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Abstract. In this work we study the equation Lu = f , where L is a degenerate elliptic
operator, with Neumann boundary condition in a bounded open set Ω. We prove the existence
and uniqueness of weak solutions in the weighted Sobolev space W1,2(Ω, ω) for the Neumann
problem. The main result establishes that a weak solution of degenerate elliptic equations can
be approximated by a sequence of solutions for non-degenerate elliptic equations
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Introduction

In this paper, we prove the existence and uniqueness of (weak) solutions
in the weighted Sobolev space W 1,2(Ω, ω) (see Definition 1) for the Neumann
problem

(P )

{
Lu(x) = f(x) in Ω,
〈A(x)∇u, ~η(x)〉 = 0 on ∂Ω,

where ~η(x) = (η1(x), ..., ηn(x)) is the outward unit normal to ∂Ω at x, 〈., .〉
denotes the usual inner product in Rn, the symbol ∇ indicates the gradient and
L is a degenerate elliptic operator

Lu = −
n∑

i,j=1

Dj

(
aij Diu

)
+

n∑
i=1

biDiu+ g u + θ uω, (0.1)

with Dj =
∂

∂xj
, (j = 1, ..., n), θ is positive a constant, the coefficients aij , bi and

g are measurable, real-valued functions, the coefficient matrix A(x) = (aij(x))
is symmetric and satisfies the degenerate ellipticity condition

λ|ξ|2ω(x)≤〈A(x)ξ, ξ〉≤Λ|ξ|2ω(x) (0.2)
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for all ξ∈Rn and almost every x∈Ω⊂Rn a bounded open set with piecewise
smooth boundary (i.e., ∂Ω∈C0,1), ω is a weight function (that is, locally inte-
grable and nonnegative function on Rn), λ and Λ are positive constants.

Remark 1. In the case A(x) = Id (where Id denotes the Identity matrix

in Rn) then the second equation of (P ) is
∂u

∂~η
= 0 on ∂Ω namely the normal

derivative of u vanishes on ∂Ω. In the general case and with the summation

convention the second equation of (P ) can be written aij(x)
∂u

∂xj
ηi = 0 on ∂Ω.

This expression is called conormal derivative of u.

The main purpose of this paper (see Theorem 2) is to establish that a weak
solution u∈W 1,2(Ω, ω) for the Neumann problem (P ) can be approximated by
a sequence of solutions of non-degenerate elliptic equations.

By a weight, we shall mean a locally integrable function ω on Rn such that
0 < ω(x) < ∞ for a.e. x∈Rn. Every weight ω gives rise to a measure on the
measurable subsets on Rn through integration. This measure will be denoted by
µ. Thus, µ(E) =

∫
E ω(x) dx for measurable sets E⊂Rn.

In general, the Sobolev spaces W k,p(Ω) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various types of singularities
in the coefficients, it is natural to look for solutions in weighted Sobolev spaces
(see [3], [6], [7] and [9]). In various applications, we can meet boundary value
problems for elliptic equations whose ellipticity is disturbed in the sense that
some degeneration or singularity appears. There are several very concrete prob-
lems from practice which lead to such differential equations, e.g from glaceology,
non-Newtonian fluid mechanics, flows through porous media, differential geome-
try, celestial mechanics, climatology, petroleum extraction and reaction-diffusion
problems (see some examples of applications of degenerate elliptic equations in
[1] and [5]).

A class of weights, which is particularly well understood, is the class of Ap
weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see
[13]). These weights have found many useful applications in harmonic analysis
(see [14]). Another reason for studying Ap-weights is the fact that powers of
distance to submanifolds of Rn often belong to Ap (see [12]). There are, in fact,
many interesting examples of weights (see [11] for p-admissible weights).

1 Definitions and basic results

Let ω be a locally integrable nonnegative function in Rn and assume that
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0 < ω < ∞ almost everywhere. We say that ω belongs to the Muckenhoupt
class Ap, 1 < p < ∞, or that ω is an Ap-weight, if there is a constant C such
that (

1

|B|

∫
B
ω(x)dx

)(
1

|B|

∫
B
ω1/(1−p)(x) dx

)p−1

≤C

for all balls B⊂Rn, where |.| denotes the n-dimensional Lebesgue measure in
Rn. The infimum over all such constants C is called the Ap constant of ω and
this constant will be denoted by Cp,ω. If 1 < q≤p, then Aq⊂Ap (see [10], [11] or
[14] for more information about Ap-weights). The weight ω satisfies the doubling

condition if µ(2B)≤Cµ(B), for all balls B⊂Rn, where µ(B) =

∫
B
ω(x) dx and

2B denotes the ball with the same center as B which is twice as large (i.e.,
2B(x; r) = B(x; 2r)). If ω ∈Ap, then ω is doubling (see Corollary 15.7 in [11]).

As an example of Ap-weight, the function ω(x) = |x|α, x∈Rn, is in Ap if and
only if −n < α < n(p− 1) (see Corollary 4.4, Chapter IX in [14]).

