Some properties of the mapping T_{μ} introduced by a representation in Banach and locally convex spaces

E. Sooriⁱ

Department of Mathematics, University of Lorestan, Lorestan, Iran sori.e@lu.ac.ir; sori.ebrahim@yahoo.com

M. R. Omidiⁱⁱ Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran m.omidi@kut.ac.ir

A. P. Farajzadehⁱⁱⁱ

Department of Mathematics, Razi University, Kermanshah, Iran farajzadehali@gmail.com, a.farajzadeh@razi.ac.ir

Received: 20.4.2019; accepted: 5.3.2020.

Abstract. Let $S = \{T_s : s \in S\}$ be a representation of a semigroup S. We show that the mapping T_{μ} introduced by a mean on a subspace of $l^{\infty}(S)$ inherits some properties of Sin Banach spaces and locally convex spaces. The notions of Q-G-nonexpansive mapping and Q-G-attractive point in locally convex spaces are introduced. We prove that T_{μ} is a Q-Gnonexpansive mapping when T_s is Q-G-nonexpansive mapping for each $s \in S$ and a point in a locally convex space is Q-G-attractive point of T_{μ} if it is a Q-G-attractive point of S.

Keywords: Representation, Nonexpansive, Attractive point, Directed graph, Mean.

MSC 2000 classification: primary 00X00, secondary 00Y00

Introduction and preliminaries

Let C be a nonempty closed and convex subset of a Banach space E and E^* be the dual space of E. Let $\langle ., . \rangle$ denote the pairing between E and E^* . The normalized duality mapping $J : E \to E^*$ is defined by

$$J(x) = \{ f \in E^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2 \},\$$

for all $x \in E$. For more details, see [13].

The space of all bounded real-valued functions defined on S with supremum norm is denoted by $l^{\infty}(S)$.

ⁱThis work is partially supported by...

ⁱⁱThis work is partially supported by...

ⁱⁱⁱThis work is partially supported by...

http://siba-ese.unisalento.it/ © 2020 Università del Salento

 l_s and r_s in $l^{\infty}(S)$ are defined as follows: $(l_tg)(s) = g(ts)$ and $(r_tg)(s) = g(st)$, for all $s \in S$, $t \in S$ and $g \in l^{\infty}(S)$.

Suppose that X is a (linear) subspace of $l^{\infty}(S)$ containing 1 and let X^* be its topological dual space. An element m of X^* is said to be a mean on X, provided ||m|| = m(1) = 1. For $m \in X^*$ and $g \in X$, $m_t(g(t))$ is often written instead of m(g). Suppose that X is left invariant (respectively, right invariant), i.e., $l_t(X) \subset X$ (respectively, $r_t(X) \subset X$) for each $t \in S$. A mean m on X is called left invariant (respectively, right invariant), provided $m(l_tg) = m(g)$ (respectively, $m(r_tg) = m(g)$) for each $t \in S$ and $g \in X$. X is called left (respectively, right) amenable if X possesses a left (respectively, right) invariant mean. X is amenable, provided X is both left and right amenable.

Let D be a directed set in X. A net $\{m_{\alpha} : \alpha \in D\}$ of means on X is called left regular, provided

$$\lim_{\alpha \in D} \|l_t^* m_\alpha - m_\alpha\| = 0,$$

for every $t \in S$, where l_t^* is the adjoint operator of l_t .

Let *E* a reflexive Banach space. Let *g* be a function on *S* into *E* such that the weak closure of $\{g(s) : s \in S\}$ is weakly compact and suppose that *X* is a subspace of $l^{\infty}(S)$ owning all the functions $s \to \langle g(s), x^* \rangle$ with $x^* \in E^*$. We know from [3] that, for any $m \in X^*$, there exists a unique element g_m in *E* such that $\langle g_m, x^* \rangle = m_s \langle g(s), x^* \rangle$ for all $x^* \in E^*$. We denote such g_m by $\int g(s)m(s)$. Moreover, if *m* is a mean on *X*, then from [5], $\int g(s)m(s) \in \overline{\operatorname{co}} \{g(s) : s \in S\}$, where $\overline{\operatorname{co}} \{g(s) : s \in S\}$ denotes the closure of the convex hull of $\{g(s) : s \in S\}$.

