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Abstract. In this work we study the equation Lu = f, where L is a degenerate elliptic
operator, with Neumann boundary condition in a bounded open set 2. We prove the existence
and uniqueness of weak solutions in the weighted Sobolev space W2(Q,w) for the Neumann
problem. The main result establishes that a weak solution of degenerate elliptic equations can
be approximated by a sequence of solutions for non-degenerate elliptic equations
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Introduction

In this paper, we prove the existence and uniqueness of (weak) solutions
in the weighted Sobolev space W12(2,w) (see Definition 1) for the Neumann
problem

(P){ Lu(z) = f(z) in Q,
(A(x)Vu,7(z)) =0 on 0L,
where 77(z) = (mi(x),...,nn(z)) is the outward unit normal to 9§ at z, (.,.)
denotes the usual inner product in R, the symbol V indicates the gradient and
L is a degenerate elliptic operator

n n
Lu:_ZDJ(GZJDZU)+ZleZU+gu + 0 uw, (01)
ij=1 i=1
0
with D; = e (j =1,...,n), 0 is positive a constant, the coefficients a;;, b; and
J

g are measurable, real-valued functions, the coefficient matrix A(x) = (a;;(x))
is symmetric and satisfies the degenerate ellipticity condition

NefPw(@) < (A@)E, €) < Alefw(z) (02)
http://siba-ese.unisalento.it/ (C) 2020 Universita del Salento
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for all £€R™ and almost every z€QCR™ a bounded open set with piecewise
smooth boundary (i.e., 92 € C%!), w is a weight function (that is, locally inte-
grable and nonnegative function on R™), A and A are positive constants.

Remark 1. In the case A(x) = Id (where Id denotes the Identity matrix

—

in R™) then the second equation of (P) is 8—u = 0 on 0f2 namely the normal

derivative of u vanishes on 9€). In the general case and with the summation

convention the second equation of (P) can be written a;;(x) =0 on 0.

U
o
8xj
This expression is called conormal derivative of wu.

The main purpose of this paper (see Theorem 2) is to establish that a weak
solution u € W12(Q,w) for the Neumann problem (P) can be approximated by
a sequence of solutions of non-degenerate elliptic equations.

By a weight, we shall mean a locally integrable function w on R™ such that
0 < w(z) < oo for a.e. x € R". Every weight w gives rise to a measure on the
measurable subsets on R™ through integration. This measure will be denoted by
p. Thus, p(E) = [, w(x) dx for measurable sets E CR™.

In general, the Sobolev spaces W*P(Q) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various types of singularities
in the coeflicients, it is natural to look for solutions in weighted Sobolev spaces
(see [3], [6], [7] and [9]). In various applications, we can meet boundary value
problems for elliptic equations whose ellipticity is disturbed in the sense that
some degeneration or singularity appears. There are several very concrete prob-
lems from practice which lead to such differential equations, e.g from glaceology,
non-Newtonian fluid mechanics, flows through porous media, differential geome-
try, celestial mechanics, climatology, petroleum extraction and reaction-diffusion
problems (see some examples of applications of degenerate elliptic equations in
[1] and [5]).

A class of weights, which is particularly well understood, is the class of A,
weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see
[13]). These weights have found many useful applications in harmonic analysis
(see [14]). Another reason for studying A,-weights is the fact that powers of
distance to submanifolds of R™ often belong to A, (see [12]). There are, in fact,
many interesting examples of weights (see [11] for p-admissible weights).

1 Definitions and basic results

Let w be a locally integrable nonnegative function in R” and assume that
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0 < w < oo almost everywhere. We say that w belongs to the Muckenhoupt
class Ay, 1 < p < oo, or that w is an Ap-weight, if there is a constant C' such

that
(o o) f o

for all balls B C R"™, where |.| denotes the n-dimensional Lebesgue measure in
R™. The infimum over all such constants C' is called the A, constant of w and
this constant will be denoted by C,,. If 1 < ¢<p, then A,CA, (see [10], [11] or
[14] for more information about A,-weights). The weight w satisfies the doubling

condition if u(2B) < Cu(B), for all balls B C R™, where u(B) = / w(x) dx and

2B denotes the ball with the same center as B which is twice gs large (i.e.,
2B(z;r) = B(x;2r)). If we Ay, then w is doubling (see Corollary 15.7 in [11]).

