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Abstract. Let G = (V,E) be a connected graph. The distance between an edge e = xy
and a vertex v is defined as d(e, v) = min{d(x, v),d(y, v)}. A nonempty set S ⊆ V (G) is an
edge metric generator for G if for any two distinct edges e1, e2 ∈ E(G), there exists a vertex
s ∈ S such that d(e1, s) 6= d(e2, s). An edge metric generating set with the smallest number
of elements is called an edge metric basis of G, and the number of elements in an edge metric
basis is called the edge metric dimension of G and it is denoted by edim(G). In this paper, we
study the edge metric dimension of a blow up of a graph G, and also we study the edge metric
dimension of the zero divisor graph of the ring of integers modulo n. Moreover, the Wiener
index and the hyper-Wiener index of the blow up of certain graphs are computed.
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Introduction

1 Introduction

Let G = (V,E) be a simple connected graph and V (G) and E(G) denote the
vertex set and edge set of G, respectively. For a vertex v of G, NG(v) denotes
the set of vertices of G that are adjacent to v in G, and we denote |NG(v)| by
deg(v). Also, we denote the number of vertices of G by |G|. For distinct vertices
u and v of G, we write u ∼ v if u and v are adjacent in G and the edge e
between u and v will be denoted by e = uv. Also the distance between two
distinct vertices u and v, denoted by d(u, v), is the length of the shortest path
connecting u and v, if such a path exists; otherwise, we set d(u, v) := ∞. The
diameter of a graph G is diam(G) = sup{d(a, b) : a and b are distinct vertices of
G}. The distance between an edge e = xy and a vertex v is defined as follows:

d(e, v) = min{d(x, v),d(y, v)}.
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A vertex v distinguishes two edges e1 and e2 if d(e1, v) 6= d(e2, v). A nonempty
set S ⊆ V (G) is an edge metric generator of a graph G if for any two distinct
edges e1, e2 ∈ E(G), there exists a vertex s ∈ S such that s distinguishes e1

and e2. An edge metric generating set with the smallest number of elements is
called an edge metric basis of G, and the number of elements in an edge metric
basis is called the edge metric dimension of G and it is denoted by edim(G). For
an ordered subset S = {v1, . . . , vk} of vertices in G and an edge e of E(G), the
edge metric S-representation of e is the vector r(e|S) = (d(e, v1), . . . , d(e, vk)).
Observe that S is an edge metric generator if and only if the edge metric S-
representations are different for all edges of E(G).

The concept of edge metric dimension was introduced in [14] in analogy
with the classical metric dimension dim(G), which was introduced by Slater
in 1975 in [20]. dim(G) is defined as follows: a vertex v ∈ V (G) distinguishes
v1, v2 ∈ V (G) if d(v, v1) 6= d(v, v2). A set S ⊆ V (G) is a vertex generating set
of G if for any two distinct v1, v2 ∈ V (G), there exists a vertex s ∈ S such that
s distinguishes v1 and v2. A vertex generating set with the smallest number of
elements is a vertex basis of G, and the number of elements in a vertex basis is
its metric dimension (denoted by dim(G)). See [6, 9, 12] and [24, 18] for more
details on dim(G) and edim(G), respectively. Recently in [24], the edge metric
dimension of some graph operations was investigated.

The Wiener index, W (G), is equal to the sum of all shortest distances in
a graph (cf. [21]). In other words, W (G) = 1

2

∑
u∈V (G)

∑
v∈V (G) d(u, v). Wiener

number was defined in 1947 by an American chemist H. Wiener. He used this
index to estimate the boiling point of Alkans. There are many situations in
communication, facility location, cryptology, architecture etc. where the Wiener
index of the corresponding graph or the average distance is of great interest. One
of these problems, for example, is to find a spanning tree with minimum average
distance. The Wiener index is one of the most studied topological indices, both
from a theoretical point of view and applications, see for details [8], [10] and
[23].