The following definitions and basic results are needed in the next section.

(1) Let E be a Banach space or a locally convex space, C be a nonempty closed and convex subset of E and S be a semigroup. Then, a family $S = \{T_s : s \in S\}$ of mappings from C into itself is called a representation of S as mappings on C into itself provided $T_{st}x = T_sT_tx$ for all $s, t \in S$ and $x \in C$. Note that, Fix(S) is the set of common fixed points of S, that is

$$Fix(\mathcal{S}) = \bigcap_{s \in S} \{ x \in C : T_s x = x \}.$$

(2) Let E be a real Banach space and C be a subset of E. The mapping $T: C \to C$ is called:

a. nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$;

b. quasi nonexpansive [10] if $||Tx - f|| \le ||x - f||$ for all $x \in C$ and $f \in Fix(T)$, the fixed point set of T;

- c. strongly quasi nonexpansive [10] if $||Tx f|| \le ||x f||$ for all $x \in C \setminus \operatorname{Fix}(T)$ and $f \in \operatorname{Fix}(T)$;
- d. *F*-quasi nonexpansive (for a subset $F \subseteq Fix(T)$) if $||Tx f|| \le ||x f||$ for all $x \in C$ and $f \in F$;
- e. strongly *F*-quasi nonexpansive [10] (for a subset $F \subseteq Fix(T)$) if

$$||Tx - f|| \le ||x - f||,$$

for all $x \in C \setminus \operatorname{Fix}(T)$ and $f \in F$,

- f. retraction [10] if $T^2 = T$,
- g. asymptotically nonexpansive [6] if for all $x, y \in C$ the following inequality holds:

$$\limsup_{n \to \infty} \|T^n x - T^n y\| \le \|x - y\|.$$
(0.1)

- (3) Suppose that $S = \{T_s : s \in S\}$ is a representation of a semigroup S on a set C in a Banach space E. An element $a \in E$ is called:
 - a. asymptotically attractive point of S for C provided

$$\limsup_{n \to \infty} \|a - T_t^n x\| \le \|a - x\|, \tag{0.2}$$

for all $t \in S$ and $x \in C$,

b. uniformly asymptotically nonexpansive representation, if for each $x, y \in C$,

$$\limsup_{n \to \infty} \sup_{t} \left\| T_t^n x - T_t^n y \right\| \le \|x - y\|, \tag{0.3}$$

c. uniformly asymptotically attractive point, if for each $x \in C$,

$$\limsup_{n \to \infty} \sup_{t} \|a - T_t^n x\| \le \|a - x\|.$$
(0.4)

(4) Let X be a locally convex topological vector space (for short, locally convex space) generated by a family of seminorms Q, C be a nonempty closed and convex subset of X and G = (V(G), E(G)) be a directed graph such that V(G) = C (for more details refer to [4]). A mapping T of C into itself is called Q-G-nonexpansive if $q(Tx - Ty) \leq q(x - y)$, whenever $(x, y) \in E(G)$ for any $x, y \in C$ and $q \in Q$, and a mapping f is a Q-contraction on E if $q(f(x) - f(y)) \leq \beta q(x - y)$, for all $x, y \in E$ such that $0 \leq \beta < 1$.

It is easy to see that the locally convex space X generated by a family of seminorms Q is separated (Hausdorff) if and only if the family of seminorms Q possesses the following property:

for each $x \in X \setminus \{0\}$ there exists $q \in Q$ such that $q(x) \neq 0$ or equivalently

$$\bigcap_{q \in Q} \{ x \in X : q(x) = 0 \} = \{ 0 \},\$$

(see [1]).

The following results play crucial role in the next section.

Lemma 1. [12, 3] Suppose that g is a function of S into E such that the weak closure of $\{g(t) : t \in S\}$ is weakly compact and let X be a subspace of $l^{\infty}(S)$ containing all the functions $t \to \langle g(t), x^* \rangle$ with $x^* \in E^*$. Then, for any $\mu \in X^*$, there exists a unique element g_{μ} in E such that

$$\langle g_{\mu}, x^* \rangle = \mu_t \langle g(t), x^* \rangle,$$

for all $x^* \in E^*$. Moreover, if μ is a mean on X then

$$\int g(t) \, d\mu(t) \in \overline{co} \, \{g(t) : t \in S\}.$$

We can write g_{μ} by

$$\int g(t) \, d\mu(t).$$

Next, we will need some concepts in locally convex spaces.