As an example of A,-weight, the function w(z) = |z|*, z€R™, is in A4, if and
only if —n < a < n(p —1) (see Corollary 4.4, Chapter IX in [14]).

P

Remark 2. (a) If we 4,, 1 < p < oo, then (l?) SCPWZE];; for all
measurable subset F of B (see 15.5 strong doubling property in [11]). Therefore
p(E) = 0 if and only if |[E| = 0; so there is no need to specify the measure
when using the ubiquitous expression almost everywhere and almost every, both
abbreviated a.e..
(b) If we Ap, 1 < p < oo, then there exist § > 0 and C' > 0 depending only on
n,p and Cj, such that, every time we have a measurable set I/ contained in a

E El\°
cube Ky, the following inequality holds: ML) <C <H> (see Theorem 2.9,
1(Ko) | Ko
Chapter IV in [10] or Lemma 15.8 in [11]).
Let w be a weight and 2 C R™ be open. For 1 < p < oo we define by LP(Q,w)
the set of measurable function f defined on €2 for which

1/p
1l o0y = (/Q !f(fﬁ)|pW(l‘)d$> < o0,

If wed,, 1 < p < oo, then w=V(P=1 is locally integrable and we have
LP(Q,w)CLL (Q) for every open set  (see Remark 1.2.4 in [15]). It thus makes

loc
sense to talk about weak derivatives of functions in LP(Q,w).

Definition 1. Let QCR" be a bounded open set, 1 < p < oo, k€N and
w€A,. We define the weighted Sobolev space W*P(Q,w) as the set of functions
ueLP(Q,w) with weak derivatives D*ueLP(Q,w), 1<|a|<k. The norm of v in
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WHP(Q,w) is defined by

1/p
lullwep@w) = (/ |ulPw dx + Z /\Dau\pwdaz> . (1.1)
Q Q

1<|a|<k

If weA,, then WFP(Q,w) is the closure of C*(Q2) with respect to the norm
(1.1) (see Proposition 3.5 in [4] or Theorem 2.1.4 in [15]). The space Wéc’p(Q, w)
is the closure of C§°(€2) with respect to the norm

1/p
||u]|W§,p(Q’w):< Z |D°‘u|pwdaj> .

1<]a|<k ¢

The spaces WP (Q,w) and Wg P(Q,w) are Banach spaces and for k = 1 and
p = 2 the spaces W1?(Q,w) and W[)I’Q(Q,w) are Hilbert spaces.

It is evident that the weight function w which satisfy 0 < ¢;<w(z) <cg for
1€, give nothing new (the space W*P(Q, w) is then identical with the classical
Sobolev space W¥*?(Q)). Consequently, we shall be interested above all in such
weight functions w which either vanish somewhere in Q or increase to infinity

(or both).

Remark 3. Let Q CR” be a bounded open set with boundary 9Q € C%1.
Using integration by parts, with u, € WH2(Q, w), if u satisfies the boundary
condition in problem (P), we have (by Remark 1)

/goLuda: = /aijDiungodx+/big0Diud:U+/gu«pda:
Q Q Q Q

+ 9/u<pwdx+/ aij%mwpdx
Q oo~ Ozj

=0

= B(u,ga)+9/ugowdx.
Q

where B(u, ) = /

Qg5 Diu Dj(p dx + /
Q

b; p Dijudx + / gupdx is a bilinear
Q

Q
form.

We introduce the following definition of weak solution of the Neumann prob-
lem (P).

Definition 2. Let Q CR” be a bounded open set with 9Q e C%!' and
f/we L?(,w). A function u€ W2(Q,w) is a weak solution of the Neumann
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problem (P) if

Z/aljDungadx—i—Z/cpb Dudx—{—/gugpdm—k@/gugpwdx

3,j=1

- /Q fodz (1.2)

for all p € W12(Q,w).

Before we prove the main result of this section, Theorem 1, we need the
following lemma.

Lemma 1. Let QCR" be a bounded open set with boundary 02 € COL.
Suppose that
(Hl) weE As;
(H2) f/we L*(Q,w);
(H3) b;/we L*(Q) (i=1,...,n) and g/w € L>®().
Then, there exists a constant C > 0 such that

)\
B(u,u) + Cllul[i2(q.0)> S luli2(0.)

for all u e WH2(Q, w).