Remark 2. (a) If ω ∈Ap, 1 < p < ∞, then

(
|E|
|B|

)p
≤Cp,ω

µ(E)

µ(B)
for all

measurable subset E of B (see 15.5 strong doubling property in [11]). Therefore
µ(E) = 0 if and only if |E| = 0; so there is no need to specify the measure
when using the ubiquitous expression almost everywhere and almost every, both
abbreviated a.e..

(b) If ω ∈Ap, 1 < p <∞, then there exist δ > 0 and C > 0 depending only on
n, p and Cp,ω such that, every time we have a measurable set E contained in a

cube K0, the following inequality holds:
µ(E)

µ(K0)
≤C

(
|E|
|K0|

)δ
(see Theorem 2.9,

Chapter IV in [10] or Lemma 15.8 in [11]).

Let ω be a weight and Ω⊂Rn be open. For 1 < p <∞ we define by Lp(Ω, ω)
the set of measurable function f defined on Ω for which

‖f‖Lp(Ω,ω) =

(∫
Ω
|f(x)|pω(x)dx

)1/p

<∞.

If ω∈Ap, 1 < p < ∞, then ω−1/(p−1) is locally integrable and we have
Lp(Ω, ω)⊂L1

loc(Ω) for every open set Ω (see Remark 1.2.4 in [15]). It thus makes
sense to talk about weak derivatives of functions in Lp(Ω, ω).

Definition 1. Let Ω⊂Rn be a bounded open set, 1 < p < ∞, k∈N and
ω∈Ap. We define the weighted Sobolev space W k,p(Ω, ω) as the set of functions
u∈Lp(Ω, ω) with weak derivatives Dαu∈Lp(Ω, ω), 1≤|α|≤k. The norm of u in
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W k,p(Ω, ω) is defined by

‖u‖Wk,p(Ω,ω) =

(∫
Ω
|u|pω dx+

∑
1≤|α|≤k

∫
Ω
|Dαu|pω dx

)1/p

. (1.1)

If ω ∈Ap, then W k,p(Ω, ω) is the closure of C∞(Ω) with respect to the norm

(1.1) (see Proposition 3.5 in [4] or Theorem 2.1.4 in [15]). The space W k,p
0 (Ω, ω)

is the closure of C∞0 (Ω) with respect to the norm

‖u‖
Wk,p

0 (Ω,ω)
=

( ∑
1≤|α|≤k

∫
Ω
|Dαu|pω dx

)1/p

.

The spaces W k,p(Ω, ω) and W k,p
0 (Ω, ω) are Banach spaces and for k = 1 and

p = 2 the spaces W 1,2(Ω, ω) and W 1,2
0 (Ω, ω) are Hilbert spaces.

It is evident that the weight function ω which satisfy 0 < c1≤ω(x)≤c2 for
x∈Ω, give nothing new (the space W k,p(Ω, ω) is then identical with the classical
Sobolev space W k,p(Ω)). Consequently, we shall be interested above all in such
weight functions ω which either vanish somewhere in Ω̄ or increase to infinity
(or both).

Remark 3. Let Ω⊂Rn be a bounded open set with boundary ∂Ω∈C0,1.
Using integration by parts, with u, ϕ∈W 1,2(Ω, ω), if u satisfies the boundary
condition in problem (P), we have (by Remark 1)∫

Ω
ϕLudx =

∫
Ω
aij DiuDjϕdx+

∫
Ω
bi ϕDiu dx+

∫
Ω
g uϕ dx

+ θ

∫
Ω
uϕω dx+

∫
∂Ω
aij

∂u

∂xj
ηi ϕdx︸ ︷︷ ︸

= 0

= B(u, ϕ) + θ

∫
Ω
uϕω dx.

where B(u, ϕ) =

∫
Ω
aij DiuDjϕdx +

∫
Ω
bi ϕDiu dx +

∫
Ω
g uϕ dx is a bilinear

form.

We introduce the following definition of weak solution of the Neumann prob-
lem (P).

Definition 2. Let Ω⊂Rn be a bounded open set with ∂Ω∈C0,1 and
f/ω ∈L2(Ω, ω). A function u∈W 1,2(Ω, ω) is a weak solution of the Neumann
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problem (P) if

n∑
i,j=1

∫
Ω
aijDiuDjϕdx+

n∑
i=1

∫
Ω
ϕbiDiu dx+

∫
Ω
g uϕ dx+ θ

∫
Ω
uϕω dx

=

∫
Ω
fϕ dx (1.2)

for all ϕ∈W 1,2(Ω, ω).

Before we prove the main result of this section, Theorem 1, we need the
following lemma.

Lemma 1. Let Ω⊂Rn be a bounded open set with boundary ∂Ω∈C0,1.
Suppose that

(H1) ω ∈A2;

(H2) f/ω ∈L2(Ω, ω);

(H3) bi/ω ∈L∞(Ω) (i=1,...,n) and g/ω ∈L∞(Ω).

Then, there exists a constant C > 0 such that

B(u, u) + C‖u‖2L2(Ω,ω)≥
λ

2
‖u‖2W 1,2(Ω,ω)

for all u∈W 1,2(Ω, ω).