Consider a family of seminorms Q on the locally convex space X which determines the topology of X and the seminorm $q \in Q$. Let Y be a subset of X, we put

$$q_Y^*(f) = \sup\{|f(y)| : y \in Y, q(y) \le 1\}$$

and

$$q^*(f) = \sup\{|f(x)| : x \in X, q(x) \le 1\},\$$

for every linear functional f on X. Observe that, for each $x \in X$ that $q(x) \neq 0$ and $f \in X^*$, then $|\langle x, f \rangle| \leq q(x)q^*(f)$. We will make use of the following Theorems.

Theorem 1. [2] Suppose that Q is a family of seminorms on a real locally convex space X which determines the topology of X and $q \in Q$ is a continuous seminorm and Y is a vector subspace of X such that

$$Y \cap \{x \in X : q(x) = 0\} = \{0\}$$

Let f be a real linear functional on Y such that $q_Y^*(f) < \infty$. Then there exists a continuous linear functional h on X that extends f such that $q_Y^*(f) = q^*(h)$.

Theorem 2. [2] Suppose that Q is a family of seminorms on a real locally convex space X which determines the topology of X and $q \in Q$ a nonzero continuous seminorm. Let x_0 be a point in X. Then there exists a continuous linear functional f on X such that $q^*(f) = 1$ and $f(x_0) = q(x_0)$.

Consider a reflexive Banach space E, a nonempty closed convex subset C of E, a semigroup S and a representation $S = \{T_s : s \in S\}$ of S and let X be a subspace of $l^{\infty}(S)$ and μ be a mean on X. We write $T_{\mu}x$ instead of $\int T_t x \, d\mu(t)$. The relations between the representation S and the mapping T_{μ} have been studied by many authors, for instance see [6, 7, 10, 11].

In this paper, we establish some relations between the representation S and T_{μ} in Banach and locally convex spaces.

1 Main results

In the following theorem, we prove that T_{μ} inherits some properties of representation S in Banach spaces.

Theorem 3. Suppose that C is a nonempty closed, convex subset of a reflexive Banach space E, S a semigroup, $S = \{T_s : s \in S\}$ a representation of S as self mappings on C such that weak closure of $\{T_tx : t \in S\}$ is weakly compact for each $x \in C$. If X is a subspace of B(S) such that $1 \in X$ and the mapping $t \to \langle T_tx, x^* \rangle$ is an element of X for each $x \in C$ and $x^* \in E^*$, then the following assertions hold:

- (a) Let the mapping $t \to \langle T_t^n x T_t^n y, x^* \rangle$ be an element of X for each $x, y \in C$, $n \in \mathbb{N}$ and $x^* \in E$. Let μ be a mean on X and $S = \{T_s : s \in S\}$ be a representation of S as uniformly asymptotically nonexpansive self mappings on C, then T_{μ} is an asymptotically nonexpansive self mapping on C,
- (b) $T_{\mu}x = x$ for each $x \in Fix(\mathcal{S})$,
- (c) $T_{\mu}x \in \overline{co} \{T_tx : t \in S\}$ for each $x \in C$,
- (d) if X is r_s -invariant for each $s \in S$ and μ is right invariant, then $T_{\mu}T_t = T_{\mu}$ for each $t \in S$,
- (e) let $a \in C$ be a uniformly asymptotically attractive point of S and the mapping $t \to \langle a T_t^n x, x^* \rangle$ be an element of X for each $x \in C$, $n \in \mathbb{N}$ and $x^* \in E$. Then a is an asymptotically attractive point of T_{μ} ,
- (f) let $S = \{T_s : s \in S\}$ be a representation of S as the affine self mappings on C, then T_{μ} is an affine self mapping on C,

