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1 Introduction

1.1 Statement of the main result

The tremendous literature on Gaussian bounds for fundamental solutions
of second order parabolic operators can be splitted into two classes: divergence
or non-divergence operators. In the first class we only quote the deep results
obtained by Aronson, following Nash’s ideas, and we refer to [7] for a comprehen-
sive treatment. The second class is more classical and can be found in the books
[8, 9] where a fundamental solution is constructed, via the parametrix method,
assuming Hölder continuity of the coefficients. By construction the fundamental
solution satisfies precise upper bounds but, strangely enough, lower bounds are
not proved. In this note we show that the parametrix method produces also
lower bounds.
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Gaussian bounds for the fundamental solution of parabolic operators in non-
divergence form are known in more generality. We refer to [5, Theorem 1.2]
which, combined with [6, Remark 3.3], gives two sided gaussian bounds for time
independent parabolic operators with VMO coefficients and to [2], where the
authors prove two-sided gaussian estimates local in time even for operators with
a non-local part.

Nevertheless, we believe that the proof given below is worth mentioning,
since it fits to the classical theory.

Let P = Rnx × Rt and set

Q = {(x, t, ξ, τ); (x, t), (ξ, τ) ∈ P, τ < t}.

The space of continuous and bounded functions f : P → R is denoted by
C0
b (P ).

Let f ∈ C0
b (P ). We say that f is Hölder continuous with exponent α, 0 <

α ≤ 1, if

[f ]α = sup

{
|f(x, t)− f(x′, t′)|
|(x− x′, t− t′)|α

, (x, t), (x′, t′) ∈ P, (x, t) 6= (x′, t′)

}
<∞,

where
|(x− x′, t− t′)|α =

(
|x− x′|2 + |t− t′|

)α/2
.

We define
Cα(P ) = {f ∈ C0

b (P ); [f ]α <∞}.

Cα(P ) is a Banach space when it is endowed with its natural norm

‖f‖α = ‖f‖∞ + [f ]α

and we also use the notation

{f}α = sup

{
|f(x, t)− f(x′, t)|
|x− x′|α

; x, x′ ∈ Rn, x 6= x′ and t ∈ R
}
.

We consider the second order parabolic operator

L =

n∑
i,j=1

aij(x, t)∂
2
ij +

n∑
i=1

bi(x, t)∂i + q(x, t)− ∂t (1.1)

with the following assumptions on its coefficients.
(a1) aij ∈ Cα(P ), 1 ≤ i, j ≤ n.
(a2) The matrix a(x, t) = (aij(x, t)), (x, t) ∈ P , is symmetric, real-valued, and
there exist constants κ,M > 0 so that

κ|η|2 ≤ 〈a(x, t)η, η〉 ≤M |η|2, (x, t) ∈ P, η ∈ Rn.
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(a3) bi, q ∈ C0
b (P ), 1 ≤ i ≤ n.

(a4) There exists a constant N1 > 0 so that

n∑
i,j=1

[aij ]α ≤ N1.

(a5) There exists a constant N2 > 0 so that

n∑
i=1

‖bi‖∞ + ‖q‖∞ ≤ N2.

(a6) {bi}α <∞, 1 ≤ i ≤ n, and {q}α <∞.
Henceforth we use for notational convenience D for (n, α,N1, N2,M, κ).
In this paper, the fundamental solution constructed by the parametrix method

is denoted by E = E(x, t; ξ, τ), (x, t, ξ, τ) ∈ Q. Recall that E is a fundamental
solution if E ∈ C2(Q), LE = 0 and

lim
t→τ

∫
Rn
E(x, t; ξ, τ)f(ξ)dξ = f(x), f ∈ C∞0 (Rn).

Theorem 1.1. Let

c =
1

8M
and d =

4 ln
[
e23n(Mκ−1)n/2Γ(n/2 + 1)

]
κ

.

