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Abstract. For every frame spectral measure µ, there exists a discrete measure ν as a frame
measure. If µ is not a frame spectral measure, then there is not any general statement about the
existence of frame measures ν for µ. This motivated us to examine Bessel and frame measures.
We construct infinitely many measures µ which admit frame measures ν, and we show that
there exist infinitely many frame spectral measures µ such that besides having a discrete frame
measure, they admit continuous frame measures too.
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1 Introduction

Motivated by questions of fractal frame spectral measures, Bessel and frame
measures were introduced in [3]. In fact, frame measures are a generalization of
Fourier frames. When L2(µ) has a Fourier frame, µ is called a frame spectral
measure and there exists a discrete measure ν which is a frame measure for µ.
So every frame spectral measure µ has a discrete frame measure ν. There has
been a wide range of interest in identifying frame spectral measures especially,
fractal ones. The interested reader can refer to [2, 4, 5, 7, 8, 11, 12, 13, 14, 15,
16, 17, 18, 19]. If µ is not a frame spectral measure, then there is not any general
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statement about the existence of frame measures for µ. Nevertheless, in [3] the
authors showed that if one frame measure ν exists for µ, then one can obtain
many frame measures for µ by convolution of ν and probability measures.

In this paper we construct infinitely many measures µ (by using convolu-
tions of measures) which admit frame measures ν. In addition, we obtain that
there exist infinitely many frame spectral measures such that besides having an
associated discrete frame measure, they admit continuous frame measures too.

The rest of this paper is organized as follows: In Section 2 basic definitions
and notation are given. Section 3 is devoted to identifying Bessel/frame mea-
sures ν and constructing measures µ which admit Bessel/frame measures ν.
We show that a finite measure ν is a Bessel measure for a finite measure µ.
Therefore, every finite measure µ is a Bessel measure to itself (Corollary 1). We
investigate connections between the existence of a Bessel/frame measure for µ,
µ′ and the sum µ+ µ′. If µ is a Borel measure on Rd and if ν is a Bessel/frame
measure for µ, then for any E ⊂ suppµ, the measure µ′ = χEdµ admits ν as a
Bessel/frame measure with the same bound(s) (Corollary 2). In Theorem 1 we
show that Lebesgue measure is a frame measure for infinitely many measures
which are absolutely continuous with respect to Lebesgue measure. Theorem 1
is extended to every frame measure for µ = χFdλ, i.e., if F ⊆ Rd and ν is a
frame measure for µ = χFdλ, then ν is a frame measure for infinitely many
measures which are absolutely continuous with respect to Lebesgue measure
(Theorem 2). We show applications of Theorem 2 in Examples 1, 2, 3, 4 and 5.
Similar to Theorem 2, in Proposition 11 we obtain that if µ is a Borel measure
on Rd (not necessarily Lebesgue measure or absolutely continuous with respect
to Lebesgue measure) and admits a frame measure ν, then infinitely many mea-
sures which are absolutely continuous with respect to µ admit ν as a frame
measure. We apply Proposition 11 in Examples 7 and 8 for some invariant mea-
sures (Cantor type measures). Finally, in Corollary 4 we conclude that there
are infinitely many absolutely continuous measures with respect to Lebesgue
measure and infinitely many absolutely continuous measures with respect to a
Cantor measure, which admit discrete and continuous frame measures.

2 Preliminaries

Definition 1. Let H be a Hilbert space. A sequence {fi}i∈I of elements in
H is called a frame for H, if there exist constants A,B > 0 such that for all
f ∈ H,

A‖f‖2 ≤
∑
i∈I
| 〈f, fi〉 |2 ≤ B‖f‖2.
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The constants A and B are called lower (frame) bound and upper (frame) bound,
respectively. If A = B, the frame is called tight and whenever A = B = 1, the
frame is called Parseval.

The sequence {fi}i∈I is called Bessel if it has a finite upper frame bound B
and does not necessarily have a positive lower frame bound A.

Frames are a natural generalization of orthonormal bases. The lower bound
implies that a frame is complete in the Hilbert space, so by using (infinite) linear
combination of the elements fi in the frame every f can be expressed [1].

Definition 2. Let t ∈ Rd. For every x ∈ Rd the exponential function et is
defined by et(x) = e2πit·x. If µ is a Borel measure on Rd, then for a function
f ∈ L1(µ) the Fourier transform is given by

f̂dµ(t) =

∫
Rd
f(x)e−t(x)dµ(x) (t ∈ Rd).