- (g) let P be a self mappings on C that commutes with $T_s \in S = \{T_s : s \in S\}$ for each $s \in S$. Let the mapping $t \to \langle PT_t x, x^* \rangle$ be an element of X for each $x \in C$ and $x^* \in E$. Then T_{μ} commutes with P,
- (h) let $S = \{T_s : s \in S\}$ be a representation of S as quasi nonexpansive self mappings on C, then T_{μ} is a Fix(S)-quasi nonexpansive self mapping on C,
- (i) let $S = \{T_s : s \in S\}$ be a representation of S as F-quasi nonexpansive self mappings on C (for a subset $F \subseteq Fix(S)$), then T_{μ} is an F-quasi nonexpansive self mapping on C,
- (j) let $S = \{T_s : s \in S\}$ be a representation of S as strongly F-quasi nonexpansive self mappings on C (for a subset $F \subseteq Fix(S)$), then T_{μ} is an strongly F-quasi nonexpansive self mapping on C,
- (k) let $S = \{T_s : s \in S\}$ be a representation of S as retraction self mappings on C, then T_{μ} is a retraction self mapping on C,
- (l) let E = H be a Hilbert space and $S = \{T_s : s \in S\}$ be a representation of S as monotone self mappings on H, then T_{μ} is a monotone self mapping on H.

Proof. (a) Since S is a representation as uniformly asymptotically nonexpansive self mappings on C, hence, from (0.3) and the part (b) of Theorem 3. 1. 7 in [8], there exists an integer $m_0 \in \mathbb{N}$ such that

$$\sup_{t} \|T_{t}^{n}x - T_{t}^{n}y\| \le \|x - y\|,$$

for all $n \ge m_0$, $x, y \in C$. Suppose that $x_1^* \in J(T_{\mu}^n x - T_{\mu}^n y)$ and $x, y \in C$, where J is the normalized duality mapping on E. We know from [3], see Lemma 1.1, that for any $\mu \in X^*$, there exists a unique element f_{μ} in E such that

$$\langle f_{\mu}, x^* \rangle = \mu_s \langle f(s), x^* \rangle, \qquad (1.1)$$

for all $x^* \in E^*$, where f is a function of S into E such that the weak closure of $\{f(t) : t \in S\}$ is weakly compact. Then from (1.1) we have

$$\begin{aligned} \|T_{\mu}^{n}x - T_{\mu}^{n}y\|^{2} &= \langle T_{\mu}^{n}x - T_{\mu}^{n}y, x_{1}^{*} \rangle = \mu_{t} \langle T_{t}^{n}x - T_{t}^{n}y, x_{1}^{*} \rangle \\ &\leq \sup_{t} \|T_{t}^{n}x - T_{t}^{n}y\| \|T_{\mu}^{n}x - T_{\mu}^{n}y\| \\ &\leq \|x - y\| \|T_{\mu}^{n}x - T_{\mu}^{n}y\|, \end{aligned}$$

and

$$||T_{\mu}^{n}x - T_{\mu}^{n}y|| \le ||x - y||,$$

for all $n \ge m_0, x, y \in C$. Therefore, we get

$$\limsup_{n \to \infty} \|T^n_{\mu} x - T^n_{\mu} y\| \le \|x - y\|.$$

(b) Suppose that $x \in Fix(\mathcal{S})$ and $x^* \in E^*$. Hence

$$\langle T_{\mu}x, x^* \rangle = \mu_t \langle T_t x, x^* \rangle = \mu_t \langle x, x^* \rangle = \langle x, x^* \rangle.$$

(c) The assertion follows from Lemma 1.

(d) It follows from

$$\langle T_{\mu}(T_s x), x^* \rangle = \mu_t \langle T_{ts} x, x^* \rangle = \mu_t \langle T_t x, x^* \rangle = \langle T_{\mu} x, x^* \rangle.$$

(e) Since a is a uniformly attractive point, hence, from (0.4) and from part (b) of Theorem 3. 1. 7 in [8], for each $x \in C$ there exists an integer $m_0 \in \mathbb{N}$ such that

$$\sup_{t} \|a - T_{t}^{n} x\| \le \|a - x\|,$$

for all $n \ge m_0$. Suppose that $x_2^* \in J(a - T_{\mu}^n x)$, therefore from (1.1) we have,

$$\begin{aligned} \|a - T^n_{\mu} x\|^2 &= \langle a - T^n_{\mu} x, x_2^* \rangle = \mu_t \langle a - T^n_t x, x_2^* \rangle \\ &\leq \sup_t \|a - T^n_t x\| \|a - T^n_{\mu} x\| \\ &\leq \|a - x\| \|a - T^n_{\mu} x\|. \end{aligned}$$

Hence,

$$||a - T^n_{\mu}x|| \le ||a - x||,$$

for all $n \ge m_0$. Thus, we get

$$\limsup_{n \to \infty} \|a - T^n_\mu x\| \le \|a - x\|,$$

for each $x \in C$.