Under assumptions (a1) to (a6), there exist four constants ℵi = ℵi(D), i =
0, 1, 2, 3, ℵ0 > 0, ℵ1 ≥ 0, ℵ2 > 0 and ℵ3 ≥ 0, such that

ℵ0e
−ℵ1(t−τ)(t− τ)−

n
2 e−d

|x−ξ|2
t−τ ≤ E(x,t; ξ, τ) (1.2)

≤ ℵ2e
ℵ3(t−τ)(t− τ)−

n
2 e−c

|x−ξ|2
t−τ ,

for all (x, t, ξ, τ) ∈ Q.

Remark 1.1. By inspecting the proof of Theorem 1.1 we see that, in the
Gaussian upper bound, we can substitute c by cε = ε

4M , 0 < ε < 1, and ℵi by
ℵεi , i = 2, 3, with an explicit dependence of ℵε2 and ℵε3 on ε.

1.2 Consequences

Let Ω be a C1,1-bounded domain of Rn. We denote the parabolic Dirichlet-
Green (resp. Neumann-Green) function on Ω by GDΩ (resp. GNΩ ).

It is well known that, according to the maximum principle, 0 ≤ GDΩ ≤ E.
Therefore as a consequence of Theorem 1.1, we have
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Corollary 1.1. Let the coefficients of L satisfy assumptions (a1) to (a6).
Then the Dirichlet-Green function GDΩ satisfies

0 ≤ GDΩ (x, t; ξ, τ) ≤ ℵ2e
ℵ3(t−τ)(t− τ)−

n
2 e−c

|x−ξ|2
t−τ , (x, t, ξ, τ) ∈ Q,

where the constants in this inequality are the same as in Theorem 1.1.

We say that Ω satisfies the chain condition if there exists a constant $ > 0
such that for any two points x, y ∈ Ω and for any positive integer m there exists
a sequence (xi)0≤i≤m of points in Ω such that x0 = x, xm = y and

|xi+1 − xi| ≤
$

m
|x− y|, i = 0, . . . ,m− 1.

The sequence (xi)0≤i≤m is named a chain connecting x and y.

Since any bounded Lipschitz domain has the chain condition (see [12, Propo-
sition A.1]), an adaptation of the proof of [3, Theorem 3.1] (see also [4]) and
the reproducing property enable us to get the following result.

Corollary 1.2. If the coefficients of L satisfy assumptions (a1) to (a6) then
there exist five constants c0 = c0(D) and ℵi = ℵi(D) > 0, i = 0, 1, 2, 3, such
that

ℵ0e
−ℵ1(t−τ)(t− τ)−

n
2 e−c0

|x−ξ|2
t−τ ≤ GNΩ (x,t; ξ, τ)

≤ ℵ2e
ℵ3(t−τ)(t− τ)−

n
2 e−c

|x−ξ|2
t−τ ,

for all (x, t, ξ, τ) ∈ Q, where c is as in Theorem (1.1).

2 Preliminaries

In this section the coefficients of L satisfy assumptions (a1) to (a5).

2.1 Basic properties of generalized Gaussian kernels

In the sequel we frequently use∫
R
e−ρ

2
dρ =

√
π. (2.1)

The Gaussian heat kernel is defined as follows

G(x, t) =
1

(4πt)
n
2

e−
|x|2
4t , x ∈ Rn, t > 0. (2.2)
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We have, according to Fubini’s theorem,∫
Rn
G(x, t)dx =

(∫
R

1

2
√
πt
e−

y2

4t dy

)n
, t > 0.

Then the change of variable ρ = y

2
√
t

yields∫
Rn
G(x, t)dx = 1, t > 0, (2.3)

where we used the value of the Gauss integral (2.1).

If a = (aij) is n × n symmetric positive definite matrix, we define the gen-
eralized Gaussian heat kernel by

Ga(x, t) =

√
det a

(4πt)
n
2

e−
〈ax,x〉

4t , x ∈ Rn, t > 0. (2.4)

Let d = diag(d1, . . . , dn) be a diagonal matrix and u an orthogonal matrix,
that is utu = I, so that uaut = d. Then

〈ax, x〉 = 〈dux,ux〉, det a =
n∏
i=1

di

and ∫
Rn
Ga(x, t)dx =

∫
Rn

√
det a

(4πt)
n
2

e−
〈dux,ux〉

4t dx, t > 0.