Note that whenever µ is a finite measure, et ∈ L2(µ) and f̂dµ(t) = 〈f, et〉
for every f ∈ L2(µ).

Definition 3. Let µ be a finite Borel measure on Rd and Λ be a countable
set in Rd. If the set E(Λ) = {eλ : λ ∈ Λ} is a frame for L2(µ), then E(Λ) is
called a Fourier frame, Λ is called a frame spectrum for µ and µ is called a frame
spectral measure. Likewise, if E(Λ) is an orthonormal basis (Bessel sequence)
for L2(µ), then Λ is called a spectrum (Bessel spectrum) for µ and µ is called a
spectral measure (Bessel spectral measure).

We give the following definition from [3].

Definition 4 ([3]). Let µ be a Borel measure on Rd. A Borel measure ν is
called a frame measure for µ if there exist positive constants A,B such that for
every f ∈ L2(µ),

A‖f‖2L2(µ) ≤
∫
Rd
|f̂dµ(t)|2dν(t) ≤ B‖f‖2L2(µ). (2.1)

Here A and B are called (frame) bounds for ν. The measure ν is called a tight
frame measure if A = B and Plancherel measure if A = B = 1 (see also [5]). If
(2.1) has upper bound B and does not necessarily have lower bound A, then ν
is called a Bessel measure for µ and B is called a (Bessel) bound for ν.

Denote by BB(µ) the set of all Bessel measures for µ with fixed bound B
and denote by FA,B(µ) the set of all frame measures for µ with fixed bounds
A,B.

Remark 1. A finite Borel measure µ is a frame spectral measure if and
only if there exists a countable set Λ in Rd such that ν =

∑
λ∈Λ δλ is a frame

measure for µ.
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Definition 5. A finite set of contraction maps {τi}ni=1 on a complete metric
space is called an iterated function system (IFS). Hutchinson [10] proved that
there exists a unique compact subset X of Rd and an invariant measure µ (a
unique Borel probability measure supported on X) such that X =

⋃n
i=1 τi(X)

and µ =
∑n

i=1 ρi(µ ◦ τ
−1
i ), where 0 < ρi < 1,

∑n
i=1 ρi = 1. This measure µ

is either absolutely continuous or singular continuous with respect to Lebesgue
measure. In an affine IFS each τi is affine and represented by a matrix. Let R
be a d× d expanding integer matrix (i.e., all eigenvalues have modules strictly
greater than 1) and let A be a finite subset of Zd of cardinality #A =: N . Then
the following set is an affine iterated function system:

τa(x) = R−1(x+ a) (x ∈ Rd, a ∈ A).

Taking R as an expanding matrix guarantees that all maps τa are contractions
(in an appropriate metric equivalent to the Euclidean one). Invariant measures
on Cantor type sets (Cantor type measures), which are singular continuous with
respect to Lebesgue measure, are examples of invariant measures of affine IFSs
(see [9, 10]).

All measures we consider in this paper are Borel measures on Rd. We denote
Lebesgue measure by λ and for any set E ⊂ Rd, |E| denotes the Lebesgue
measure of E.

3 Investigation and Construction

In this section we examine Bessel/frame measures and we prove some results
concerning measures which admit Bessel/frame measures.

Proposition 1. Let µ be a finite measure. Then every finite measure ν is
a Bessel measure for µ.

Proof. Let f ∈ L2(µ) and t ∈ Rd. Using Holder’s inequality, we have

| 〈f, et〉 | ≤
∫
Rd
|f(x)e−t(x)| dµ(x) ≤

(
µ(Rd)

) 1
2 ‖f‖L2(µ).

Then ∫
Rd
| 〈f, et〉 |2dν(t) ≤ µ(Rd)ν(Rd)‖f‖2L2(µ).

Hence ν ∈ Bµ(Rd)ν(Rd)(µ). QED

Remark 2. The above proposition shows that the Bessel bound may change
for different Bessel measures ν, but for probability measures ν we have ν ∈
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Bµ(Rd)(µ). Note that there are infinitely many probability measures ν (such as
every invariant measure obtained from an iterated function system, every finite
discrete measure 1

n

∑n
a=1 δa where δa denotes the Dirac measure at the point a,

every measure 1
λ(E)χEdλ where E ⊂ Rd with the finite Lebesgue measure λ(E),

and others), so Bµ(Rd)(µ) is an infinite set.