(f) If $x_1^* \in E^*$, then for all positive integers α, β and $x, y \in C$ with $\alpha + \beta = 1$, we have

$$\begin{aligned} \langle T_{\mu}(\alpha x + \beta y), x_{1}^{*} \rangle &= \mu_{t} \langle T_{t}(\alpha x + \beta y), x_{1}^{*} \rangle \\ &= \mu_{t} \langle \alpha T_{t} x + \beta T_{t} y, x_{1}^{*} \rangle \\ &= \alpha \mu_{t} \langle T_{t} x, x_{1}^{*} \rangle + \beta \mu_{t} \langle T_{t} y, x_{1}^{*} \rangle \\ &= \alpha \langle T_{\mu} x, x_{1}^{*} \rangle + \beta \langle T_{\mu} y, x_{1}^{*} \rangle \\ &= \langle \alpha T_{\mu} x + \beta T_{\mu} y, x_{1}^{*} \rangle, \end{aligned}$$

and so

$$T_{\mu}(\alpha x + \beta y) = \alpha T_{\mu} x + \beta T_{\mu} y.$$

(g) Let $x_1^* \in E^*$. Then considering the functions $f_1, f_2 : S \longrightarrow E$, by $f_1(t) = T_t Px$ and $f_2(t) = PT_t x$ and applying them in (1.1), then we have

$$\mu_t \langle T_t P x, x_1^* \rangle = \langle f_1(t), x_1^* \rangle = \mu_t \langle (f_1)_\mu, x_1^* \rangle = \langle T_\mu P x, x_1^* \rangle$$

and

$$\mu_t \langle PT_t x, x_1^* \rangle = \langle f_2(t), x_1^* \rangle = \mu_t \langle (f_2)_\mu, x_1^* \rangle = \langle PT_\mu x, x_1^* \rangle,$$

for each $x \in C$. Since P commutes with $T_t \in S = \{T_t : t \in S\}$ for each $s \in S$, we conclude that

$$\begin{aligned} \langle T_{\mu}Px, x_{1}^{*} \rangle &= \mu_{t} \langle T_{t}Px, x_{1}^{*} \rangle \\ &= \mu_{t} \langle PT_{t}x, x_{1}^{*} \rangle \\ &= \langle PT_{\mu}x, x_{1}^{*} \rangle, \end{aligned}$$

therefore $T_{\mu}P = PT_{\mu}$.

(h)Since X is a subspace of $l^{\infty}(S)$, $1 \in X$ and the mapping $t \to \langle T_t x, x^* \rangle$ is an element of X for each $x \in C$ and $x^* \in E$, hence, the mapping $t \to \langle T_t x - f, x^* \rangle$ is an element of X for each $x \in C$, $x^* \in E$ and $f \in \text{Fix}(\mathcal{S})$. For each $t \in S$, we have

$$||T_t x - f|| \le ||x - f||,$$

for each $f \in Fix(T_t)$ and $x \in C$.

Suppose $f \in Fix(\mathcal{S})$ and $x_2^* \in J(T_\mu x - f)$, then from (1.1), we have

$$\|T_{\mu}x - f\|^{2} = \langle T_{\mu}x - f, x_{2}^{*} \rangle = \mu_{t} \langle T_{t}x - f, x_{2}^{*} \rangle$$

$$\leq \sup_{t} \|T_{t}x - f\| \|T_{\mu}x - f\|$$

$$\leq \|x - f\| \|T_{\mu}x - f\|.$$

Then

$$||T_{\mu}x - f|| \le ||x - f||,$$

and so T_{μ} is a Fix(\mathcal{S})-quasi nonexpansive self mapping on C.