Proof. Using (0.2) and (H3), for all u€ W12(Q,w), we have
B(u,u)—/Qal-jDiuDjudx+/biuDiud:U—i-/Qu2gdw
>/\/|Vu\ wdm—i—/buDuwd:c—i-/u wdx
>)\/ \Vul*wdz — (max )/ |ul| Diju|w dx

—Hg /u2wdac
WllLee(0) /0

1/2 1/2
2)\/ ]Vu\gwd:c—C&(/ u2wd:c> </ ]Dm\%}dm) —Cg/ w’w dx
Q Q Q Q

S\ /Q V2w dz — Cyllul 2 g0 6l 2y — Collel 2200 (1.3)

(i =1,..,n) and Cy = Hg

“ilLe()

where 7 = max||—

. Using the ele-
Wlre()
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mentary inequality ab<ea? + 4i€b2, for all € > 0, we obtain in (1.3),
B(u,u)
2 [ [9ufds = 1 (<l + - Iulfnan ) - Celulxgn
=& [ [VuPde - (Cre+ Collulla — T lulinaau

= )\/ ]Vu\dex—l—)\/ ugwdx—)\/ U2de_(Clg“l_CQ)HuH%Q(Qw)
Q Q '

01
HU||W1 2(Qw)

Ch

= AHUHWm @)~ (C1e+ Cot Nulfzu = L lluliviz@u

C
= (3= L)l — (o Co +A>Huum,w>- (1.4

If C7 > 0, we can choose € > 0 such that

Cl A . Ch
= h = —.
1 2,t at 1s, € 3\

Thus, in (1.4) we obtain

B(u,u)> ||u||W12(Qw) Cllullz20w):

2

where C = Ci1e +Cy + A = % + Cs5 + A > 0. Therefore,

A
B(u,u) + Cllull72(g,.) > §||UHI2/VL2(Q,w)‘

If C; =0 (that is, b;(z)=0, i = 1,...,n) then (1.3) reduces to

Bluw) > A / Va2 dz — Collul2a()

_ </|u| wda:+/|Vu| wdaz)

— (Ca+ Nz

2
> §Hu||W172(Q,w) — Cllull72(0.w)-

A
Therefore B(u, u) + Cllul|2(q.) > 5”““12/1/172(9,0.1)' ani
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Theorem 1. Let QCR"™ be a bounded open set with boundary 02 € COL.
Suppose that (H1) - (H3) holds. Then, there exists a constant C > 0 such that
for all > C the Neumann problem (P) has a unique solution u€ W12 (2, w).
Moreover, we have that

lellwrz(o.m) <

il

L2(Qw)

Proof. We define bilinear form
B: Wh(Q,w) x WH(Q,w)—R
Blu,p) = Blu,) +e/ wpwds
Q
and a linear mapping

W4 (Qw)—R

12(

/ fodr.
Then u€ W12(Q,w) is a weak solution of the Neumann problem (P) if
B(u,¢) = T(p), forall e WH2(Q,w).

Step 1. If § > C then B is coercive. In fact, by Lemma 1 there exists a constant
C > 0 such that

B(U’ U’) + (EHUHL2 Qw HUHWI 2(Qw)-

Hence, if 6 > C, we have

B(u,u) B(u,u)+9/u2wdx

Q
B(u’ u) + HH’“H%?(Q,w)

B(“? 'LL) + CHUH%Q(QM)

vl

AV

2
§HU||WL2(Q,W)-

Therefore, for § > C, we have that

Bluu) > 2 ullra(0,) (L5)

for all ue Wh2(Q,w).
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Step 2. B is bounded. In fact, using that the coefficient matrix A = (a;;) is
symmetric, (0.2) and (H3), we obtain

|B(u, ¢)|
<1l +0] [ upwis
Q

< / (AVu, V)| do + / balll | Dyl dz + / gllellul de
Q Q Q
+9/ lul|¢| w dz
Q

< / (AVu, V)2 AV, Vo) Y2 da

Q
il i, lgl
+ lpl| Diu| w dz + lpllulwdz +0 [ |ullp|wdz
Q W 0w Q

1/2 1/2
S(/ (AVu, Vu) dm) (/ (AVp, V) d:z:)
Q Q
b, , 1/2 , 1/2
(max = )(/ |o] wd:c) (/ | Djul wdm)
Wl Leo () Q Q
1/2 1/2 1/2
+ [Hg (/ ]u|2wda:> +9</ |u|2wdx> ](/ ]<p|2wdx>
WllLee (@) \J Q Q
1/2 1/2
SA(/ ]Vu|2wdm> (/ ]Vg0|2wda:>
Q Q

+

s (m ] - Hg +e) ullyr g Il 2
Wiy  1%WllLe=()
bi g
<[ A 4+ max||— —l—‘ +9)HUH 12w 1Pl
( Wllre@ @@ R

= Clullyr2ulelwrz@w):

g

w

b;

w

where C = (A + max

!

