^{\prime}(z)\right|\right\}^{r} \tag{2.16}
\end{equation*}
$$

Using inequality 2.2 of Lemma 2 to $F(z)$, we get for every $k \geq 1$ and every $r>0$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|F\left(k e^{i \theta}\right)\right|^{r} d \theta \leq\left(C_{r}\right)^{r} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{r} d \theta \tag{2.17}
\end{equation*}
$$

where

$$
C_{r}=\frac{\left(\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}}{\left(\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}}
$$

Since $F(z)=z^{n} \overline{E\left(\frac{1}{\bar{z}}\right)}=z^{n} \overline{p\left(\frac{k}{\bar{z}}\right)}$, we have for $0 \leq \theta<2 \pi$

$$
\begin{equation*}
\left|F\left(k e^{i \theta}\right)\right|=\left|k^{n} e^{i n \theta} \overline{p\left(e^{i \theta}\right)}\right|=k^{n}\left|p\left(e^{i \theta}\right)\right| \tag{2.18}
\end{equation*}
$$

From (2.16), 2.17) and 2.18, it follows that for every $r>0$

$$
\begin{align*}
k^{n r} n^{r} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta & \leq n^{r}\left(C_{r}\right)^{r} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{r} d \theta \\
& \leq\left(\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{r} d \theta\right)\left\{\max _{|z|=1}\left|E^{\prime}(z)\right|\right\}^{r} \tag{2.19}
\end{align*}
$$

Since $E^{\prime}(z)=k p^{\prime}(k z)$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|E^{\prime}(z)\right|=k \max _{|z|=1}\left|p^{\prime}(k z)\right|=k \max _{|z|=k}\left|p^{\prime}(z)\right| \tag{2.20}
\end{equation*}
$$

If $h(z)$ is a polynomial of degree n, then it is a simple deduction from the maximum modulus principle [15] that

$$
\begin{equation*}
\max _{|z|=R \geq 1}|h(z)| \leq R^{n} \max _{|z|=1}|h(z)| \tag{2.21}
\end{equation*}
$$

Applying (2.21) to $p^{\prime}(z)$ for $R=k \geq 1$ and using the result to 2.20 , we have

$$
\begin{equation*}
\max _{|z|=1}\left|E^{\prime}(z)\right| \leq k^{n} \max _{|z|=1}\left|p^{\prime}(z)\right| \tag{2.22}
\end{equation*}
$$

Using 2.22 to 2.19 , we get

$$
\begin{equation*}
n^{r} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta \leq\left(\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{r} d \theta\right)\left\{\max _{|z|=1}\left|p^{\prime}(z)\right|\right\}^{r} \tag{2.23}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
n\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \leq\left(\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \max _{|z|=1}\left|p^{\prime}(z)\right| \tag{2.24}
\end{equation*}
$$

which completes the proof of Lemma 3 .

3 Proofs of the Theorems

We first prove Theorem 3 .
Proof of Theorem 3. Let $p(z)$ be a polynomial of degree n having no zero in $|z|<k, k \leq 1$. Then $q(z)=z^{n} p\left(\frac{1}{\bar{z}}\right)$ has all its zeros in $|z| \leq 1 / k, 1 / k \geq 1$. If m^{\prime} denotes $\min _{|z|=\frac{1}{k}}|q(z)|$, then

$$
m^{\prime}=\min _{|z|=\frac{1}{k}}|q(z)|=\frac{1}{k^{n}} \min _{|z|=k}|p(z)|=\frac{m}{k^{n}}
$$

where $m=\min _{|z|=k}|p(z)|$. Now, for every real or complex number α with $|\alpha|<1$, it follows by Rouche's theorem that the polynomial

$$
\begin{equation*}
Q(z)=q(z)+\alpha m^{\prime}=q(z)+\alpha \frac{m}{k^{n}} \tag{3.1}
\end{equation*}
$$

has all its zeros in $|z| \leq \frac{1}{k}, \frac{1}{k} \geq 1$. Applying Lemma 3 to the polynomial $Q(z)$, we have for every $r>0$

$$
n\left(\int_{0}^{2 \pi}\left|Q\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \leq\left(\int_{0}^{2 \pi}\left|1+\frac{e^{i \theta}}{k^{n}}\right|^{r} d \theta\right)^{\frac{1}{r}} \max _{|z|=1}\left|Q^{\prime}(z)\right|
$$

which is equivalent to

$$
\begin{equation*}
k^{n} n\left(\int_{0}^{2 \pi}\left|q\left(e^{i \theta}\right)+\alpha \frac{m}{k^{n}}\right|^{r} d \theta\right)^{\frac{1}{r}} \leq\left(\int_{0}^{2 \pi}\left|k^{n}+e^{i \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \max _{|z|=1}\left|q^{\prime}(z)\right| \tag{3.2}
\end{equation*}
$$

By Lemma 1, we have for $|z|=1$

$$
\begin{equation*}
\left|p^{\prime}(z)\right|+\left|q^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{3.3}
\end{equation*}
$$