(i) Let $S = \{T_s : s \in S\}$ be a representation of S as F-quasi nonexpansive self mappings on C that $F \subseteq Fix(S)$. Then for each $t \in S$, we have

$$||T_t x - f|| \le ||x - f||,$$

for each $f \in F$ and $x \in C$. Suppose that $f \in F$, $x \in C$ and $x_2^* \in J(T_{\mu}x - f)$, then, as in the proof of (h), from (1.1), we have

$$||T_{\mu}x - f||^{2} = \langle T_{\mu}x - f, x_{2}^{*} \rangle = \mu_{t} \langle T_{t}x - f, x_{2}^{*} \rangle$$

$$\leq \sup_{t} ||T_{t}x - f|| ||T_{\mu}x - f||$$

$$\leq ||x - f|| ||T_{\mu}x - f||,$$

thus

$$||T_{\mu}x - f|| \le ||x - f||.$$

This means that T_{μ} is an *F*-quasi nonexpansive self mapping on *C*.

(j) Let $S = \{T_s : s \in S\}$ be a representation of S as strongly F-quasi nonexpansive self mappings on C such that $F \subseteq Fix(S)$, then for each $t \in S$ we have

$$|T_t x - f|| < ||x - f||, \quad \forall (x, f) \in C \setminus F \times F.$$

Suppose that $f \in F$, $x \in C \setminus F$ and $x_2^* \in J(T_\mu x - f)$, then from (1.1), we have

$$||T_{\mu}x - f||^{2} = \langle T_{\mu}x - f, x_{2}^{*} \rangle = \mu_{t} \langle T_{t}x - f, x_{2}^{*} \rangle$$

$$\leq \sup_{t} ||T_{t}x - f|| ||T_{\mu}x - f||$$

$$< ||x - f|| ||T_{\mu}x - f||,$$

then we have

$$||T_{\mu}x - f|| < ||x - f||,$$

therefore T_{μ} is a strongly *F*-quasi nonexpansive self mapping on *C*.

(k) Since $T_t^2 = T_t$ and the mapping $t \to \langle T_t x, x^* \rangle$ is an element of X for each $x \in C$ and $x^* \in E$, hence the mapping $t \to \langle T_t^2 x, x^* \rangle$ is an element of X for each $x \in C$ and $x^* \in E$. Suppose that $x \in C$ and $x_1^* \in E^*$, then from (1.1), we have

$$\begin{aligned} \langle T^2_{\mu} x, x_1^* \rangle = & \mu_t \langle T^2_t x, x_1^* \rangle \\ = & \mu_t \langle T_t x, x_1^* \rangle \\ = & \langle T_{\mu} x, x_1^* \rangle, \end{aligned}$$

hence $T^2_{\mu} = T_{\mu}$.

(1) Since T_s is monotone for every $s \in S$, then we have $\langle T_s x - T_s y, x - y \rangle \geq 0$ for every $x, y \in H$ and $s \in S$. As in the proof of Theorem 1.4.1 in [13] we know that μ is positive i.e., $\langle \mu, f \rangle \geq 0$ for each $f \in X$ that $f \geq 0$. Then for each $x, y \in H$, from (1.1) we have

$$\langle T_{\mu}x - T_{\mu}y, x - y \rangle = \mu_t \langle T_tx - T_ty, x - y \rangle \ge 0,$$

then T_{μ} is a monotone self mapping on H.

QED

Now we present some properties of T_{μ} in locally convex spaces.

Theorem 4. Let S be a semigroup, E a locally convex space with predual locally convex space D, U a convex neighbourhood of 0 in D and p_U be the Minkowski functional. Let $f: S \to E$ be a function such that

$$\langle x, f(t) \rangle \le 1,$$

for all $t \in S$ and $x \in U$. Let X be a subspace of $l^{\infty}(S)$ such that the mapping $t \to \langle x, f(t) \rangle$ is an element of X, for each $x \in D$. Then, for any $\mu \in X^*$, there exists a unique element $F_{\mu} \in E$ such that

$$\langle x, F_{\mu} \rangle = \mu_t \langle x, f(t) \rangle,$$

for each $x \in D$. Furthermore, if $1 \in X$ and μ is a mean on X, then F_{μ} is contained in $\overline{co\{f(t): t \in S\}}^{w^*}$.