Proof. Using (0.2) and (H3), for all u∈W 1,2(Ω, ω), we have

B(u, u) =

∫
Ω
aijDiuDju dx+

∫
Ω
biuDiu dx+

∫
Ω
u2 g dx

≥λ
∫

Ω
|∇u|2ω dx+

∫
Ω

bi
ω
uDiuωdx+

∫
Ω

g

ω
u2 ω dx

≥λ
∫

Ω
|∇u|2ω dx−

(
max

∥∥∥∥biω
∥∥∥∥
L∞(Ω)

)∫
Ω
|u||Diu|ω dx

−
∥∥∥∥ gω
∥∥∥∥
L∞(Ω)

∫
Ω
u2ω dx

≥λ
∫

Ω
|∇u|2ω dx− C1

(∫
Ω
u2ω dx

)1/2(∫
Ω
|Diu|2ω dx

)1/2

− C2

∫
Ω
u2ω dx

≥λ
∫

Ω
|∇u|2ω dx− C1‖u‖L2(Ω,ω)‖u‖W1,2(Ω,ω) − C2‖u‖2L2(Ω,ω) (1.3)

where C1 = max

∥∥∥∥biω
∥∥∥∥
L∞(Ω)

(i = 1, ..., n) and C2 =

∥∥∥∥ gω
∥∥∥∥
L∞(Ω)

. Using the ele-
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mentary inequality ab≤ εa2 +
1

4ε
b2, for all ε > 0, we obtain in (1.3),

B(u, u)

≥λ
∫

Ω
|∇u|2ω dx− C1

(
ε‖u‖2L2(Ω,ω) +

1

4ε
‖u‖2W 1,2(Ω,ω)

)
− C2‖u‖2L2(Ω,ω)

= λ

∫
Ω
|∇u|2ω dx− (C1ε+ C2)‖u‖2L2(Ω,ω) −

C1

4ε
‖u‖2W1,2(Ω,ω)

= λ

∫
Ω
|∇u|2ω dx+ λ

∫
Ω
u2ω dx− λ

∫
Ω
u2ω dx− (C1ε+ C2)‖u‖2L2(Ω,ω)

− C1

4ε
‖u‖2W1,2(Ω,ω)

= λ‖u‖2W 1,2(Ω,ω) − (C1ε+ C2 + λ)‖u‖2L2(Ω,ω) −
C1

4ε
‖u‖2W 1,2(Ω,ω)

=

(
λ− C1

4ε

)
‖u‖2W 1,2(Ω,ω) − (C1ε+ C2 + λ)‖u‖2L2(Ω,ω). (1.4)

If C1 > 0, we can choose ε > 0 such that

λ− C1

4ε
=
λ

2
, that is, ε =

C1

2λ
.

Thus, in (1.4) we obtain

B(u, u)≥λ
2
‖u‖2W 1,2(Ω,ω) −C‖u‖2L2(Ω,ω),

where C = C1ε+ C2 + λ =
C2

1

2λ
+ C2 + λ > 0. Therefore,

B(u, u) + C‖u‖2L2(Ω,ω)≥
λ

2
‖u‖2W 1,2(Ω,ω).

If C1 = 0 (that is, bi(x)≡0, i = 1, ..., n) then (1.3) reduces to

B(u, u) ≥ λ

∫
Ω
|∇u|2ω dx− C2‖u‖2L2(Ω,ω)

= λ

(∫
Ω
|u|2ω dx+

∫
Ω
|∇u|2ω dx

)
− (C2 + λ)‖u‖2L2(Ω,ω)

≥ λ

2
‖u‖2W1,2(Ω,ω) −C‖u‖2L2(Ω,ω).

Therefore B(u, u) + C‖u‖2L2(Ω,ω)≥
λ

2
‖u‖2W 1,2(Ω,ω). QED
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Theorem 1. Let Ω⊂Rn be a bounded open set with boundary ∂Ω∈C0,1.
Suppose that (H1) - (H3) holds. Then, there exists a constant C > 0 such that
for all θ≥C the Neumann problem (P) has a unique solution u∈W 1,2(Ω, ω).
Moreover, we have that

‖u‖W 1,2(Ω,ω)≤
2

λ

∥∥∥∥fω
∥∥∥∥
L2(Ω,ω)

.

Proof. We define bilinear form

B̃ : W 1,2(Ω, ω)×W 1,2(Ω, ω)→R

B̃(u, ϕ) = B(u, ϕ) + θ

∫
Ω
uϕω dx

and a linear mapping

T : W 1,2(Ω, ω)→R

T (ϕ) =

∫
Ω
f ϕ dx.

Then u∈W 1,2(Ω, ω) is a weak solution of the Neumann problem (P) if

B̃(u, ϕ) = T (ϕ), for all ϕ∈W 1,2(Ω, ω).

Step 1. If θ≥C then B̃ is coercive. In fact, by Lemma 1 there exists a constant
C > 0 such that

B(u, u) + C‖u‖2L2(Ω,ω)≥
λ

2
‖u‖W1,2(Ω,ω).

Hence, if θ≥C, we have

B̃(u, u) = B(u, u) + θ

∫
Ω
u2ω dx

= B(u, u) + θ‖u‖2L2(Ω,ω)

≥ B(u, u) + C‖u‖2L2(Ω,ω)

≥ λ

2
‖u‖2W 1,2(Ω,ω).