Proposition 2. Let ν be a finite measure. Then ν is a Bessel measure for
every finite measure µ. In particular, ν ∈ Bν(Rd)(µ) for all probability measures
µ.

Proof. The proof is similar to the proof of Proposition 1. QED

Corollary 1. Let µ and ν be finite measures. Then ν is a Bessel measure
for µ and µ is a Bessel measure for ν. Consequently, every finite measure µ is
a Bessel measure to itself.

Proof. The conclusion follows from Propositions 1 and 2. QED

(see also the extended form of the above assertions in our recent work [6])

Proposition 3 ([3]). Let µ be a finite measure and let B be a positive
constant. Then there exists a Bessel measure ν for µ such that ν ∈ BB(µ).

Proof. For a countable set Λ ⊂ Rd let ν =
∑

λ∈Λ cλδλ such that
∑

λ∈Λ cλ ≤
B

µ(Rd)
. Then by applying Holder’s inequality one can obtain

∫
Rd
| 〈f, et〉 |2dν(t) ≤

∑
λ∈Λ

cλ‖f‖2L2(µ)µ(Rd) ≤ B‖f‖2L2(µ) for all f ∈ L2(µ).

QED

Proposition 4 ([3]). If ν is a Bessel measure for a finite measure µ, then
ν is a σ-finite measure.

Proposition 5. If ν is a Bessel measure for µ1 and µ2, then ν is a Bessel
measure for µ1 + µ2.

Proof. Let B1, B2 be the Bessel bound for ν (associated to µ1, µ2 respectively).
If we apply Holder’s inequality, then for all f ∈ L2(µ1 + µ2),∫

Rd
| ̂fd(µ1 + µ2)|2dν ≤ B1‖f‖2µ1 +B2‖f‖2µ2 + 2

√
B1B2‖f‖µ1‖f‖µ2

≤ (
√
B1 +

√
B2)2‖f‖2µ1+µ2 .

Thus, the assertion follows. QED
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Note that when µ1, µ2 and ν are finite measures, by Proposition 1 there
exists a Bessel bound (µ1 + µ2)(Rd)ν(Rd) for ν.

Now the question is whether there is a connection between the existence of
a frame measure for µ, µ′ and the sum µ+µ′. We give the following lemma from
[7] (see also Proposition 10).

Lemma 1 ([7]). Let µ, µ′ be Borel measures. Suppose that µ′(Kµ) = 0 (Kµ

is the smallest closed set such that µ(K) = µ(Rd)). If ν is a frame measure for
µ+ µ′, then ν is a frame measure for µ and µ′ with the same frame bounds.

Proposition 6. Let µ be a Borel measure supported on F ⊆ Rd and ν ∈
FA,B(µ). If E ⊆ F and 0 < m ≤ φ(x) ≤M <∞ µ-a.e. on E, then ν is a frame
measure for µ′ = χEφdµ. More precisely, ν ∈ FmA,MB(µ′).

Proof. Since ν is a frame measure for µ, for every f ∈ L2(µ),

A‖f‖2L2(µ) ≤
∫
Rd

∣∣∣∣∫
Rd
f(x)e−t(x)dµ(x)

∣∣∣∣2 dν(t) ≤ B‖f‖2L2(µ).

In addition, for every f ∈ L2(µ) we have χEφf ∈ L2(µ), since∫
Rd
|χE(x)φ(x)f(x)|2dµ(x) =

∫
E
|φ(x)|2|f(x)|2dµ(x)

≤M2

∫
Rd
|f(x)|2dµ(x) <∞.

We have∫
Rd

∣∣∣∣∫
Rd
f(x)e−t(x)dµ′(x)

∣∣∣∣2 dν(t) =

∫
Rd

∣∣∣∣∫
Rd
f(x)e−t(x)χE(x)φ(x)dµ(x)

∣∣∣∣2 dν(t)

≤ B
∫
Rd
|χE(x)φ(x)f(x)|2dµ(x)

≤ BM
∫
Rd
|f(x)|2χE(x)φ(x)dµ(x)

= BM‖f‖2L2(µ′).

Analogously, we obtain the lower bound and consequently,

Am‖f‖2L2(µ′) ≤
∫
Rd

∣∣∣∣∫
Rd
f(x)e−t(x)dµ′(x)

∣∣∣∣2 dν(t) ≤ BM‖f‖2L2(µ′).