Proof. We define F_{μ} by

$$\langle x, F_{\mu} \rangle = \mu_t \langle x, f(t) \rangle,$$

for each $x \in D$. Obviously, F_{μ} is linear in x. Moreover it follows from Proposition 3.8 in [9] that

$$|\langle x, F_{\mu} \rangle| = |\mu_t \langle x, f(t) \rangle| \le \sup_t |\langle x, f(t) \rangle|. \|\mu\| \le p_U(x). \|\mu\|, \tag{1.2}$$

for all $x \in D$. Assume that (x_{α}) is a net in D that converges to x_0 . Then by (1.2) we have

$$|\langle x_{\alpha}, F_{\mu} \rangle - \langle x_0, F_{\mu} \rangle| = |\langle x_{\alpha} - x_0, F_{\mu} \rangle| \le p_U(x_{\alpha} - x_0) \cdot ||\mu||,$$

taking limit and using the continuity (see Theorem 3.7 in [9]) of p_U , we get F_{μ} is continuous on D and so $F_{\mu} \in E$.

Now, let $1 \in X$ and μ be a mean on X. Then, there exists a net $\{\mu_{\alpha}\}_{I}$ of finite means on X such that $\{\mu_{\alpha}\}_{I}$ converges to μ with the weak^{*} topology on X^{*} . For each α , we may consider that

$$\mu_{\alpha} = \sum_{i=1}^{n_{\alpha}} \lambda_{\alpha,i} \delta_{t_{\alpha,i}},$$

such that $\lambda_{\alpha,i} \ge 0$ for each $i = 1, \dots, n_{\alpha}$ and $\sum_{i=1}^{n_{\alpha}} \lambda_{\alpha,i} = 1$. Therefore, $\langle x, F_{\mu_{\alpha}} \rangle = (\mu_{\alpha})_t \langle x, f(t) \rangle = \langle x, \sum_{i=1}^{n_{\alpha}} \lambda_{\alpha,i} f(t_{\alpha,i}) \rangle,$

for each $x \in D$ and $\alpha \in I$. Then we have

$$F_{\mu_{\alpha}} = \sum_{i=1}^{n_{\alpha}} \lambda_{\alpha,i} f(t_{\alpha,i}) \in \operatorname{co}\{f(t) : t \in S\}.$$

Also

$$\langle x, F_{\mu_{\alpha}} \rangle = (\mu_{\alpha})_t \langle x, f(t) \rangle \to \mu_t \langle x, f(t) \rangle = \langle x, F_{\mu} \rangle,$$

for each $x \in D$, therefore $\{F_{\mu_{\alpha}}\}$ converges to F_{μ} in the weak^{*} topology and

$$F_{\mu} \in \overline{\operatorname{co}\{f(t) : t \in S\}}^{w^*},$$

we can write F_{μ} by $\int f(t)d\mu(t)$.

In the next we show that T_{μ} inherits some properties of the representation S in locally convex spaces.

Theorem 5. Let S be a semigroup, C a closed convex subset of the locally convex space E. Let G = (V(G), E(G)) be a directed graph such that V(G) = C, \mathcal{B} a base at 0 for the topology E which consists of convex and balanced sets. Let $Q = \{q_V : V \in \mathcal{B}\}$ where q_V is the associated Minkowski functional with V. Let $\mathcal{S} = \{T_s : s \in S\}$ be a representation of S as Q-G-nonexpansive mappings from C into itself and X be a subspace of B(S) with $1 \in X$ and μ be a mean on X such that the mapping $t \to \langle T_t x, x^* \rangle$ is an element of X for each $x \in C$ and $x^* \in E^*$. If we write $T_{\mu}x$ instead of $\{T_t x d\mu(t), then the following facts hold:$

- (i) T_{μ} is a Q-G-nonexpansive mapping from C into C.
- (ii) $T_{\mu}x = x$ for each $x \in Fix(\mathcal{S})$.
- (iii) If the dual of E is a locally convex space with predual locally convex space D and C a w^* -closed convex subset of E and U a convex neighbourhood of 0 in D and p_U is the associated Minkowski functional. Let the mapping $t \to \langle z, T_t x \rangle$ be an element of X for each $x \in C$ and $z \in D$, then

$$T_{\mu}x \in \overline{co\left\{T_tx : t \in S\right\}}^{w^*}$$

QED

(iv) if X is r_s -invariant for each $s \in S$ and μ is right invariant, then

$$T_{\mu}T_t = T_{\mu},$$

for each $t \in S$.