Therefore, for θ≥C, we have that

B̃(u, u)≥ λ
2
‖u‖2W 1,2(Ω,ω), (1.5)

for all u∈W 1,2(Ω, ω).
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Step 2. B̃ is bounded. In fact, using that the coefficient matrix A = (aij) is
symmetric, (0.2) and (H3), we obtain

|B̃(u, ϕ)|

≤ |B(u, ϕ)|+ θ

∣∣∣∣ ∫
Ω
uϕω dx

∣∣∣∣
≤
∫

Ω
|〈A∇u,∇ϕ〉| dx+

∫
Ω
|bi||ϕ||Diu| dx+

∫
Ω
|g||ϕ||u| dx

+ θ

∫
Ω
|u||ϕ|ω dx

≤
∫

Ω
〈A∇u,∇u〉1/2〈A∇ϕ,∇ϕ〉1/2 dx

+

∫
Ω

|bi|
ω
|ϕ||Diu|ω dx+

∫
Ω

|g|
ω
|ϕ||u|ω dx+ θ

∫
Ω
|u||ϕ|ω dx

≤
(∫

Ω
〈A∇u,∇u〉 dx

)1/2(∫
Ω
〈A∇ϕ,∇ϕ〉 dx

)1/2

+

(
max

∥∥∥∥biω
∥∥∥∥
L∞(Ω)

)(∫
Ω
|ϕ|2ωdx

)1/2(∫
Ω
|Diu|2ω dx

)1/2

+

[∥∥∥∥ gω
∥∥∥∥
L∞(Ω)

(∫
Ω
|u|2ωdx

)1/2

+ θ

(∫
Ω
|u|2ωdx

)1/2](∫
Ω
|ϕ|2ω dx

)1/2

≤Λ

(∫
Ω
|∇u|2ω dx

)1/2(∫
Ω
|∇ϕ|2ω dx

)1/2

+

(
max

∥∥∥∥biω
∥∥∥∥
L∞(Ω)

+

∥∥∥∥ gω
∥∥∥∥
L∞(Ω)

+ θ

)
‖u‖W 1,2(Ω,ω)‖ϕ‖W 1,2(Ω,ω)

≤
(

Λ + max

∥∥∥∥biω
∥∥∥∥
L∞(Ω)

+

∥∥∥∥ gω
∥∥∥∥
L∞(Ω)

+ θ

)
‖u‖W 1,2(Ω,ω)‖ϕ‖W 1,2(Ω,ω)

= C̃ ‖u‖W 1,2(Ω,ω)‖ϕ‖W 1,2(Ω,ω),

where C̃ =

(
Λ + max

∥∥∥∥biω
∥∥∥∥
L∞(Ω)

+

∥∥∥∥ gω
∥∥∥∥
L∞(Ω)

+ θ

)
, for all u,ϕ∈W 1,2(Ω, ω).

Step 3. The linear mapping T is bounded (that is, T ∈ [W 1,2(Ω, ω)]∗). In fact,
using (H2), we have

|T (ϕ)| ≤
∫

Ω
|f ||ϕ|dx

=

∫
Ω

|f |
ω
|ϕ|ω dx
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≤
[ ∫

Ω

(
|f |
ω

)2

ω dx

]1/2[ ∫
Ω
|ϕ|2ω dx

]1/2

≤
∥∥∥∥fω
∥∥∥∥
L2(Ω,ω)

‖ϕ‖W 1,2(Ω,ω),

for all ϕ∈W 1,2(Ω, ω).
Therefore the bilinear form B̃ and the linear functional T satisfy the hy-

potheses of the Lax-Milgram Theorem. Thus, for every f , with f/ω ∈L2(Ω, ω),
there is a unique solution u∈W 1,2(Ω, ω) such that B̃(u, ϕ) = T (ϕ) for all
ϕ∈W 1,2(Ω, ω), that is, u is a unique solution of the Neumann problem (P).

In particular, by setting ϕ = u, we have B̃(u, u) =

∫
Ω
f u dx. Using the defini-

tion of B̃, we obtain

B̃(u, u) = B(u, u) + θ

∫
Ω
u2ω dx

=

∫
Ω

f

ω
uω dx

≤ ‖u‖L2(Ω,ω)‖f/ω‖L2(Ω,ω)

≤ ‖u‖W 1,2(Ω,ω)‖f/ω‖L2(Ω,ω).

Using (1.5), we obtain

λ

2
‖u‖2W 1,2(Ω,ω) ≤ B̃(u, u)

≤ ‖u‖W 1,2(Ω,ω)‖f/ω‖L2(Ω,ω).

Therefore,

‖u‖W 1,2(Ω,ω)≤
2

λ

∥∥∥∥fω
∥∥∥∥
L2(Ω,ω)

. (1.6)

QED

2 Approximation of solution

In this section we present our main result: the weak solution to the problem
(P ) can be approximated by a sequence of solutions for non-degenerate elliptic
equations.