QED

Corollary 2. Let µ be a Borel measure and let ν be a Bessel/frame mea-
sure for µ. Then for any E ⊂ suppµ, the measure µ′ = χEdµ admits ν as a
Bessel/frame measure with the same bound(s).
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Proposition 7. Let E ⊆ [0, 1]d and 0 < m ≤ φ(x) ≤M <∞ λ-a.e. on E.
Then the measure ν =

∑
t∈Zd δt is a Plancherel measure for µ = χEdλ and a

frame measure for µ′ = χEφdλ. Precisely, ν ∈ F1,1(µ) and ν ∈ Fm,M (µ′).

Proof. Since {et}t∈Zd is an orthonormal basis for L2([0, 1]d),∑
t∈Zd
| 〈f, et〉 |2 =

∫
[0,1]d

|f(x)|2dλ(x) for all f ∈ L2([0, 1]d).

Considering µ = χ{[0,1]d}dλ on Rd, we have for all f ∈ L2(µ),∫
Rd
| 〈f, ey〉L2(µ) |

2dν(y) =
∑
t∈Zd
| 〈f, et〉L2(µ) |

2 =

∫
Rd
|f(x)|2dµ(x).

Then the assertion follows from Proposition 6 and Corollary 2. QED

Proposition 8. Let F ⊆ Rd and 0 < m ≤ φ(x) ≤ M < ∞ λ-a.e. on
F . Then λ is a Plancherel measure for µ = χFdλ and a frame measure for
µ′ = χFφdλ. Precisely, λ ∈ F1,1(µ) and λ ∈ Fm,M (µ′).

Proof. According to Plancherel’s theorem the following equation is satisfied:∫
Rd

∣∣∣∣∫
Rd
f(x)e−t(x)dλ(x)

∣∣∣∣2 dλ(t) =

∫
Rd
|f(x)|2dλ(x) for all f ∈ L2(λ).

Then the assertion follows from Proposition 6 and Corollary 2. QED

In the following we construct infinitely many measures which admit Lebesgue
measure as a frame measure with arbitrary fixed frame bounds m,M .

Theorem 1. Lebesgue measure is a frame measure for infinitely many mea-
sures which are absolutely continuous with respect to Lebesgue measure.

Proof. We first recall that for measurable functions f, g on Rd, if µ = fdλ and
ν = gdλ, then we have µ∗ν = (f ∗g)dλ. Now let 0 < m ≤ φ(x) ≤M <∞ λ-a.e.
on Rd, and let N ∈ N. For every n ∈ N with 1 ≤ n ≤ N , let En ⊂ Rd, λ(En) <∞
and µn = 1

λ(En)χEndλ. Take µ0 = φdλ. Then µ0 ∗ µ1 = (φ ∗ 1
λ(E1)χE1)dλ and

φ ∗ 1

λ(E1)
χE1(x) =

∫
Rd
φ(x− y)

1

λ(E1)
χE1(y)dλ(y) ≤M.

Similarly, we obtain m as a lower bound, i.e.,

m ≤ φ ∗ 1

λ(E1)
χE1 ≤M. (3.1)
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By Plancherel’s theorem,∫
Rd

∣∣∣∣∫
Rd
f(x)e−t(x)dλ(x)

∣∣∣∣2 dλ(t) =

∫
Rd
|f(x)|2dλ(x) for all f ∈ L2(λ),

so λ is a Plancherel measure to itself, and by (3.1), for every f ∈ L2(λ) we have
(φ ∗ 1

λ(E1)χE1)f ∈ L2(λ). Hence for all f ∈ L2(µ0 ∗ µ1),∫
Rd

∣∣∣ ̂fd(µ0 ∗ µ1)(t)
∣∣∣2 dλ(t) =

∫
Rd

∣∣∣∣∫
Rd

(φ ∗ 1

λ(E1)
χE1)(x)f(x)e−t(x)dλ(x)

∣∣∣∣2 dλ(t)

=

∫
Rd
|(φ ∗ 1

λ(E1)
χE1)(x)f(x)|2dλ(x)

≤M
∫
Rd
|f(x)|2(φ ∗ 1

λ(E1)
χE1)dλ(x)

= M‖f‖2L2(µ0∗µ1).

Analogously, we obtain the lower bound and consequently, for all f ∈ L2(µ0∗µ1),

m‖f‖2L2(µ0∗µ1) ≤
∫
Rd

∣∣∣ ̂fd(µ0 ∗ µ1)(t)
∣∣∣2 dλ(t) ≤M‖f‖2L2(µ0∗µ1).