Since |det u| = 1, the change of variable y = ux gives∫
Rn
Ga(x, t)dx =

∫
Rn

√
det a

(4πt)
n
2

e−
〈dx,x〉

4t dx, t > 0.

Applying again Fubini’s theorem, we get∫
Rn
Ga(x, t)dx =

√
det a

n∏
j=1

∫
R

1

2
√
πt
e−

diρ
2

4t dρ (2.5)

=
√

det a

n∏
j=1

∫
R

1

2
√
diπt

e−
ρ2

4t dρ

=
n∏
j=1

∫
R

1

2
√
πt
e−

ρ2

4t dρ = 1, t > 0.
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It is straightforward to check that Ga ∈ C∞(Rn × (0,∞)) and, since

∂k〈ax, x〉 = 2

n∑
j=1

akjxj = 2(ax)k, x ∈ Rn,

we have

∂kGa(x, t) = − 1

2t
Ga(x, t)(ax)k, x ∈ Rn, t > 0. (2.6)

We easily derive from (2.6)

∂2
k`Ga(x, t) =

1

4t2
Ga(x, t)(ax)k(ax)` −

1

2t
Ga(x, t)ak`, x ∈ Rn, t > 0. (2.7)

Let a−1 = (aij). Inserting the identity

n∑
k,`=1

ak`(ax)k(ax)` = 〈a−1ax, x〉 = 〈ax, x〉

in (2.7) we obtain

n∑
k,`=1

ak`∂
2
k`Ga(x, t) =

(
1

4t2
〈ax, x〉 − n

2t

)
Ga(x, t), x ∈ Rn, t > 0. (2.8)

On the other hand, it is straightforward to check that

∂tGa(x, t) =

(
1

4t2
〈ax, x〉 − n

2t

)
Ga(x, t), x ∈ Rn, t > 0. (2.9)

We define the parabolic operator La−1 by

La−1 =

n∑
i,j=1

aij∂
2
ij − ∂t.

Comparing (2.8) and (2.9) we see that Ga satisfies

La−1Ga(x, t) = 0, x ∈ Rn, t > 0. (2.10)

2.2 The parametrix

Let a−1(x, t) = (aij(x, t)), (x, t) ∈ P , where (aij(x, t)) is the inverse of the
matrix (aij(x, t)), and define

Z(x, t; ξ, τ) = Ga−1(ξ,τ)(x− ξ, t− τ), (x, t, ξ, τ) ∈ Q,
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that is

Z(x, t; ξ, τ) =

√
det a−1(ξ, τ)

(4π(t− τ))
n
2

e
− 〈a

−1(ξ,τ)(x−ξ),(x−ξ)〉
4(t−τ) , (x, t, ξ, τ) ∈ Q. (2.11)

This function is usually called the parametrix associated to the parabolic
operator L. According to the results of the previous subsection, for any (ξ, τ) ∈
P , Z(·, ·; ξ, τ) ∈ C∞(Pτ ) with Pτ = {(x, t) ∈ Rn; t > τ}, and

n∑
i,j=1

aij(ξ, τ)∂2
ijZ(·, ·; ξ, τ)− ∂tZ(·, ·; ξ, τ) = 0 in Pτ . (2.12)

Let us define

di(x, t; ξ, τ) = − 1

2(t− τ)

n∑
j=1

aij(ξ, τ)(xj − ξj),

dij(x, t; ξ, τ) = −a
ij(ξ, τ)

2(t− τ)
+ di(x, t; ξ, τ)dj(x, t; ξ, τ).

From (2.6) and (2.7) we have

∂iZ = diZ and ∂2
ijZ = dijZ.

Therefore, taking into account (2.12), we have

LZ =

 n∑
i,j=1

(aij(x, t)− aij(ξ, τ)) dij +

n∑
i=1

dibi + q

Z = ΨZ, (2.13)

where

Ψ =
n∑

i,j=1

(aij(x, t)− aij(ξ, τ)) dij +

n∑
i=1

dibi + q.