The following lemma can be proved in exactly the same way as Lemma
2.1 in [8] (see also, Lemma 3.1 and Lemma 4.13 in [2]). Our lemma provides
a general approximation theorem for Ap weights (1 < p < ∞) by means of
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weights which are bounded away from 0 and infinity and whose Ap-constants
depend only on the Ap-constant of ω. Lemma 2 is the key point for Theorem
2, and the crucial point consists of showing that a weak limit of a sequence of
solutions of approximate problems is in fact a solution of the original problem.

Lemma 2. Let α, β > 1 be given and let ω ∈Ap (1 < p < ∞), with Ap-
constant C(ω, p) and let aij = aji be measurable, real-valued functions satisfying

λω(x)|ξ|2≤
n∑

i,j=1

aij(x)ξiξj ≤Λω(x) |ξ|2, (2.1)

for all ξ ∈Rn and a.e. x∈Ω. Then there exist weights ωαβ ≥ 0 a.e. and measur-

able real-valued functions aαβij such that the following conditions are met.
(i) c1(1/β)≤ωαβ ≤ c2 α in Ω, where c1 and c2 depend only on ω and Ω.
(ii) There exist weights ω̃1 and ω̃2 such that ω̃1≤ωαβ ≤ ω̃2, where ω̃i ∈Ap and
C(ω̃i, p) depends only on C(ω, p) (i = 1, 2).
(iii) ωαβ ∈Ap, with constant C(ωαβ, p) depending only on C(ω, p) uniformly on
α and β.
(iv) There exists a closed set Fαβ such that ωαβ≡ω in Fαβ and ωαβ∼ ω̃1∼ ω̃2

in Fαβ with equivalence constants depending on α and β (i.e., there are positive
constants cαβ and Cαβ such that cαβ ω̃i≤ωαβ ≤Cαβ ω̃i, i = 1, 2). Moreover,

Fαβ ⊂Fα′β′ if α≤α′, β≤β′, and the complement of
⋃

α,β≥ 1

Fαβ has zero measure.

(v) ωαβ→ω a.e. in Rn as α, β→∞.

(vi) λωαβ(x) |ξ|2≤
n∑

i,j=1

aαβij (x) ξiξj ≤Λωαβ(x) |ξ|2, ∀ ξ ∈Rn and a.e. x∈Ω, and

aαβij (x) = aαβji (x).

(vii) aαβij (x) = aij(x) in Fαβ.

Proof. See [2], Lemma 3.1 or Lemma 4.13. QED

The main results of this paper are the following.

Theorem 2. Let Ω⊂Rn be a bounded open set with boundary ∂Ω∈C0,1.
Suppose that
(H1) ω ∈A2;
(H2∗) f/ω ∈L2(Ω, ω)∩L2(Ω, ω3);
(H3) bi/ω ∈L∞(Ω) (i=1,...,n) and g/ω ∈L∞(Ω).
Then the unique solution u∈W 1,2(Ω, ω) of problem (P ) is the weak limit in
W 1,2(Ω, ω̃1) of a sequence of solutions um ∈W 1,2(Ω, ωm) of the problems

(Pm)

{
Lmum(x) = fm(x), in Ω,
〈Am(x)∇um, ~η(x)〉 = 0, on ∂Ω,
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with

Lmum = −
n∑

i,j=1

Dj(a
mm
ij Dium) +

n∑
i=1

bmiDium + gm um + θ um ωm,

fm = f (ωm/ω)1/2, gm = g ωm/ω, bmi = bi ωm/ω and ωm = ωmm (where ωmm,
ammij and ω̃1 are as Lemma 2 and Am(x) =

(
ammij (x)

)
).

Proof. Step 1. First, if fm = f(ω/ωm)−1/2, gm = g ωm/ω and bmi = bi ωm/ω,
we note that ∥∥∥∥ fmωm

∥∥∥∥
L2(Ω,ωm)

=

∥∥∥∥fω
∥∥∥∥
L2(Ω,ω)

,

∥∥∥∥ gmωm
∥∥∥∥
L∞(Ω)

=

∥∥∥∥ gω
∥∥∥∥
L∞(Ω)∥∥∥∥bmiωm

∥∥∥∥
L∞(Ω)

=

∥∥∥∥biω
∥∥∥∥
L∞(Ω)

. (2.2)

Then, if um ∈W 1,2(Ω, ωm) is a solution of problem (Pm) we have (by (1.6))

‖um‖W 1,2(Ω,ωm) ≤
2

λ

∥∥∥∥ fmωm
∥∥∥∥
L2(Ω,ωm)

=
2

λ

∥∥∥∥fω
∥∥∥∥
L2(Ω,ω)

= C3.

Using Lemma 2, ω̃1≤ωm, we obtain

‖um‖W 1,2(Ω,ω̃1)≤‖um‖W 1,2(Ω,ωm)≤C3. (2.3)

Consequently, {um} is a bounded sequence in W 1,2(Ω, ω̃1). Therefore, there is
a subsequence, again denoted by {um}, and ũ∈W 1,2(Ω, ω̃1) such that

um⇀ũ in L2(Ω, ω̃1), (2.4)

∂um
∂xj

⇀
∂ũ

∂xj
in L2(Ω, ω̃1), (2.5)

um→ ũ a.e. in Ω, (2.6)

where the symbol “⇀” denotes weak convergence (see Theorem 1.31 in [11]).