Likewise, convolution of measures µ0 ∗ µ1 and µ2 = 1
λ(E2)χE2dλ yields λ ∈

Fm,M (µ0 ∗µ1 ∗µ2), and repeating this process gives the assertion. Precisely, for
any n ∈ N with 1 ≤ n ≤ N , one can obtain λ ∈ Fm,M (µ0∗µ1∗µ2 · · ·∗µn). QED

We proved Theorem 1 considering the fact that λ is a Plancherel measure
to itself (Plancherel theorem). In the next theorem we show that if F ⊆ Rd,
µ = χFdλ, then Theorem 1 can be extended to every frame measure for µ.

Theorem 2. Let F ⊆ Rd and let ν be a frame measure for µ = χFdλ.
Then ν is a frame measure for infinitely many measures which are absolutely
continuous with respect to Lebesgue measure.

Proof. Let 0 < m ≤ φ(x) ≤ M < ∞ µ-a.e. on Rd and let N ∈ N. For every
n ∈ N with 1 ≤ n ≤ N , let En ⊂ Rd, λ(En) < ∞ and µn = 1

λ(En)χEndλ. If

µ0 = φdλ, then µ0 ∗ µ1 = (φ ∗ 1
λ(E1)χE1)dλ. We have

m ≤ φ ∗ 1

λ(E1)
χE1 ≤M,

and for every f ∈ L2(χFd(µ0 ∗ µ1)) we have∫
Rd

∣∣∣ ̂fχFd(µ0 ∗ µ1)(t)
∣∣∣2 dν(t)

=

∫
Rd

∣∣∣∣∫
Rd
f(x)e−t(x)(φ ∗ 1

λ(E1)
χE1)(x)dµ(x)

∣∣∣∣2 dν(t).



Frame measures for infinitely many measures 123

Let A, B be frame bounds for ν. Since (φ∗ 1
λ(E1)χE1)f ∈ L2(µ) and ν is a frame

measure for µ,∫
Rd

∣∣∣∣∫
Rd
f(x)e−t(x)(φ ∗ 1

λ(E1)
χE1)(x)dµ(x)

∣∣∣∣2 dν(t)

≤ B
∫
Rd
|(φ ∗ 1

λ(E1)
χE1)(x)f(x)|2dµ(x)

≤ BM
∫
Rd
|f(x)|2(φ ∗ 1

λ(E1)
χE1)(x)dµ(x)

= BM

∫
Rd
|f(x)|2(φ ∗ 1

λ(E1)
χE1)(x)χF (x)dλ(x)

= BM‖f‖2L2(χF d(µ0∗µ1)).

Similarly, we obtain Am as a lower bound. Hence, for all f ∈ L2(χFd(µ0 ∗ µ1)),

mA‖f‖2L2(χF d(µ0∗µ1)) ≤
∫
Rd

∣∣∣ ̂fχFd(µ0 ∗ µ1)(t)
∣∣∣2 dν(t) ≤MB‖f‖2L2(χF d(µ0∗µ1)).

Convolution of measures µ0∗µ1 and µ2 = 1
λ(E2)χE2dλ yields ν ∈ FmA,MB(χFd(µ0∗

µ1 ∗ µ2)). Likewise, for any n ∈ N with 1 ≤ n ≤ N , one can obtain ν ∈
FmA,MB(χFd(µ0 ∗ µ1 ∗ µ2 · · · ∗ µn)), and then the theorem follows. QED

Remark 3. In Theorems 1 and 2, if any of the measures µn = 1
λ(En)χEndλ

changes to µn = χEndλ, then the bounds are multiplied by λ(En).

Example 1. Suppose that 0 < m ≤ φ(x) ≤ M < ∞ on Rd. Let F ⊆ Rd
and N ∈ N. For every n ∈ N with 1 ≤ n ≤ N , let En ⊂ Rd, λ(En) < ∞. By
Proposition 8, λ is a Plancherel measure for µ = χFdλ, then by Theorem 2,
λ is a frame measure for χFd(φdλ ∗ 1

λ(E1)χE1dλ ∗ · · · ∗ 1
λ(En)χEndλ) with frame

bounds m and M .