We need a pointwise estimate for LZ. To this end, we start with the following
lemma

Lemma 2.1. We have

|a−1(x, t)η| ≤ 1

κ
|η|, (x, t) ∈ P, η ∈ Rn, (2.14)

sup
1≤i,j≤n

‖aij‖∞ ≤
1

κ
. (2.15)

and
〈a−1(x, τ)(x− ξ), x− ξ〉

4(t− τ)
≥ 1

4M

|x− ξ]2

t− τ
. (2.16)
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Proof. From assumption (a2), we have

〈a(x, t)η, η〉 ≥ κ|η|2, (x, t) ∈ P, η ∈ Rn.

In this inequality we get by substituting η by a−1(x, t)η

|a−1(x, t)η||η| ≥ 〈a−1(x, t)η, η〉 ≥ κ|a−1(x, t)η|2, (x, t) ∈ P, η ∈ Rn

and (2.14) follows.

Since aij = 〈a−1ei, ej〉, where (e1, . . . , en) the canonical basis of Rn, (2.15)
follows from (2.14).

Finally, (2.16) is equivalent to 〈a−1(x, τ)η, η〉 ≥ 1
M |η|

2 or 〈a(x, τ)η, η〉 ≤
M |η|2, which holds by assumption. QED

From (2.14), we get

‖di‖∞ ≤
|x− ξ|

2κ(t− τ)
or ‖di‖∞ ≤

%

2κ
√
t− τ

, (2.17)

where

% =
|x− ξ|√
t− τ

.

It is easy to see that (2.15) and (2.17) entail

‖dij‖∞ ≤
(

1

2κ
+

%2

4κ2

)
1

t− τ
. (2.18)

Hence∣∣∣∣∣∣
n∑

i,j=1

(aij(x, t)− aij(ξ, τ)) dij

∣∣∣∣∣∣ ≤ N1

(
1

2κ
+

%2

4κ2

)
(1 + %2)

α
2

(t− τ)1−α
2

. (2.19)

On the other hand, we get from (2.17)∣∣∣∣∣
n∑
i=1

bidi + q

∣∣∣∣∣ ≤ N2

(
%

2k
√
t− τ

+ 1

)
≤ N2

1 + %
2κ

(t− τ)1−α
2

, t− τ ≤ 1. (2.20)

In light of (2.19) and (2.20), we obtain

‖Ψ‖∞ ≤ N1

(
1

2κ
+

%2

4κ2

)
(1 + %2)

α
2

(t− τ)1−α
2

+N2
1 + %

2κ

(t− τ)1−α
2

, t− τ ≤ 1. (2.21)
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Now (2.16) implies

|Z(x, t)| ≤ 1

(4κπ(t− τ))
n
2

e−
1

4M
%2 . (2.22)

Recall that c = 1
8M and let

C =
1

(4κπ)
n
2

max
λ>0

[
N1

(
1

2κ
+

λ2

4κ2

)
(1 + λ2)α/2 +N2

(
λ

κ
+ 1

)]
e−cλ

2
. (2.23)

If Φ1 = LZ = ΨZ, then a combination of (2.21) and (2.22) gives

|LZ| = |ΨZ| ≤ C(t− τ)−
n
2
−1+βe−c%

2
, t− τ ≤ 1, (2.24)

with β = α
2 .

3 Two-sided Gaussian bounds

In this section the coefficients of L satisfy (a1) to (a6). Let Φ1 = LZ,

Φ`+1(x, t, ξ, τ) =

∫ t

τ

∫
Rn

Φ1(x, t; η, σ)Φ`(η, σ, ξ, τ)dηdσ, ` ≥ 1,

and define
Φ =

∑
`≥1

Φ`.

Let E be the fundamental solution, associated to L, constructed by the
parametrix method. According to [8, 9], E is given by

E(x, t; ξ, τ) = Z(x, t; ξ, τ) +

∫ t

τ

∫
Rn
Z(x, t; η, σ)Φ(η, σ; ξ, η)dηdσ, (3.1)

for all (x, t, ξ, τ) ∈ Q.
We refer to [8, Chapter 1] or to [9, Chapter IV] for more details.