Step 2. We have that ũ∈W 1,2(Ω, ω). In fact, for Fk = Fkk fixed (see Lemma
2), we have by (2.4) and (2.5), for all ϕ∈W 1,2(Ω, ω̃1), we obtain∫

Ω
umϕ ω̃1 dx→

∫
Ω
ũ ϕ ω̃1 dx,∫

Ω
DiumDiϕ ω̃1 dx→

∫
Ω
DiũDiϕ ω̃1 dx.
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If ψ ∈L2(Ω, ω), then ψ χFk ∈L2(Ω, ω̃1) (since ω∼ ω̃1 in Fk, i.e., there is a con-
stant c > 0 such that ω̃1≤ c ω in Fk, and χE denotes the characteristic function
of a measurable set E⊂Rn). Consequently,∫

Ω
umϕχFk ω̃1 dx→

∫
Ω
ũ ϕ χFk ω̃1 dx,∫

Ω
Dium ϕχFk ω̃1 dx→

∫
Ω
Diũ ϕ χFk ω̃1 dx,

for all ϕ∈L2(Ω, ω), that is, the sequence {∂um
∂xi

χFk} is weakly convergent to a

function in L2(Ω, ω), again since ω∼ ω̃1 on Fk. Therefore, we have

‖ |∇ũ| ‖2L2(Fk,ω) =

∫
Fk

|∇ũ|2ω dx

≤ lim sup
m→∞

∫
Fk

|∇um|2 ω dx,

and for m≥ k we have ω = ωm in Fk. Hence, by (2.3), we obtain

‖ |∇ũ| ‖2L2(Fk,ω) ≤ lim sup
m→∞

∫
Fk

|∇um|2 ω dx

= lim sup
m→∞

∫
Fk

|∇um|2 ωm dx

≤ lim sup
m→∞

∫
Ω
|∇um|2ωm dx

≤ C2
3 .

By the Monotone Convergence Theorem we obtain ‖ |∇ũ| ‖L2(Ω,ω)≤C3. Analo-

gously, ‖ũ‖L2(Ω,ω)≤C3. Therefore, we have ũ∈W 1,2(Ω, ω).

Step 3. We need to show that ũ is a solution of problem (P ), i.e, for every
ϕ∈W 1,2(Ω, ω) we have

n∑
i,j=1

∫
Ω
aij DiũDjϕ dx+

n∑
i=1

∫
Ω
bi ϕDiũ dx+

∫
Ω
g ũ ϕ dx+ θ

∫
Ω
ũ ϕ ω dx

=

∫
Ω
f ϕ dx.

Using the fact that um is a solution of (Pm), we have

n∑
i,j=1

∫
Ω
ammij DiumDjϕdx+

n∑
i=1

∫
Ω
bmi ϕDium dx+

∫
Ω
gm um ϕdx

+ θ

∫
Ω
um ϕωm dx =

∫
Ω
fm ϕdx,
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for every ϕ∈W 1,2(Ω, ωm). Moreover, by Lemma 2 and (2.2), over Fk = Fkk (for
m≥ k) we have the following properties:
(i) ω = ωm;
(ii) fm = f , gm = g and bmi = bi;
(iii) ammij (x) = aij(x).

For ϕ∈W 1,2(Ω, ω) and k > 0(fixed), we define G1, G2 : W 1,2(Ω, ω̃1)→R by

G1(u) =
n∑

i,j=1

∫
Ω
aij Diu DjϕχFk dx,

G2(u) =
n∑
i=1

∫
Ω
ϕ biDiuχFk dx+

∫
Ω
g uϕχFk dx+ θ

∫
Ω
uϕω χFk dx.

(a) We have that G1 is linear and continuous functional. In fact, we have (by
Lemma 2(iv)) ω∼ ω̃1 in Fk (there is a constant c > 0 such that ω≤ c ω̃1 in Fk).
And by (0.2) we obtain

|G1(u)| ≤
∫
Fk

|〈A∇u,∇ϕ〉| dx

≤
∫
Fk

(〈A∇u,∇u〉)1/2 (〈A∇ϕ,∇ϕ〉)1/2 dx

≤
(∫

Fk

〈A∇u,∇u〉 dx
)1/2(∫

Fk

〈A∇ϕ,∇ϕ〉 dx
)1/2

≤ Λ

(∫
Fk

|∇u|2 ω dx
)1/2(∫

Fk

|∇ϕ|2 ω dx
)1/2

≤ Λ

(∫
Fk

c |∇u|2ω̃1 dx

)1/2(∫
Ω
|∇ϕ|2 ω dx

)1/2

≤ Λ c1/2‖ϕ‖W 1,2(Ω,ω) ‖u‖W 1,2(Ω,ω̃1).