Example 2. Suppose that 0 < m ≤ φ(x) ≤M <∞ on Rd. Let N ∈ N and
for every n ∈ N with 1 ≤ n ≤ N , let En ⊂ Rd, λ(En) < ∞. By Proposition 7,
the measure ν =

∑
t∈Zd δt is a Plancherel measure for µ = χ{[0,1]d}dλ, and so by

Theorem 2, ν is a frame measure for χ{[0,1]d}d(φdλ∗ 1
λ(E1)χE1dλ∗· · ·∗ 1

λ(En)χEndλ)
with frame bounds m and M .

To show another application of Theorem 2 we need the following theorem.

Theorem 3 ([17]). There exist positive constants c, C such that for every
set E ⊂ Rd of finite Lebesgue measure, there is a discrete set Λ ⊂ Rd such that
ν =

∑
t∈Λ δt is a frame measure for L2(χEdλ) with frame bounds c|E| and C|E|.

Example 3. Suppose that 0 < m ≤ φ(x) ≤ M < ∞ on Rd. Let E ⊂ Rd
and N ∈ N. For every n ∈ N with 1 ≤ n ≤ N , let En ⊂ Rd, λ(En) < ∞. By
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Theorems 3 and 2, there exists a measure ν =
∑

t∈Λ δt such that ν is a frame
measure for χEd(φdλ∗ 1

λ(E1)χE1dλ∗ · · · ∗ 1
λ(En)χEndλ) with frame bounds cm|E|

and CM |E|.
Proposition 9 ([3]). Let A and B be fixed positive constants and let µ be

a finite measure. Then the set of all Bessel measures for µ with bound B (or
BB(µ)) and the set of all frame measures for µ with bounds A, B (or FA,B(µ)),
are convex and closed under convolution with Borel probability measures.

Example 4. Suppose that 0 < m ≤ φ(x) ≤ M < ∞ on Rd. Let E ⊂ Rd
and N ∈ N. For every n ∈ N with 1 ≤ n ≤ N , let En ⊂ Rd, λ(En) < ∞. We
have λ and ν =

∑
t∈Zd δt are in F1,1(χ{[0,1]d}dλ) (see Propositions 8 and 7). For

0 < α < 1 define να := αλ + (1 − α)ν. Since by proposition 9, the set of all
frame measures are convex, we have να ∈ F1,1(χ{[0,1]d}dλ). Then by Theorem 2,

να ∈ Fm,M
(
χ{[0,1]d}d(φdλ ∗ 1

λ(E1)χE1dλ ∗ · · · ∗ 1
λ(En)χEndλ)

)
.

Example 5. Let P(Rd) be the set of all probability measures on Rd and let
N ∈ N. For every n ∈ N with 1 ≤ n ≤ N , let ρn, ρ

′
n, ρ
′′
n ∈ P(Rd). Based on Ex-

ample 4 we have λ, ν =
∑

t∈Zd δt and να = αλ+(1−α)ν are in F1,1(χ{[0,1]d}dλ).
By Proposition 9 the set F1,1(χ{[0,1]d}dλ) is closed under convolution with Borel
probability measures, so for all n ∈ {1, . . . , N}, we have the measure λ∗ρ1∗· · ·∗ρn
and the measures ν ∗ρ′1 ∗· · ·∗ρ′n and να ∗ρ′′1 ∗· · ·∗ρ′′n, and also the convex combi-
nations of all these measures, are in F1,1(χ{[0,1]d}dλ). In addition, by Theorem 2,
for all n ∈ {1, . . . , N} we have the measure λ ∗ ρ1 ∗ · · · ∗ ρn and the measures
ν ∗ ρ′1 ∗ · · · ∗ ρ′n and να ∗ ρ′′1 ∗ · · · ∗ ρ′′n, and also the convex combinations of all

these measures, are in Fm,M
(
χ{[0,1]d}d(φdλ ∗ 1

λ(E1)χE1dλ ∗ · · · ∗ 1
λ(En)χEndλ)

)
.

Remark 4. Note that by Proposition 6 we can construct new measures
such that admit all frame measures in Examples 4 and 5 as frame measures,
considering the fact that for any E ⊂ [0, 1]d we have λ and ν =

∑
t∈Zd δt are in

F1,1(χEdλ).

Definition 6 ([3]). A sequence of Borel probability measures {ρn}n∈N is
called an approximate identity if

sup{‖ t ‖: t ∈ supp(ρn)} → 0 as n→∞.

Example 6. Some approximate identities on Rd are:
(i) ρn = ndχ{[0, 1

n
]d}dλ.