3.1 Preliminary estimate

The following lemma will be useful in the sequel.

Lemma 3.1. ([8, Chapter 1, Section 4]) Let λ > 0 and −∞ < γ, δ < 1.
Then∫ t

τ

∫
Rn

(t− σ)−
n
2
−γe−

λ|x−η|2
t−σ (σ − τ)−

n
2
−δe−

λ|η−ξ|2
σ−τ dηdσ

=

(
4π

λ

)n
2

B (1− γ, 1− δ) (t− τ)−
n
2

+1−γ−δe−
λ|x−ξ|2
t−τ ,

where B is the Euler beta function.
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Let C be the constant given by (2.23) and assume that t−τ ≤ 1. We deduce
from (2.24)

|Φ1| ≤ C(t− τ)−
n
2
−1+βe−c%

2
. (3.2)

Let C̃ =
(

4π
c

)n
2 . We have by applying Lemma 3.1

|Φ2| ≤ C̃C2B(β, β)(t− τ)−
n
2
−1+2βe−c%

2
.

By induction in `, wo obtain

|Φ`| ≤ C̃`−1C`
`−1∏
j=1

B(β, jβ)(t− τ)−
n
2
−1+`βe−c%

2
, ` ≥ 2.

If Γ is the Euler gamma function, we recall that

B(β, jβ) =
Γ(β)Γ(jβ)

Γ((j + 1)β)
.

Therefore
`−1∏
j=1

B(β, jβ) =
Γ(β)`

Γ(`β)

and hence

|Φ`| ≤ C̃−1 Λ`

Γ(`β)
(t− τ)−

n
2
−1+`βe−c%

2
, ` ≥ 2,

where Λ = CC̃Γ(β). Since t− τ ≤ 1, we obtain

|Φ`| ≤ C̃−1 Λ`

Γ(`β)
(t− τ)−

n
2
−1+βe−c%

2
, ` ≥ 2, (3.3)

If C = C̃−1, then (3.3) takes the form

|Φ`| ≤ C
Λ`

Γ(`β)
(t− τ)−

n
2
−1+βe−c%

2
, ` ≥ 2. (3.4)

From Stirling’s formula for the Γ function (see for instance [10, Chapter V,
Section 3]) we have

Γ(x+ 1) ∼ xxe−x
√

2πx, x→∞.

Therefore, the series

S = C + C
∑
`≥2

Λ`

Γ(`β)
(3.5)

is convergent.
We get from (2.24) and (3.4)

|Φ| ≤ S(t− τ)−
n
2
−1+βe−c%

2
. (3.6)
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3.2 The upper bound

In light of (2.24) and (3.6), Lemma 3.1 yields∣∣∣∣∫ t

τ

∫
Rn
Z(x, t; η, σ)Φ(η, σ; ξ, τ)dηdσ

∣∣∣∣ ≤ SB(1, β)

(κc)
n
2

(t− τ)−
n
2

+βe−c%
2
, (3.7)

for all (x, t, ξ, τ) ∈ Q and t− τ ≤ 1.
Let

Ĉ =
1

(4κπ)
n
2

+
SB(1, β)

(κc)
n
2

.

As an immediate consequence of (2.24) and (3.7), we have

|E(x, t; ξ, τ)| ≤ Ĉ(t− τ)−
n
2 e−c%

2
, (x, t, ξ, τ) ∈ Q, t− τ ≤ 1. (3.8)

We recall that E possesses the so-called reproducing property

E(x, t; ξ, τ) =

∫
Rn
E(x, t; η, σ)E(η, σ; ξ, τ) dη, τ < σ < t. (3.9)

Applying (3.8), we get

|E(x, t, ξ, τ)| ≤ Ĉ2

∫
Rn

(t− σ)−
n
2 e
−c |x−η|

2

4(t−σ) (σ − τ)−
n
2 e
−c |η−ξ|

2

4(σ−τ)dη, (3.10)

for all t− τ ≤ 2, where σ = t+τ
2 .