The hyper-Wiener index of acyclic graphs was introduced by Milan Randic
in 1993. Then Klein et al. [16], generalized Randic’s definition for all connected
graphs, as a generalization of the Wiener index. It is WW (G) = 1

2W (G) +
1
2

∑
{u,v}⊆V (G) d

2(u, v), where d2(u, v) = d(u, v)2. We encourage the reader to
consult [4], [5], [11] and [15] for the mathematical properties of hyper-Wiener
index and its applications in chemistry.

In Section 2 of this paper, we study the edge metric dimension, the Wiener
index and the hyper-Wiener index of a blow up of a graph G. In Section 3, as
an example of the blow up of graphs, we study the edge metric dimension, the
Wiener index and the hyper-Wiener index of the zero divisor graph of the ring
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of integers modulo n.

All graphs considered in this paper are connected and simple. We say that
G is an empty graph if E(G) = ∅. Also, Kn and Kn denote the complete graph
with n vertices and its complement, respectively, and Pn denotes the path with
n vertices.

2 The blow up of a graph

For two graphs H1 and H2 with disjoint vertex sets, the join H1 ∨H2 of the
graphs H1 and H2 is the graph obtained from the union of H1 and H2 by adding
new edges from each vertex of H1 to every vertex of H2. The concept of join
graph is generalized (in [19], it is called as a generalized composition graph). Let
G be a graph on k vertices with V (G) = {v1, v2, . . . , vk}, and let H1, H2, . . . ,Hk

be k pairwise disjoint graphs. The G-generalized join graph G[H1, H2, . . . ,Hk]
of H1, H2, . . . ,Hk is the graph formed by replacing each vertex vi of G by the
graph Hi and then joining each vertex of Hi to each vertex of Hj whenever
vi ∼ vj in the graph G. Now, if the graph G consists of two adjacent vertices,
then the G-generalized join graph G[H1, H2] coincides with the join H1 ∨H2 of
the graphs H1 and H2. If each graph Hi is a complete graph or empty graph,
then G[H1, H2, . . . ,Hk] is called a blow up of G.

In the rest of the paper, we consider G[H1, H2, . . . ,Hk] as a blow up of
G, and we always assume that there exists 1 6 i 6 k such that |Hi| > 1,
in G[H1, H2, . . . ,Hk]. In the following proposition, we study the edge metric
dimension of G[H1, H2, . . . ,Hk].

Proposition 2.1. Assume that G is a connected graph on k vertices with
V (G) = {v1, v2, . . . , vk}, and G[H1, H2, . . . ,Hk] be the blow up of G. Then

k∑
i=1

|Hi| − k 6 edim(G[H1, H2, . . . ,Hk]) 6 edim(G) +
k∑
i=1

|Hi| − k.

Proof. First we show that at most one vertex from each graphHi can be removed
from any edge metric generator of G[H1, H2, . . . ,Hk]). To do this, assume that S
is an edge metric generator of G[H1, H2, . . . ,Hk] and let h1, . . . , hk be arbitrary
vertices in H1, . . . ,Hk, respectively, such that h1, . . . , hk /∈ S. For each 1 6
i 6 k, we show that Hi − {hi} ⊆ S. Suppose on the contrary that there exists
h′i ∈ Hi with h′i 6= hi such that h′i /∈ S. Since G[H1, H2, . . . ,Hk] is connected,
we have the edges e1 = hix and e2 = h′ix, for some vertex x ∈ V (G). We
have d(hi, s) = d(h′i, s), for each s ∈ S. So we have r(e1|S) = r(e2|S), which
implies that S is not an edge metric generator of G[H1, H2, . . . ,Hk] and this is
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impossible. Therefore we have

k∑
i=1

|Hi| − k 6 edim(G[H1, H2, . . . ,Hk]).