(ii) ρn = (
n

2
)dχ{[− 1

n
, 1
n

]d}dλ.

(iii) ρn = (n(n+ 1))dχ{[ 1
n+1

, 1
n

]d}dλ.

(iv) ρn = 2(n−1)dχ{[0, 1
2n−1 ]d}dλ.

(v) ρn = m(n−1)dχ{[0, 1
mn−1 ]d}dλ (m ∈ N, m ≥ 2).
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By Proposition 9, if ν is a Bessel/frame measure for µ, then for any proba-
bility measure ρ, the measure ν ∗ ρ is also a Bessel/frame measure for µ. To see
under what conditions the converse is true we give the following theorem from
[3].

Theorem 4 ([3]). Let {ρn} be an approximate identity. Suppose ν is a σ-
finite measure and suppose ν ∗ρn are Bessel/frame measures for µ with uniform
bounds, independent of n. Then ν is a Bessel/frame measure for µ.

Lemma 2. Let ν ∈ FA,B(µ). Let 0 < m ≤ φ(x) ≤ M < ∞, µ-a.e. on Rd.
Then ν ∈ FmA,MB(φdµ).

Proof. For every f ∈ L2(φdµ),

| ̂fd(φdµ)| = |φ̂fdµ|,

and

m

∫
Rd
|f |2φdµ ≤

∫
Rd
|φf |2dµ ≤M

∫
Rd
|f |2φdµ.

So, we obtain

mA

∫
Rd
|f |2φdµ ≤

∫
Rd
| ̂fd(φdµ)|2dν(t) ≤MB

∫
Rd
|f |2φdµ.

QED

Corollary 3. If ν ∈ FA,B(µ), then for any constant α > 0, ν is a frame
measure for αµ. More precisely, ν ∈ FαA,αB(αµ).

Proposition 10. Let µ be a Borel measure supported on F ⊆ Rd and let
N ∈ N. For every n ∈ N with 1 ≤ n ≤ N , let Ln ⊂ Rd, µ(Ln) = 0, En = F \Ln.
Suppose that 0 < mn ≤ φn(x) ≤Mn <∞ µ− a.e on En and µn = χEnφndµ. If
ν is a frame measure for µ, then ν is a frame measure for µ+ µ1 + · · ·+ µn.

Proof. Since ν is a frame measure for µ, by Proposition 6, ν is also a frame
measure for µn for all n ∈ {1, . . . , N}. Let A,B be the bounds for ν. We have

µ′ := µ+ µ1 + · · ·+ µn = (1 + φ1 + · · ·+ φn)dµ µ− a.e.

Then by Lemma 2, for all f ∈ L2(µ′),

(1 +m1 + · · ·+mn)A‖f‖2µ′ ≤
∫
Rd
|f̂dµ′|2dν ≤ (1 +M1 + · · ·+Mn)B‖f‖2µ′ .

Hence, we have the desired result. QED
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Lemma 3. Let ν ∈ FA,B(µ). Let 0 < m ≤ φ(x) ≤ M < ∞, ν-a.e. on
Rd. Then φdν ∈ FmA,MB(µ) and consequently, for any constant α > 0 we have
αν ∈ FαA,αB(µ).

Proof. Since ν is a frame measure for µ, the lemma follows directly from the
definition. QED

Remark 5. Note that if ν ∈ FA,B(µ) and ν ′ ∈ FA′,B′(µ), then for any
two positive constants α, β, we have αν + βν ′ ∈ FαA+βA′,αB+βB′(µ). Besides, if
ν, ν ′ ∈ FA,B(µ) we know from Proposition 9, αν + (1 − α)ν ′ ∈ FA,B(µ), where
0 < α < 1.

Remark 6. Let µ be a Borel measure, and let ρ be a probability measure.
Suppose that 0 < m ≤ φ(x) ≤ M < ∞ on Rd. We have m ≤ φ ∗ ρ ≤ M ,
since (φ ∗ ρ)(x) =

∫
Rd φ(x − y)dρ(y). Hence by Lemma 3, if ν ∈ FA,B(µ),

then (φ ∗ ρ)dν ∈ FmA,MB(µ), and by Lemma 2, if ν ∈ FA,B(µ), then we have
ν ∈ FmA,MB((φ ∗ ρ)dµ).

In the following we give a proposition similar to Theorem 2 showing that if µ
is a Borel measure (not necessarily Lebesgue measure or absolutely continuous
with respect to Lebesgue measure) and admits a frame measure ν, then infinitely
many measures which are absolutely continuous with respect to µ admit ν as a
frame measure.