(b) We have that G2 is linear and continuous functional. In fact,

|G2(u)|

≤
n∑
i=1

∫
Fk

|ϕ| |bi| |Diu| dx+

∫
Fk

|g| |u| |ϕ| dx+ θ

∫
Fk

|u| |ϕ|ω dx

≤
n∑
i=1

∥∥∥∥biω
∥∥∥∥
L∞(Fk)

(∫
Fk

|Diu|2 ω dx
)1/2(∫

Fk

|ϕ|2 ω dx
)1/2

+

∥∥∥∥ gω
∥∥∥∥
L∞(Fk)

(∫
Fk

|u|2 ω dx
)1/2(∫

Fk

|ϕ|2 ω dx
)1/2
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+ θ

(∫
Fk

|u|2 ω dx
)1/2(∫

Fk

|ϕ|2 ω dx
)1/2

≤
(

max

∥∥∥∥biω
∥∥∥∥
L∞(Ω)

)(
c

∫
Fk

|Diu|2 ω̃1 dx

)1/2(∫
Ω
|ϕ|2 ω dx

)1/2

+

∥∥∥∥ gω
∥∥∥∥
L∞(Ω)

(
c

∫
Fk

|u|2 ω̃1 dx

)1/2(∫
Ω
|ϕ|2 ω dx

)1/2

+ θ

(
c

∫
Fk

|u|2 ω̃1 dx

)1/2(∫
Ω
|ϕ|2 ω dx

)1/2

≤
(

max

∥∥∥∥biω
∥∥∥∥
L∞(Ω)

+

∥∥∥∥ gω
∥∥∥∥
L∞(Ω)

+ θ

)
c1/2 ‖u‖W 1,2(Ω,ω̃1)‖ϕ‖W 1,2(Ω,ω).

Using (a), (b), properties (i),(ii) and (iii), and that um is solution of (Pm), we
obtain

n∑
i,j=1

∫
Fk

aij DiũDjϕdx+
n∑
i=1

∫
Fk

ϕ biDiũ dx+

∫
Fk

g ũ ϕ dx+ θ

∫
Fk

ũ ϕ ω dx

= lim
m→∞

(
G1(um) +G2(um)

)
= lim

m→∞

( n∑
i,j=1

∫
Fk

ammij DiumDjϕdx+
n∑
i=1

∫
Fk

ϕ bmiDium dx

+

∫
Fk

gm um ϕdx+ θ

∫
Fk

um ϕωm dx

)
= lim

m→∞

( n∑
i,j=1

∫
Ω
ammij DiumDjϕdx+

n∑
i=1

∫
Ω
ϕ biDium dx+

∫
Ω
gm um ϕdx

+ θ

∫
Ω
um ϕωm dx

−
n∑

i,j=1

∫
Ω∩F ck

ammij DiumDjϕdx−
n∑
i=1

∫
Ω∩F ck

ϕ biDium dx

−
∫

Ω∩F ck
gm um ϕdx− θ

∫
Ω∩F ck

um ϕωm dx

)
= lim

m→∞

(∫
Ω
fm ϕdx−

n∑
i,j=1

∫
Ω∩F ck

ammij DiumDjϕdx

−
n∑
i=1

∫
Ω∩F ck

ϕ biDium dx−
∫

Ω∩F ck
gm um ϕdx− θ

∫
Ω∩F ck

um ϕωm dx, (2.7)
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where Ec denotes the complement of a set E⊂Rn.

(I) By Lemma 2(v) we have fm =
fω

1/2
m

ω1/2
→ f a.e. in Ω. Since ωm = ω in Fk

(m≥ k) we also have∫
Ω
f2
m ω dx =

∫
Ω
f2 ωm dx

=

∫
Fk

f2 ωm dx+

∫
Ω∩F ck

f2 ωm dx

=

∫
Fk

f2 ω dx+

∫
Ω∩F ck

f2 ωm dx

≤
∫

Ω
f2 ω dx+

∫
Ω∩F ck

f2 ωm dx

=

∫
Ω

(
f

ω

)2

ω3 dx+

∫
Ω∩F ck

f2 ωm dx.

By Lemma 2(iv), we we know that |Ω∩F ck |→ 0 when k → ∞. Then, for suffi-
ciently large k we have ∫

Ω∩F ck
f2 ωm dx≤ 1.

Therefore, for sufficiently large m and (H2∗), we obtain∫
Ω
f2
m ω dx≤

∫
Ω

(
f

ω

)2

ω3 dx+ 1 <∞.

Hence the sequence {fm} is bounded in L2(Ω, ω). Then there is a subsequence,
still denoted by {fm}, and a function f̃ such that

fm⇀f̃ inL2(Ω, ω),

fm→ f̃ a.e. in Ω.

Since fm→ f a.e. in Ω, then f̃ = f a.e. in Ω. Therefore, for all ϕ∈W 1,2(Ω, ω),
we have ∫

Ω
fm ϕdx→

∫
Ω
f ϕ dx.