Clearly the induced subgraph on vertex set {h1, . . . , hk} is isomorphic to G. So
we may assume that V (G) = {h1, . . . , hk}. Now, let S = S′ ∪ ∪ki=1(Hi − {hi}),
where S′ is an edge metric generator for G of smallest order. Let e1 = x1y1

and e2 = x2y2 be two distinct edges of G[H1, H2, . . . ,Hk]. Clearly if x1, y1 ∈
S or x2, y2 ∈ S, then e1 and e2 have distinct edge metric S-representations.
Also if x1, y1 /∈ S and x2, y2 /∈ S, then since e1, e2 ∈ E(G), e1 and e2 have
distinct edge metric S′-representations and so they have distinct edge metric S-
representations. Now, without loss of generality, assume that x1 ∈ S and y1, y2 /∈
S. Hence y1, y2 ∈ V (G). If x1 6= x2, then the component corresponding to x1 in
r(e1|S) is zero which is not zero in r(e2|S), and so r(e1|S) 6= r(e2|S). So let x1 =
x2. If x1 ∈ V (G), then, since e1, e2 ∈ E(G), we have r(e1|S) 6= r(e2|S). Now, let
x1 /∈ V (G). Then there exists hi ∈ V (G) such that d(u, x1) = d(u, hi), for each
u 6= x1, hi. So d(e1, u) = d(y1hi, u) and d(e2, u) = d(y2hi, u), for each u 6= x1, hi.
Since y1hi, y2hi ∈ E(G), there exists s′ ∈ S′ such that d(y1hi, s

′) 6= d(y2hi, s
′).

Thus d(e1, s
′) 6= d(e2, s

′) because s′ 6= x1, hi. Hence r(e1|S) 6= r(e2|S). So

edim(G[H1, H2, . . . ,Hk]) 6 edim(G) +

k∑
i=1

|Hi| − k.

QED

In the following theorem, we determine the edge metric dimension ofG[H1, H2,
. . . , Hn], in the case that G is the path Pn. Note that edim(G) = 1 if and only
if G is a path.

Theorem 2.1. Assume that G[H1, H2, . . . ,Hn] is a blow up of a graph
G, where G is the path on n > 2 vertices. Then edim(G[H1, H2, . . . ,Hn]) =∑n

i=1 |Hi| − n+ 1, if one of the following conditions holds.

(i) n = 2 and there exists 1 6 i 6 2 such that Hi is a complete graph with
at least two vertices.

(ii) n = 3.

(iii) n > 4 and there is only one Hi with at least two vertices, or there are
only two Hi’s with at least two vertices of the form Hi, Hi+1 or Hi, Hi+2,
or there are only three consecutive Hi’s with at least two vertices.

Otherwise, edim(G[H1, H2, . . . ,Hn]) =
∑n

i=1 |Hi| − n.
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Proof. Let h1, . . . , hn be arbitrary vertices in H1, . . . ,Hn, respectively. Set S =⋃n
i=1(Hi − {hi}). By Proposition 2.1, every edge metric generator of G[H1, H2,

. . . , Hn], contains S. If n = 2 and H1 and H2 are empty graphs, then clearly
edim(G[H1, H2]) =

∑2
i=1 |Hi|−2. If H1 is a complete graph and h1, h

′
1 ∈ V (H1),

then the edges h′1h1 and h′1h2 have the same edge metric S-representations. So
in this situation S ∪ {h1} is an edge metric generator of G[H1, H2] of small-
est order, and hence edim(G[H1, H2]) =

∑2
i=1 |Hi| − 1. If n = 3, then the edges

h1h2 and h2h3 have the same edge metric S-representations. So in this situation
we also have edim(G[H1, H2, H3]) =