Proposition 11. Suppose µ is a Borel measure and ν ∈ FA,B(µ). Let 0 <
m ≤ φ(x) ≤ M < ∞ on Rd, and let N ∈ N. For every n ∈ N with 1 ≤ n ≤ N ,
let ρn be a probability measure. Then ν is a frame measure for all measures
φ ∗ ρ1 ∗ · · · ∗ ρndµ.

Proof. For n ∈ {1, . . . , N}, we have m ≤ φ∗ρ1∗· · ·∗ρn ≤M . Then by Lemma 2,
for all f ∈ L2(φ ∗ ρ1 ∗ · · · ∗ ρndµ),

mA‖f‖2L2(φ∗ρ1∗···∗ρndµ) ≤
∫
Rd

∣∣∣ ̂fd(φ ∗ ρ1 ∗ · · · ∗ ρndµ)(t)
∣∣∣2 dν(t)

≤MB‖f‖2L2(φ∗ρ1∗···∗ρndµ).

Therefore, ν ∈ FmA,MB(φ ∗ ρ1 ∗ · · · ∗ ρndµ). QED

Any fractal measure µ obtained from an affine iterated function system has
a discrete Bessel measure ν =

∑
λ∈Λµ

δλ (see [2]). Moreover, when µ is a Cantor

type measure with even contraction ratio, ν =
∑

λ∈Λµ
δλ is a Plancherel measure

for µ, i.e., ν ∈ F1,1(µ) (see [11]).

Example 7. Let µ be a Cantor type measure with even contraction ratio
and let ν =

∑
λ∈Λµ

δλ be its associated Plancherel measure. Let N ∈ N and for
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every n ∈ N with 1 ≤ n ≤ N , let ρn be a probability measure. Suppose that
0 < m ≤ φ(x) ≤M on Rd. Then by Proposition 11, ν ∈ Fm,M (φ∗ρ1∗· · ·∗ρndµ).

Example 8. Let µ4, µ′4 be the invariant measures (Cantor measures) for
the affine IFSs with R = 4, A = {0, 2}, and R = 4, A′ = {0, 1} respectively.

Then by Corollary 4.7 from [3], ν1 = |µ̂′4(x)|2dλ(x) and ν2 =
∑

t∈Z |µ̂′4(t)|2δt are
Plancherel measures for µ4, (ν1, ν2 ∈ F1,1(µ4)). Let N ∈ N and for every n ∈ N
with 1 ≤ n ≤ N , let ρn be a probability measure. Suppose 0 < m ≤ φ(x) ≤ M
on Rd. Then by Proposition 11 we have ν1, ν2 ∈ Fm,M (φ ∗ ρ1 ∗ · · · ∗ ρndµ4).

Corollary 4. There exist infinitely many absolutely continuous measures
which admit discrete and continuous frame measures.

Proof. Based on Example 8 and Corollary 2, there are infinitely many absolutely
continuous measures with respect to µ4 which admit discrete and continuous
frame measures. On the other hand, there are also infinitely many absolutely
continuous measures with respect to Lebesgue measure which admit discrete
and continuous frame measures, since by Theorem 3, there are positive con-
stants c, C such that for every set E ⊂ Rd of finite Lebesgue measure, a
discrete measure ν =

∑
λ∈ΛE

δλE is a frame measure for χEdλ. Precisely, we
have ν ∈ Fc|E|,C|E|(χEdλ). In addition, by Proposition 8, λ is a Plancherel
measure for χEdλ and for any function c|E| ≤ φ(x) ≤ C|E| by Lemma 3,
φdλ ∈ Fc|E|,C|E|(χEdλ). Now let m ≤ φ′(x) ≤ M and N ∈ N. If En ⊂ Rd,
λ(En) < ∞ and µn = 1

λ(En)χEndλ for n ∈ {1, . . . , N}, then by Theorem 2 we

have φdλ, ν ∈ Fcm|E|,CM |E|(χEd(φ′dλ ∗ µ1 ∗ · · ·µn)). QED

Lemma 4 ([7]). Let µ be a Borel measure on Rd. Then ν is a frame measure
for µ if and only if ν is a frame measure for δt ∗µ with the same frame bounds,
where t ∈ Rd.

The last lemma from [7] shows that we still can construct many measures µ
which admit frame measures ν.
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