(II) Since the matrix Am(x) = (ammij )(x) is symmetric, we have

|〈Am∇um,∇ϕ〉| ≤ 〈Am∇um,∇um〉1/2 〈Am∇ϕ,∇ϕ〉1/2.
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Then, by Lemma 2(vi) and (2.3), we obtain∣∣∣∣ n∑
i,j=1

∫
Ω∩F ck

ammij DiumDjϕdx

∣∣∣∣
≤
∫

Ω∩F ck
|〈Am∇um,∇ϕ〉| dx

≤Λ

(∫
Ω∩F ck

|∇um|2ωm dx
)1/2(∫

Ω∩F ck
|∇ϕ|2ωm dx

)1/2

≤Λ‖um‖W 1,2(Ω,ωm)

(∫
Ω∩F ck

|∇ϕ|2wm dx
)1/2

≤ΛC3

(∫
Ω∩F ck

|∇ϕ|2wm dx
)1/2

. (2.8)

(III) By (H3), (2.2) and (2.3) we have∣∣∣∣ ∫
Ω∩F ck

ϕ bmiDium dx

∣∣∣∣
≤
∫

Ω∩F ck
|ϕ| |bmi| |Dium| dx

≤
∥∥∥∥bmiωm

∥∥∥∥
L∞(Ω)

(∫
Ω∩F ck

|Dium|2ωm dx
)1/2(∫

Ω∩F ck
|ϕ|2 ωm dx

)1/2

≤
∥∥∥∥biω
∥∥∥∥
L∞(Ω)

‖um‖W 1,2(Ω,ωm)

(∫
Ω∩F ck

|ϕ|2ωm dx
)1/2

≤C3

∥∥∥∥biω
∥∥∥∥
L∞(Ω)

(∫
Ω∩F ck

|ϕ|2ωm dx
)1/2

, (2.9)

and analogously∣∣∣∣ ∫
Ω∩F ck

gm um ϕdx

∣∣∣∣≤C3

∥∥∥∥ gω
∥∥∥∥
L∞(Ω)

(∫
Ω∩F ck

|ϕ|2ωm dx
)1/2

, (2.10)

and ∣∣∣∣ ∫
Ω∩F ck

um ϕωm dx

∣∣∣∣≤C3

(∫
Ω∩F ck

|ϕ|2ωm dx
)1/2

. (2.11)

Note now that ωm≤ ω̃2 and ω̃2 ∈A2 (by Lemma 2). Hence, by Remark 2(b),
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there exist δ > 0 and C > 0 such that, if K0 is a cube containing Ω̄ then

µm(Ω∩F ck) =

∫
Ω∩F ck

ωm(x) dx

≤
∫

Ω∩F ck
ω̃2(x) dx

= µ̃2(Ω∩F ck )

≤ C µ̃2(K0)

(
|F ck |
|K0|

)δ
,

which is independent of m and tends to zero as k→∞ by Lemma 2(iv). Then

lim
k→∞

(∫
Ω∩F ck

|ϕ|2ωm dx
)1/2

= lim
k→∞

(∫
Ω∩F ck

|∇ϕ|2 ωm dx
)1/2

= 0,

and we obtain in (2.8), (2.9), (2.10) and (2.11)

lim
k→∞

∫
Ω∩F ck

ammij (x)Diu(x)Djϕ(x) dx = 0, (2.12)

lim
k→∞

∫
Ω∩F ck

ϕ bmiDium dx = 0, (2.13)

lim
k→∞

∫
Ω∩F ck

gm um ϕdx = 0, (2.14)

lim
k→∞

∫
Ω∩F ck

um ϕωm dx = 0. (2.15)

Therefore, by (2.7), (2.12), (2.13), (2.14) and (2.15) we conclude, when k →∞
(and m≥ k),

n∑
i,j=1

∫
Ω
aijDiũDjϕdx+

n∑
i=1

∫
Ω
bi ϕDiũ dx+

∫
Ω
g ũ ϕ dx+ θ

∫
Ω
ũ ϕ ω dx

=

∫
Ω
f ϕ dx,

for all ϕ∈W 1,2(Ω, ω), that is, ũ is a solution of problem (P). Therefore, u = ũ
(by the uniqueness). QED

Example. Consider the domain Ω = {(x, y)∈R2 : x2 + y2 < 1}, the weight
function ω(x, y) = (x2 + y2)−1/2 and the coefficient matrix

A(x, y) =

(
2(x2 + y2)−1/2 0

0 4(x2 + y2)−1/2

)
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We have for all ξ∈R2 and almost every (x, y)∈Ω,

2

(x2 + y2)1/2
|ξ|2≤〈A(x, y)ξ, ξ〉≤ 4

(x2 + y2)1/2
|ξ|2.

If (x, y)∈∂Ω = {(x, y)∈R2 : x2 + y2 = 1}, then ~η(x, y) = (x, y) is the unit
outward normal to ∂Ω. By Theorem 1 the Neumann problem{

Lu(x, y) = (x2 + y2)−1/5cos(xy) on Ω,
〈A(x, y)∇u, ~η〉 = 0, on ∂Ω,

where

Lu(x, y) = −
[
∂

∂x

(
2

(x2 + y2)1/2

∂u

∂x

)
+

∂

∂y

(
4

(x2 + y2)1/2

∂u

∂y

)]
+

cos(xy)

(x2 + y2)1/3

∂u

∂x
+

sin(xy)

(x2 + y2)1/4

∂u

∂y

+
u(x, y) sin(xy)

(x2 + y2)1/3
+ θ

u(x, y)

(x2 + y2)1/2

has a unique solution u∈W 1,2(Ω, ω) (if θ≥ 13/4), and by Theorem 2 the solution
u can be approximated by a sequence of solutions of non-degenerate elliptic
equations.

Acknowledgements. The author would like to thank the referee for his
very valuable comments and suggestions.
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