∑3
i=1 |Hi| − 2. Now let n > 4. If there is

only one Hi with at least two vertices, then either the edges hihi+1, hi+1hi+2 or
hi−2hi−1, hi−1hi have the same edge metric S-representations, where 1 6 i 6 n.
If there are only two Hi’s with at least two vertices of the form Hi, Hi+1 or
Hi, Hi+2, then either the edges hihi+1, hi+1hi+2 or hi−1hi, hihi+1 have the same
edge metric S-representations, where 1 6 i 6 n. If there are only three con-
secutive Hi’s with at least two vertices, say Hi, Hi+1 and Hi+2, then the edges
hihi+1 and hi+1hi+2 have the same edge metric S-representations. Therefore in
these situations S ∪ {h1} is an edge metric generator of G[H1, H2, . . . ,Hn] of
smallest order, and hence we have edim(G[H1, H2, . . . ,Hn]) =

∑n
i=1 |Hi|−n+1.

Otherewise, S is an edge metric basis of G[H1, H2, . . . ,Hn], and so

edim(G[H1, H2, . . . ,Hn]) =
n∑
i=1

|Hi| − n.

QED

In the following proposition, we investigate the edge metric dimension of a
blow up of the complete graph Kn. Note that the edge metric dimension of the
complete graph Kn is n− 1.

Proposition 2.2. Let G[H1, H2, . . . ,Hn] be a blow up of a graph G, where
G ∼= Kn and n > 2. Then edim(G[H1, H2, . . . ,Hn]) =

∑n
i=1 |Hi| − 1.

Proof. Assume that h1, . . . , hn are arbitrary vertices in H1, . . . ,Hn, respectively.
Let S =

⋃n
i=1(Hi−{hi}) and S′ be an edge metric generator ofG[H1, H2, . . . ,Hn].

By Proposition 2.1, we have S ⊆ S′. If there exist distinct hi and hj with
1 6 i, j 6 n such that hi, hj /∈ S′, then the edges hiht and hjht have the same
edge metric S′-representations, where t 6= i, j. Thus S′ must contain all of the
hi’s except one of them. Hence the result holds. QED

In the following theorem, we study the Wiener index and hyper-Wiener
index of Pn[H1, H2, . . . ,Hn].
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Theorem 2.2. Let G = Pn[H1, H2, . . . ,Hn], where n > 1. Then

W (G) =
1

2

n∑
i=1

|Hi|DHi

and

WW (G) =
1

4

n∑
i=1

|Hi|DHi +
1

4

n∑
i=1

|Hi|D′Hi ,

where for 1 6 i 6 n,

DHi =

{
t− 1 +

∑n
j=1 |i− j||Hj | Hi

∼= Kt

2(t− 1) +
∑n

j=1 |i− j||Hj | Hi
∼= Kt

and

D′Hi =

{
t− 1 +

∑n
j=1(i− j)2|Hj | Hi

∼= Kt

4(t− 1) +
∑n

j=1(i− j)2|Hj | Hi
∼= Kt.

Proof. Assume that h ∈ Hi, for some 1 6 i 6 n. Then we have

∑
x∈V (G)

d(h, x) =
∑
x∈Hi

d(h, x) +
∑

x∈V (G)\Hi

d(h, x)

=
∑
x∈Hi

d(h, x) +
n∑
j=1

|i− j||Hj |

=

{
t− 1 +

∑n
j=1 |i− j||Hj | Hi

∼= Kt

2(t− 1) +
∑n

j=1 |i− j||Hj | Hi
∼= Kt.

It is easy to see that for each h, h′ ∈ Hi,
∑

x∈V (G) d(h, x) =
∑

x∈V (G) d(h′, x).
Let DHi =

∑
x∈V (G) d(h, x), for some h ∈ Hi. Thus we have

∑
h∈Hi

∑
x∈V (G)

d(h, x) = |Hi|DHi .

Therefore

W (G) =
1

2

n∑
i=1

|Hi|DHi .