We introduce a variable z so that

c
|x− η|2

4(t− σ)
+ c
|η − ξ|2

4(σ − τ)
= c
|x− ξ|2

4(t− τ)
+ |z|2.

Using the identity |x− η|2 = |x− ξ|2 + |ξ − η|2 + 〈x− ξ, ξ − η〉, we get

|x− η|2

t− σ
+
|η − ξ|2

σ − τ
− |x− ξ|

2

t− τ

=
(σ − τ)|x− ξ|2

(t− σ)(t− τ)
+

(t− τ)|η − ξ|2

(t− σ)(σ − τ)
+

2〈x− ξ, ξ − η〉
(t− σ)2

.

=

∣∣∣∣∣
(

σ − τ
(t− σ)(t− τ)

) 1
2

(x− ξ) +

(
t− τ

(t− σ)(σ − τ)

) 1
2

(ξ − η)

∣∣∣∣∣
2

.

Therefore, we can for instance take

z =

(
c
t− τ
t− σ

) 1
2 η − ξ

2(σ − τ)
1
2

+

(
c
σ − τ
t− σ

) 1
2 ξ − x

2(t− τ)
1
2

.
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Passing to the variable z in (3.10), we deduce

|E(x, t, ξ, τ)| ≤ C̃Ĉ2(t− τ)−
n
2 e−c%

2
, t− τ ≤ 2.

Next assume that t − τ > 2 and let m be the smallest integer so that
t− τ ≤ m. Define

σ0 = τ, σ1 = τ +
t− τ
m

, . . . , σm−1 = τ + (m− 1)
t− τ
m

, σm = t.

Iterating the reproducing property (3.9), we get

E(x, t; ξ, τ) =

∫
Rn
. . .

∫
Rm

E(x, σm, ηm, σm−1)E(ηm, σm−1, ηm−1, σm−2)

. . . E(η1, σ1, ξ, σ0)dη1 . . . dηm.

Repeating inductively the case m = 2, we find

|E(x, t, ξ, τ)| ≤ C̃m−1Ĉm(t− τ)−
n
2 e−c%

2
.

This and the fact that m < t− τ + 1 entail

|E(x, t, ξ, τ)| ≤ C̃−1emax(0,ln(C̃Ĉ))emax(0,ln(C̃Ĉ))(t−τ)(t− τ)−
n
2 e−c%

2
.

This is the expected Gaussian upper bound.
A more precise upper bound can be obtained by optimizing the constants

appearing in the previous computations. We do it in the special case bi = q = 0,
where the iteration procedure based on (3.9) is not needed.

Corollary 3.1. If bi = q = 0, then

E(x, t; ξ, τ) ≤ 1

(4κπ)
n
2

(t− τ)−
n
2 e−

%2

4M

(
1 + c1(t− τ)

α
2 ec2((t−τ)+%γ)

)
,

for all (x, t, ξ, τ) ∈ Q, where % = |x−ξ|√
t−τ and γ = 4α+8

3α+4 < 2.

Proof. First we note that the restriction t− τ ≤ 1 is not needed in (2.21), since
it comes from (2.20) only. Then we define Cε as in (2.23) with c = ε

4M , N2 = 0.
It is easy to see that Cε ≤ Aε−2−α with A > 0 and this leads to (2.24) with this

Cε and c = (1−ε)
4M . Next we write (3.4) with `β instead of β, since we no longer

assume that t− τ ≤ 1.
Entering this estimate in the constants C,Λ defining S (see (3.5)), using [1,

Theorem 2, Section 15, Chapter V] and Stirling’s formula again, we deduce that∑
`≥2

Λ`(t− τ)`β

Γ(`β)
≤ c1(t− τ)2βec2((t−τ)+Λ

1
β )
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and S ≤ c1e
c2((t−τ)+ε−(2+ 4

α )). Then we use this estimate in (3.7) with c = (1−ε)
4M

to get ∣∣∣∣∫ t

τ

∫
Rn
Z(x, t; η, σ)Φ(η, σ; ξ, η)dηdσ

∣∣∣∣
≤ c1(t− τ)−

n
2

+βe−
(1−ε)
4M

%2+c2ε
−(2+ 4

α )+c2(t−τ).