+ 9) , for all u,p € WH2(Q,w).
Lo (%) Lo (9)
Step 3. The linear mapping T is bounded (that is, T € [W12(£,w)]*). In fact,
using (H2), we have

T(e) < /Q Fliglda

= [ Migjw s
QO W
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[ (&) ] [ fotuse]

-

IN

IN

||(10HWL2(Q,W))
L2(Q,w)

for all p € W12(Q,w).

Therefore the bilinear form B and the linear functional T satisfy the hy-
potheses of the Lax-Milgram Theorem. Thus, for every f, with f/w € L?(Q,w),
there is a unique solution u€ W'2(Q,w) such that B(u,p) = T(yp) for all
©e Wh2(Q,w), that is, u is a unique solution of the Neumann problem (P).

In particular, by setting ¢ = u, we have B(u, u) = / fudz. Using the defini-
Q

tion of B, we obtain

B(u,u) = B(u,u) +9/uwdw

/ “uwdr
Qw

’UHH Qw) Hf/W”B(Q w)

VARPAY

[ellwre @ llf/@llL20,0)-

Using (1.5), we obtain

§HU\|I2A/L2(Q,W) < B(u,u)
< HUHWLQ(Q,UJ)Hf/wHL?(Q,w)'
Therefore,
e (16)
QED

2 Approximation of solution

In this section we present our main result: the weak solution to the problem
(P) can be approximated by a sequence of solutions for non-degenerate elliptic
equations.

The following lemma can be proved in exactly the same way as Lemma
2.1 in [8] (see also, Lemma 3.1 and Lemma 4.13 in [2]). Our lemma provides
a general approximation theorem for A, weights (1 < p < oo) by means of



72 A.C.Cavalheiro

weights which are bounded away from 0 and infinity and whose A,-constants
depend only on the A,-constant of w. Lemma 2 is the key point for Theorem
2, and the crucial point consists of showing that a weak limit of a sequence of
solutions of approximate problems is in fact a solution of the original problem.

Lemma 2. Let o, > 1 be given and let we A, (1 < p < 00), with Ap-
constant C(w,p) and let a;; = aj; be measurable, real-valued functions satisfying

n
Aw(@)[E < ) ay(@)&g < Aw(@) €, (2.1)
ij=1

for all § € R™ and a.e. x € Q). Then there exist weights wog >0 a.e. and measur-
able real-valued functions aiajﬂ such that the following conditions are met.
(1) c1(1/B) Swap < caa in Q, where ¢y and ¢z depend only on w and Q.
(ii) There exist weights &1 and o such that &1 <wep < Wa, where &; € Ay and
C(w;,p) depends only on C(w,p) (1 =1,2).
(1i1) wap € Ay, with constant C(wag,p) depending only on C(w,p) uniformly on
o and .
(i) There exists a closed set Fiz such that wog=w in Fog and wag~ @1~ 0y
in Fop with equivalence constants depending on o and f3 (i.e., there are positive
constants cqp and Cug such that cop @i <wap < Capwi, i = 1,2). Moreover,
FogCFyp ifa<da, <, and the complement of U F,p has zero measure.

a,f>1
(v) wap—w a.e. in R™ as a, f— 0.

n
(vi) Awas(2) €7 < Y aff (2) &€5 < Awag(2) €], VEER™ and a.e. z€Q, and
i,j=1
af}ﬁ(z) = a?iﬁ(x).
(vii) afjﬁ(x) = a;j(x) in Fyp.

Proof. See [2], Lemma 3.1 or Lemma 4.13. QED

The main results of this paper are the following.