Now let h ∈ Hi, for some 1 6 i 6 n. Then we have
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∑
x∈V (G)

d2(h, x) =
∑
x∈Hi

d2(h, x) +
∑

x∈V (G)\Hi

d2(h, x)

=
∑
x∈Hi

d2(h, x) +
n∑
j=1

(i− j)2|Hj |

=

{
t− 1 +

∑n
j=1(i− j)2|Hj | Hi

∼= Kt

4(t− 1) +
∑n

j=1(i− j)2|Hj | Hi
∼= Kt.

Clearly for each h, h′ ∈ Hi,
∑

x∈V (G) d2(h, x) =
∑

x∈V (G) d2(h′, x). Let

D′Hi =
∑

x∈V (G) d2(h, x), for some h ∈ Hi. Thus we have∑
h∈Hi

∑
x∈V (G)

d2(h, x) = |Hi|D′Hi .

Therefore

WW (G) =
1

4

n∑
i=1

|Hi|DHi +
1

4

n∑
i=1

|Hi|D′Hi .

QED

We end this section with the following theorem which determines the Wiener
index and hyper-Wiener index of Kn[H1, H2, . . . ,Hn].

Theorem 2.3. Let G = Kn[H1, H2, . . . ,Hn], where n > 1. Then

W (G) =
1

2

n∑
i=1

|Hi|DHi

and

WW (G) =
1

4

n∑
i=1

|Hi|DHi +
1

4

n∑
i=1

|Hi|D′Hi ,

where for 1 6 i 6 n,

DHi =

{
t− 1 +

∑n
j=1,j 6=i |Hj | Hi

∼= Kt

2(t− 1) +
∑n

j=1,j 6=i |Hj | Hi
∼= Kt

and

D′Hi =

{
t− 1 +

∑n
j=1,j 6=i |Hj | Hi

∼= Kt

4(t− 1) +
∑n

j=1,j 6=i |Hj | Hi
∼= Kt.
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Proof. Let h, h′ ∈ Hi, for some 1 6 i 6 n. Then we have

∑
x∈V (G)

d(h, x) =
∑
x∈Hi

d(h, x) +
∑

x∈V (G)\Hi

1

=
∑
x∈Hi

d(h, x) +

n∑
j=1,j 6=i

|Hj |

=

{
t− 1 +

∑n
j=1,j 6=i |Hj | Hi

∼= Kt

2(t− 1) +
∑n

j=1,j 6=i |Hj | Hi
∼= Kt

=
∑

x∈V (G)

d(h′, x)

Let DHi =
∑

x∈V (G) d(h, x), for some h ∈ Hi. Thus we have∑
h∈Hi

∑
x∈V (G)

d(h, x) = |Hi|DHi .

Therefore

W (G) =
1

2

n∑
i=1

|Hi|DHi .

Now, for h, h′ ∈ Hi, where 1 6 i 6 n, we have

∑
x∈V (G)

d2(h, x) =
∑
x∈Hi

d2(h, x) +
∑

x∈V (G)\Hi

1

=
∑
x∈Hi

d2(h, x) +
n∑

j=1,j 6=i
|Hj |

=

{
t− 1 +

∑n
j=1,j 6=i |Hj | Hi

∼= Kt

4(t− 1) +
∑n

j=1,j 6=i |Hj | Hi
∼= Kt

=
∑

x∈V (G)

d2(h′, x)

Let D′Hi =
∑

x∈V (G) d2(h, x), for some h ∈ Hi. Thus we have∑
h∈Hi

∑
x∈V (G)

d2(h, x) = |Hi|D′Hi .

Therefore

WW (G) =
1

4

n∑
i=1

|Hi|DHi +
1

4

n∑
i=1

|Hi|D′Hi .

QED
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3 The zero divisor graph of Zn
Let R be a commutative ring with nonzero identity. We denote the set of all

zero divisors of R by Z(R), and by Z∗(R) we denote the set Z(R)− {0}. Also,
for n > 1, Zn denotes the ring of integers modulo n.