Optimizing over ε and using (3.1), the corollary follows. QED

3.3 The lower bound

From the previous analysis, we easily get

Z(x, t; ξ, τ) ≥ 1

(4πM)
n
2

(t− τ)−
n
2 e−

1
κ
ρ2 .

Hence,

Z(x, t; ξ, τ) ≥ e−1

(4πM)
n
2

(t− τ)−
n
2 , |x− ξ|2 ≤ κ(t− τ). (3.11)

A combination of (3.7) and (3.11) yields

E(x, t; ξ, τ) ≥ e−1

(4πM)
n
2

(t− τ)−
n
2 − SB(1, β)

(κc)
n
2

(t− τ)−
n
2

+β,

for all |x− ξ|2 ≤ κ(t− τ) and t− τ ≤ 1.
Fix δ ≤ 1 sufficiently small in such a way that

e−1

(4πM)
n
2

− SB(1, β)

(κc)
n
2

δβ ≥ e−1

2(4πM)
n
2

.

Then, with µ = e−1

2(4πM)
n
2

,

E(x, t; ξ, τ) ≥ µ(t− τ)−
n
2 , |x− ξ|2 ≤ κ(t− τ), t− τ ≤ δ. (3.12)

Let x and ξ be given so that 2|x − ξ| >
√
κ(t− τ) and let m ≥ 2 be the

smallest integer so that
4|x− ξ|2

m
≤ κ(t− τ). (3.13)

Define the sequence (xk)0≤k≤m

xk = x+
k

m
(ξ − x), 0 ≤ k ≤ m.
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Set

r =
1

4

√
κ(t− τ)√
m

and

σk = τ +
k

m
(t− τ), 0 ≤ k ≤ m.

Using (3.12), the positivity of E and the reproducing property, we get

E(x, t;ξ, τ)

≥ µm
∫
B(x1,r)

. . .

∫
B(xm−1,r)

(σ1 − σ0)−
n
2 . . . (σm − σm−1)−

n
2 dη1 . . . dηm−1,

where we used

|xi+1 − xi| =
1√
m

|x− ξ|√
m
≤ 1

2

√
κ(t− τ)√
m

= 2r,

and

|ηi+1 − ηi| ≤ |ηi+1 − xi+1|+ |xi+1 − xi|+ |xi − ηi|

< 2r + |xi+1 − xi| ≤ 4r =

√
κ(t− τ)√
m

=
√
κ(σi+1 − σi).

Whence
E(x, t; ξ, τ) ≥ κ−

n
2 νm(t− τ)−

n
2 ,

with

ν =
κ
n
2

eM
n
2 23nΓ(n/2 + 1)

< 1.

Noting that

m <
4|x− ξ|2

κ(t− τ)
+ 1,

we obtain

E(x, t; ξ, τ) ≥ κ−
n
2 e−| ln ν|m(t− τ)−

n
2

≥ κ−
n
2 e−| ln ν|(t− τ)−

n
2 e−

4| ln ν|
κ

|x−ξ|2
t−τ , t− τ ≤ δ.

If C0 = min
(
µ, κ−

n
2 e−| ln ν|

)
and d = 4| ln ν|

κ , then the last inequality and

(3.12) yield

E(x, t; ξ, τ) ≥ C0(t− τ)−
n
2 e−d

|x−ξ|2
t−τ , t− τ ≤ δ.
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We now proceed similarly to the case of the upper bound to remove the
condition t− τ ≤ δ. If m is the smallest integer so that t− τ ≤ mδ, we get

E(x, t; ξ, τ) ≥ C̃−1
(
C̃C0

)m
(t− τ)−

n
2 e−d%

2
,

from which we deduce

E(x, t; ξ, τ) ≥ C̃−1emin(0,ln(C̃C0))e
min

(
0,

ln(C̃C0)
δ

)
(t−τ)

(t− τ)−
n
2 e−d%

2
.
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