Theorem 2. Let Q CR" be a bounded open set with boundary € COL.
Suppose that
(H].) we Ag,’
(H2*) f/we L2(Q,w)N L3(Q,w3);
(H3) b;/we L>(Q) (i=1,...,n) and g/w € L>=().
Then the unique solution u€ W12(Q,w) of problem (P) is the weak limit in
Wh2(Q,01) of a sequence of solutions uy, € WH2(Q, wy,) of the problems

Lmum(aj) :fm($)v in Q,
(Pm) { (A™(x2)Vt, 7(x)) =0, on 08,
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with

n
Ly, = — Z D mmDum +meiDium+gmum+9umwm7

fn = f (Wi /)2, g = gwm/w, bmi = biwm/w and wp, = Wmm (Where Wy,
aii™ and &y are as Lemma 2 and A™(x) = (ag””(a:)))

Proof. Step 1. First, if fn, = f(w/wm)™ Y2, gm = gwm/w and by, = b; Wi /w,
we note that

gm

-
W || Loo () w

‘ Im

-|-

L2(Q,wm) L2(Quw) L>(Q)

bi

(2.2)

L)

Loo( ’ w

Then, if u,, € WH2(Q, wm) is a solution of problem (P,,) we have (by (1.6))

21 f
lnllioon < 5|2
L2(Qwm)
- H / s
L2(Qw)
Using Lemma 2, @01 < w,,, we obtain
HumHWL?(Q,J;l) < ||um||W172(Q7wm) <Cs. (2.3)

Consequently, {u,,} is a bounded sequence in W12(Q,@;). Therefore, there is
a subsequence, again denoted by {u,,}, and @ € WH2(Q, &) such that

Up— T in L?(Q, &), (2.4)
ou ou

— ~—— in L*(Q,& 2.
oz, 0w, in L=(€2, 1), (2.5)
U — U a.e. in (2.6)

where the symbol “—” denotes weak convergence (see Theorem 1.31 in [11]).

Step 2. We have that @€ WH2(Q,w). In fact, for Fj, = Fi fixed (see Lemma
2), we have by (2.4) and (2.5), for all ¢ € W12(£,@1), we obtain

/umgodldx%/ﬁgpd)ldx,
Q Q

/DiumDﬂpwl dl’—)/Di’LNLDiQO(I)l dx.
Q Q
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If € L?(Q,w), then ¢ g, € L*(Q,&1) (since w~@; in Fy, i.e., there is a con-
stant ¢ > 0 such that @7 <cw in Fj, and xg denotes the characteristic function
of a measurable set EC R™). Consequently,

/um@XFka’ldﬂU%/ﬁgDXdejldx,
Q Q

/ Divy, 0 XF, 01 dv — / D;up xF, w1 d,
Q Q

O,

for all ¢ € L?(Q,w), that is, the sequence { 5 XF, } is weakly convergent to a
T
function in L?(£2,w), again since w~@; on Fj. Therefore, we have
~2 _ 7120 d
1Vl By = [ IVilwda
Fy,
< limsup/ V| w d,
m—oo J [y,

and for m >k we have w = w,, in Fj. Hence, by (2.3), we obtain

m—r0o0

IVl |72 p 0 < limsup/F V| w dz
k

. 2
= limsup | |Vup,| wnydx
m—oo JF,

< limsup/ Vit | win di
Q

m—r0o0

< C2

By the Monotone Convergence Theorem we obtain || [Vl [| f2(q ) < C3. Analo-
gously, ||t[| ;2 ) < C3. Therefore, we have u € Wh2(Q,w).

Step 3. We need to show that @ is a solution of problem (P), i.e, for every
e e WH2(Q,w) we have

Z/aijDiﬂngp d;v—I—Z/bingmdij/g&«pdw—l—@/ﬂg&wdw
Q — Ja Q Q

i,j=1

:/Qfgpda:.

Using the fact that u,, is a solution of (P,,), we have

n n
Z/Qag?mDiuijgpdx+Z/Qbm¢g0Diumdaz+/ngumgodm
i=1

1,j=1

+9/um<pwmdm:/fmgpd:x,
Q Q
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for every p € W12(Q, wy,). Moreover, by Lemma 2 and (2.2), over Fy, = Fy (for
m > k) we have the following properties:
(i) w = wWp;
(i) fin = f, gm = g and by = bi;
(iif) ™ (z) = aij(z).
For o € Wh2(Q,w) and k > 0(fixed), we define G1,Go : WH2(Q,01)— R by