Since $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain their maxima at the same point on $|z|=1$, let z_{0} on $|z|=1$ be such that $\max _{|z|=1}\left|q^{\prime}(z)\right|=\left|q^{\prime}\left(z_{0}\right)\right|$, then

$$
\max _{|z|=1}\left|p^{\prime}(z)\right|=\left|p^{\prime}\left(z_{0}\right)\right|
$$

Now, in particular (3.3) gives

$$
\begin{equation*}
\left|q^{\prime}\left(z_{0}\right)\right|+\left|p^{\prime}\left(z_{0}\right)\right| \leq n \max _{|z|=1}|p(z)| \tag{3.4}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\max _{|z|=1}\left|q^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)|-\max _{|z|=1}\left|p^{\prime}(z)\right| . \tag{3.5}
\end{equation*}
$$

Using (3.5) to (3.2), we have

$$
\begin{align*}
k^{n} n\left(\int_{0}^{2 \pi}\left|q\left(e^{i \theta}\right)+\alpha \frac{m}{k^{n}}\right|^{r} d \theta\right)^{\frac{1}{r}} \leq & \left(\int_{0}^{2 \pi}\left|k^{n}+e^{i \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \\
& \times\left\{n \max _{|z|=1}|p(z)|-\max _{|z|=1}\left|p^{\prime}(z)\right|\right\} \tag{3.6}
\end{align*}
$$

From $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$, we have

$$
\begin{equation*}
q\left(e^{i \theta}\right)=e^{n i \theta} \overline{p\left(e^{i \theta}\right)} \tag{3.7}
\end{equation*}
$$

Using (3.7) to (3.6), we have

$$
\begin{align*}
k^{n} n\left(\int_{0}^{2 \pi}\left|e^{n i \theta} \overline{p\left(e^{i \theta}\right)}+\alpha \frac{m}{k^{n}}\right|^{r} d \theta\right)^{\frac{1}{r}} \leq & \left(\int_{0}^{2 \pi}\left|k^{n}+e^{i \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \\
& \times\left\{n \max _{|z|=1}|p(z)|-\max _{|z|=1}\left|p^{\prime}(z)\right|\right\} \tag{3.8}
\end{align*}
$$

which completes the proof of Theorem 3.
Proof of Theorem 2. The proof of this theorem follows on the same lines as that of Theorem 3 but instead of applying Lemma 3 to $Q(z)$ given by (3.1), we simply apply the same lemma to $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$ and we omit it.

References

[1] V.V. Arestov: On inequalities for trigonometric polynomials and their derivative, Izv. Akad. Nauk. SSSR. Ser. Math., 45, n. 1(1981), 3-22.
[2] A. Aziz, N. Ahmad: Inequalities for the derivative of a polynomial, Proc. Indian Acad. Sci.,(Math. Sci.), 107, n. 2(1997), 189-196.
[3] S. Bernstein: Lecons Sur Les Proprits extrmales et la meilleure approximation des functions analytiques dune fonctions reele, Paris, 1926.
[4] R. P. Boas Jr., Q.I. Rahman: L^{p} inequalities for polynomials and entire functions, Arch. Rational Mech. Anal., 11, (1962), 34-39.
[5] N.G. De-Bruisn: Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetench. Proc. Ser. A, 50, 1947,1265-1272, Indag. Math., 9, (1947), 591-598.
[6] T.N. Chan, M.A. Malik: On Erdös-Lax theorem, Proc. Indian Acad. Sci.(Math. Sci.), 92, n. 3, (1983), 191-193.
[7] K.K. Dewan, M. Bidkham: Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., 166, (1992), 319-324.
[8] K.K. Dewan, A. Mir: On the maximum modulus of a polynomial and its derivatives, Int. J. Math. Math. Sci., 16, (2005), 2641-2645.
[9] R.B. Gardner, A. Weems: A Bernstein-type of Lp inequality for a certain class of polynomials, J. Math. Anal. Appl., 219, (1998), 472-478.
[10] N.K. Govil: On the Theorem of S. Bernstein, Proc. Nat. Acad. Sci., 50, (1980), 50-52.
[11] N.K. Govil, Q.I. Rahman: Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc., 137, (1969), 501-517.
[12] E. Hille: Analytic function theory Vol. II, Ginn. and Company, New York, Toronto, 1962.
[13] P.D. Lax: Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50, (1944), 509-513.
[14] M.A. Malik: On the derivative of a polynomial, J. London Math. Soc., 1, (1969), 57-60.
[15] G. Pólya, G. Szegö: Aufgaben and Lehratze ous der Analysis, Springer-Verlag, Berlin, 1925.
[16] Q.I. Rahman, G. Schmeisser: L^{p} inequalities for polynomials, J. Approx. Theory, 53, (1988), 26-32.
[17] N.A. Rather: Extremal properties and location of the zeros of polynomials, Ph.D. Thesis, University of Kashmir, 1998.
[18] W. Rudin: Real and complex Analysis, Tata Mcgraw-Hill Publishing Company (Reprinted in India), 1977.
[19] A.E. Taylor: Introduction to Functional Analysis, John Wiley and Sons, Inc. New York, 1958.
[20] A. Zygmund: A remark on conjugate series, Proc. London Math. Soc., 34, (1932), 392-400.

[^0]: http://siba-ese.unisalento.it/(C) 2021 Università del Salento