The concept of the zero-divisor graph of a commutative ring was introduced
by Beck [3], whose work was mostly concerned with coloring of rings. The zero-
divisor graph of various algebraic structures has been studied by several authors;
see [1], [2], [7], [13] and [17].

The zero-divisor graph Γ(R) is a graph with vertex set Z∗(R) and two dis-
tinct vertices a and b are adjacent if and only if ab = 0. Clearly if R is an integral
domain, then Z∗(R) is an empty set and so Γ(R) has no vertices. Hence, in the
following, we assume that R is not an integral domain.

We begin this section with the following proposition.

Proposition 3.1. Let G be a connected graph with diam(G) = m <∞. If
edim(G) = k <∞, then |E(G)| 6 (m+ 1)k.

Proof. Let S be an edge metric basis for G with |S| = k. Since diam(G) = m,
for each edge e and for each x ∈ S, we have d(e, x) ∈ {0, 1, . . . ,m}. So for each
edge e, r(e|S) is a k-coordinate vector where each coordinate belongs to the set
{0, 1, . . . ,m}. Thus there are only (m+ 1)k possibilities for r(e|S). Since r(e|S)
is unique for each e ∈ E(G), we have |E(G)| 6 (m+ 1)k. QED

Corollary 3.1. Let G be a connected graph with finite diameter. Then
edim(G) is finite if and only if G is finite.

Theorem 3.1. Let R be a commutative ring which is not an integral do-
main. Then edim(Γ(R)) is finite if and only if R is finite.

Proof. By [2, Theorem 2.3], Γ(R) is a connected graph with diameter less than
four. Now Corrollary 3.1 implies that edim(Γ(R)) is finite if and only if Γ(R) is
finite. By [2, Theorem 2.2], we have that R is finite. QED

In the following, for two integers r and s, the notation (r, s) stands for the
greatest common divisor of r and s. Also we denote the elements of the ring
Zn, where n > 1, by 0, 1, 2, . . . , n − 1. For every nonzero element a in Zn, if
(a, n) = 1, then a is a unit element; otherwise, (a, n) 6= 1, and so a is a zero
divisor. Therefore, |U(Zn)| = φ(n) and |Z(Zn)| = n − φ(n), where φ is Euler’s
totient function.

An integer d is said to be a proper divisor of n if 1 < d < n and d | n. Now
let d1, d2, . . . , dk be the distinct proper divisors of n. For 1 6 i 6 k, set

Adi := {x ∈ Zn | (x, n) = di}.
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Clearly, the sets Ad1 , Ad2 , . . . , Adk are pairwise disjoint and it follows that

Z∗(Zn) = Ad1 ∪Ad2 ∪ · · · ∪Adk
and

V (Γ(Zn)) = Ad1 ∪Ad2 ∪ · · · ∪Adk .
The following lemma is stated from [22].

Lemma 3.1. [22, Proposition 2.1] Let 1 6 i 6 k. Then |Adi | = φ( ndi ).

In the following lemma, which is from [7], the adjacency of vertices in Γ(Zn)
is described.

Lemma 3.2. For i, j ∈ {1, 2, . . . , k}, a vertex of Adi is adjacent to a vertex
of Adj in Γ(Zn) if and only if n divides didj .

In the rest of the paper, the induced subgraph of Γ(Zn) on the set Adi is
denoted by Γ(Adi), where 1 6 i 6 k.

By Lemma 3.2, it is easy to see that for i ∈ {1, 2, . . . , k}, the induced sub-
graph Γ(Adi) of Γ(Zn) on the vertex set Adi is either the complete graph Kφ( n

di
)

or its complement graph Kφ( n
di

). In fact, Γ(Adi) is Kφ( n
di

) if and only if n divides

d2
i . Moreover, for i, j ∈ {1, 2, . . . , k} with i 6= j, a vertex of Adi is adjacent to

either all or none of the vertices of Adj in Γ(Zn).
In the following, we denote by Gn the simple graph whose vertices are the

proper divisors {d1, d2, . . . , dk} of n, and two distinct vertices di and dj are
adjacent if and only if n divides didj . By [7, Lemma 2.6], Gn is a connected
graph, and also Γ(Zn) is connected. Now, we have

Γ(Zn) = Gn[Γ(Ad1),Γ(Ad2), . . . ,Γ(Adk)],

which means that Γ(Zn) is a blow up of the graph Gn.
In the following theorem, we study the edge metric dimension of Γ(Zn).