Gi(u) = Z /Qaij Diu Djp xF, dz,
ij=1

G2(u):Z/ngbiDiuXFkdw%—/ﬂgucpxpkdx+9/ﬂu<pwxpkdx.
i=1

(a) We have that G is linear and continuous functional. In fact, we have (by
Lemma 2(iv)) w~@; in F}, (there is a constant ¢ > 0 such that w <c@; in Fy).
And by (0.2) we obtain

|G1(u)] < : |(AVu, V)| dz
< / (AVu, Vi) 2 ((AV, Vo)) 2 da
Fy,
<

1/2 1/2
(/ <AVU,Vu>da:> </ (AVp, Vo) da:)
Fy, Fy,
1/2 1/2
A</ |Vu]2wdx> (/ \V<,0|2wdx>
Fk Fk
1/2 1/2
A(/ c\Vu]Qchdx) </ \V(p[2wdx>
7 Q
<

< A Plelprau lulwizoa):

IN

IN

(b) We have that G5 is linear and continuous functional. In fact,

|G2(u)]

2 / | o] | Dyl da + / 19l [ul || da + 0 / ] || w da
i=1 7 Ik F, Fy

LT, 1/2 1/2
SZ - ( \Diu]2wdx> < ]@\%udm)
i=1 1| @ llLee(F) \/F B

w
1/2 1/2
’g ( ]u|2wda:> </ |<p\2wdx>
L (Fy,) Fy, F,

+
w
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1/2 1/2
+9</ ]u]%}dm) </ \go]%udx)
Fy, F,

(e
<| max||—

1/2 1/2
: )<c |Diul? @y dw) (/ |<p\2wdx>

Wl Leo () Fy Q

1/2 1/2
(c/ lul? @, dx) (/ ]g0|2wdx>
Lo (Q) Fy, Q

1/2 1/2
+9<c u|® & dx) (/ \cp]%}dm)
Fy, Q

S(max g

)
w

Using (a), (b), properties (i),(ii) and (iii), and that wu,, is solution of (P,,), we
obtain

|2
w

)

w

+ 9) 61/2 ||u||W1,2(Q7;J1)||90HW172(Q7w)'
L(Q) Loo(2)

n n
Z/ aijDiaDjwderZ/ wbiDiﬁd:r—l—/ gipdr+0 | dpwds
ij=1" Tk i=1 "7 Ik Fy Fy,

= lim
m—00

n
= Jm (22

1,j=1

/ a;i" Dity, Dy do + Z / @ bymi Diup, dx
F = IR

—i—/ Im Um pdx + 0 umgowmd:c>
Fy,

Fy,

= lim <Z/a?}mDiuijapdx—i-Z/gobz-Diumd:c—i-/gmumgodx
mTeON =Y i=1"9 Q

—i—@/ Uy © Wiy, AT

Q
n n
- Z/ a;?m Diuijcpdm—Z/ @ b; Dijty, dx
QNEg =179

ij=1 nEg
—/ Jm Um @ dx — 0 umgpwmdac>
QNFE QnFE

([ $

/ a;i" Dium Dy dx
= JoanFg

n
—Z/ ©b; Dity, dx — / Jm Um p dx — 0 U p Wi dx,  (2.7)
— Janrg QNFe QNFe
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where E° denotes the complement of a set £ C R"™.
1/2
fwm

(I) By Lemma 2(v) we have f,, = iz

(m > k) we also have

/ffnwdx = /f2wmdx
Q Q
= / wimda:—i—/ 2w dx
F QNFE
= wad:z:—i-/ 2w de
F, QN Fg
< /f2wdm+/ f? wp da
Q QnFe
£\2
= /(> w3dm+/ 2w da.
Q \wW QNEFE
By Lemma 2(iv), we we know that [N Ff| =0 when k — oo. Then, for suffi-

ciently large k£ we have
/ 2w dz<1.
QNFg

Therefore, for sufficiently large m and (H2*), we obtain

2
/f%wd:vﬁ/ <£> Wdr +1 < oo.
Q Q

Hence the sequence { f;,} is bounded in L?(Q,w). Then there is a subsequence,
still denoted by {f.,}, and a function f such that

— f a.e. in Q. Since w,, = w in F}

fm— f in L*(Q,w),
fm—>f a.e. in €.

Since fm— f a.e. in €, then f = f a.e. in Q. Therefore, for all ¢ € Wh2(Q,w),

we have
/fmnpdx—>/fcpda;

(I) Since the matrix A™(z) = (a;™)(x) is symmetric, we have

(A Vi, V)| < (A Vit V) /? (A" 0, Vi) /2,
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Then, by Lemma 2(vi) and (2.3), we obtain

Z/ a;;"™ Dium Do dx
QNFE

2,j=1

< / (A" VU, V)| dx
QNF¢

1/2 1/2
§A</ [Vt | 2w da:) </ IVeol*wm da:)
QNFe QNFe

, 1/2
SAHumHWl’Q(Q’“m)</QmFC IVo|” wm d:c)
k

1/2
<ACjy </ IVeol? wm d:c> . (2.8)
QNFy

(III) By (H3), (2.2) and (2.3) we have

’ / @ b Diuy, dz
QNFe

S/ ’§0| |bmi| | Divim| da

1/2 1/2
‘ < |Dium\2wm dx) (/ |g0]2wm d:c>
QnFg QnFg

, 1/2
s\ ltmllyrc, w,n)( [ tofum da:)
L>(9) QnFg

) 1/2
bi ( | e dx) | (2.9)
WllLe() \JonFg

w

<(C3

and analogously

1/2
/ Im Um @ dx| < Cs g </ loPwm d:L‘) , (2.10)
QNFy Wllpe (@) \JonFg
and
1/2
‘/ Uy © Wiy AT §C3</ |<p|2wmdx> . (2.11)
QNFe QNFe

Note now that w,, <@y and wy € Ay (by Lemma 2). Hence, by Remark 2(b),
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there exist 6 > 0 and C' > 0 such that, if K is a cube containing { then

um(QNEFL) = / wm () dz
QnFe

< / wo(x) dx
QnFe
= [i2(QNFY)
_ |F,sr>5
< C (K ,
= :u2( 0)<‘K0‘

which is independent of m and tends to zero as k— oo by Lemma 2(iv). Then

1/2 1/2
lim </ |g02wmdx> = lim (/ |Vg02wmdm> =0,
k—oo \ JanFg k—oo \ JanFg

and we obtain in (2.8), (2.9), (2.10) and (2.11)

lim a;;"™ (x) Diu(z) Djp(z) dz = 0, (2.12)
k—o0 Qszf
lim © by D, dx = 0, (2.13)
k—o0 QNFE
lim Im Um, @ dz =0, (2.14)
k—o0 QﬂF;f
lim Uy, @ Wy, dz = 0. (2.15)

k—oo JonFg

Therefore, by (2.7), (2.12), (2.13), (2.14) and (2.15) we conclude, when k — oo
(and m > k),

Z/aijDiﬂchpda:—FZ/binpDiﬂda:—i—/gchpda:—Fﬂ/ﬂgowd:c
Q — Ja Q Q

ij=1

Z/Qfsoda:,

for all ¢ € W12(Q,w), that is, @ is a solution of problem (P). Therefore, u = @
(by the uniqueness). QED

Example. Consider the domain Q = {(x,3)eR? : 2% 4 y? < 1}, the weight
function w(z,y) = (22 + y?)~'/2 and the coefficient matrix

2(x% + 12 —1/2 0
Az, y) = < ( 0 ) 4(x2+y2)’1/2
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We have for all £¢€R? and almost every (z,y)€S),

2

WKFSM(%ZD&@ <

2
(22 4 y2)1/2 €17

If (z,9)€0Q = {(z,y)eR? : 22 + y? = 1}, then 7j(x,y) = (x,y) is the unit
outward normal to 0. By Theorem 1 the Neumann problem

Lu(z,y) = (22 + y?)~Y5cos(xy) on Q,
(A(z,y)Vu,7) =0, on 09,

where
i) = |2 () £ (o
; 0r \ (22 + y2)1/2 O Ay \ (22 + y2)1/2 By
N cos(zy) Ou sin(zy)  Ou
(22 +y2) B0z ' (22 +y2) /1 0y
L way)sin(zy) o u(z,y)

(22 4+ y2)1/3 (22 + y2)1/2

has a unique solution u € W2(, w) (if # > 13/4), and by Theorem 2 the solution
u can be approximated by a sequence of solutions of non-degenerate elliptic
equations.

Acknowledgements. The author would like to thank the referee for his
very valuable comments and suggestions.
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