Theorem 3.2. Let d1, d2, . . . , dk be the proper divisors of n. Then the edge
metric dimension of Γ(Zn) satisfies the following inequality:

k∑
i=1

φ(
n

di
)− k 6 edim(Γ(Zn)) 6 edim(Gn) +

k∑
i=1

φ(
n

di
)− k.

Proof. Since Γ(Zn) is the blow up of the graph Gn, the result follows from
Proposition 2.1 and Lemma 3.1. QED

Example 3.3. Consider the ring Z12. We have d1 = 2, d2 = 3, d3 = 4, and
d4 = 6. Then G12 is the graph 2 ∼ 6 ∼ 4 ∼ 3, which is isomorphic to P4. Now
we have

Γ(Z12) = G12[Γ(A2),Γ(A3),Γ(A4),Γ(A6)],
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where Γ(A2) = K2, Γ(A3) = K2, Γ(A4) = K2, and Γ(A6) = K1. By Theorem
2.1 we have edim(Γ(Z12)) = 4, and by Theorem 2.2 we have W (Γ(Z12)) = 34
and WW (Γ(Z12)) = 49.

Example 3.4. Let p and q be distinct prime numbers. We discuss the edge
metric dimension, Wiener index and hyper-Wiener index of Γ(Zn) for (i) n = pq
and (ii) n = p2q.

(i) Let n = pq, where p and q are distinct prime numbers with p < q. It
follows that Gpq is p ∼ q and that Γ(Zpq) = Gpq[Γ(A(p)),Γ(A(q))], where
Γ(A(p)) = Kφ(q) and Γ(A(q)) = Kφ(p). Now, by Theorem 2.1 we have
edim(Γ(Zpq)) = p+q−3. Also by Theorem 2.3, we have W (Γ(Zpq)) = p2 +

q2+pq−4p−4q+5 andWW (Γ(Zpq)) = 1
2W (Γ(Zpq))+2p2+2q2+pq−7q−7p+9

2 =
3p2+3q2+2pq−11q−11p+14

2 .

(ii) Let n = p2q. We know that p, q, p2, and pq are the proper divisors of p2q.
So, the graph Gp2q is p ∼ pq ∼ p2 ∼ q and

Γ(Zp2q) = Gp2q[Γ(A(p)),Γ(A(pq)),Γ(A(p2)),Γ(A(q))].

The graphs Γ(A(p)) = Kφ(pq) = Kpq−p−q+1, Γ(A(p2)) = Kφ(q) = Kq−1,

Γ(A(q)) = Kφ(p2) = Kp2−p and Γ(A(pq)) = Kφ(p) = Kp−1. Now, by
Theorem 2.1 we have edim(Γ(Zp2q)) = pq + p2 − p − 5 and, by Theorem
2.2, we have

2W (Γ(Zp2q)) = φ(pq)(2(φ(pq)− 1) + φ(p) + 2φ(q) + 3φ(p2))

+ φ(p)(φ(p)− 1 + φ(pq) + φ(q) + 2φ(p2))

+ φ(q)(2(φ(q)− 1) + 2φ(pq) + φ(q) + φ(p2))

+ φ(p2)(2(φ(p2)− 1) + 3φ(pq) + 2φ(p) + φ(q)).

Also by Theorem 2.2, the hyper-Wiener index of Γ(Zp2q) can be deter-
mined.
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