(v) let $a \in E$ be a Q-G-attractive point of S and the mapping $t \to \langle a - T_t x, x^* \rangle$ be an element of X for each $x \in C$ and $x^* \in E$, then a is a Q-G-attractive point of T_{μ} .

Proof. (i) Let $x, y \in C$ and $V \in \mathcal{B}$. By Proposition 3.33 in [9], the topology on E induced by Q is the original topology on E. By Theorem 3.7 in [9], q_V is a continuous seminorm and from Theorem 1.36 in [8], q_V is a nonzero seminorm because if $x \notin V$ then $q_V(x) \ge 1$, hence from Theorem 2, there exists a functional $x_V^* \in X^*$ such that

$$q_V(T_\mu x - T_\mu y) = \langle T_\mu x - T_\mu y, x_V^* \rangle,$$

and $q_V^*(x_V^*) = 1$. Also from Theorem 3.7 in [9], $q_V(z) \leq 1$ for each $z \in V$.

We conclude that $\langle z, x_V^* \rangle \leq 1$ for all $z \in V$. Therefore from Theorem 3.8 in [9], $\langle z, x_V^* \rangle \leq q_V(z)$ for all $z \in E$. Hence for each $t \in S$, $x, y \in C$ that $(x, y) \in E(G)$ and $x^* \in E^*$, from (1.1), we have

$$q_V(T_\mu x - T_\mu y) = \langle T_\mu x - T_\mu y, x_V^* \rangle = \mu_t \langle T_t x - T_t y, x_V^* \rangle$$

$$\leq \|\mu\| \sup_t |\langle T_t x - T_t y, x_V^* \rangle|$$

$$\leq \sup_t q_V(T_t x - T_t y)$$

$$\leq q_V(x - y),$$

then we have

$$q_V(T_\mu x - T_\mu y) \le q_V(x - y),$$

for all $V \in \mathcal{B}$.

(ii) Let $x \in Fix(\mathcal{S})$ and $x^* \in E^*$. Then we have

$$\langle T_{\mu}x, x^* \rangle = \mu_t \langle T_t x, x^* \rangle = \mu_t \langle x, x^* \rangle = \langle x, x^* \rangle.$$

- (iii) The assertion follows from Theorem 4.
- (iv) This part obtains from the following equalities:

$$\langle T_{\mu}(T_s x), x^* \rangle = \mu_t \langle T_{ts} x, x^* \rangle = \mu_t \langle T_t x, x^* \rangle = \langle T_{\mu} x, x^* \rangle.$$

(v) Let $x \in C$ and $V \in \mathcal{B}$. From Theorem 2, there exists a linear functional $x_V^* \in X^*$ such that

$$q_V(a - T_\mu x) = \langle a - T_\mu x, x_V^* \rangle,$$

and $q_V^*(x_V^*) = 1$. It follows from [9, Theorem 3.7] that $q_V(z) \le 1$ and $\langle z, x_V^* \rangle \le 1$, for each $z \in V$. Therefore Theorem 3.8 in [9] implies

$$\langle z, x_V^* \rangle \le q_V(z),$$

for each $z \in E$. Then by applying (1.1) and for each $t \in S$ and $x, y \in C$ that $(x, y) \in E(G)$ and $x^* \in E^*$, we have

$$q_V(a - T_\mu x) = \langle a - T_\mu x, x_V^* \rangle = \mu_t \langle a - T_t x, x_V^* \rangle$$

$$\leq \|\mu\| \sup_t |\langle a - T_t x, x_V^* \rangle|$$

$$\leq \sup_t q_V(a - T_t x)$$

$$\leq q_V(a - x),$$

and

$$q_V(a - T_\mu x) \le q_V(a - x),$$

for all $V \in \mathcal{B}$.

2 Conclusion

In this paper, we prove that some properties of the mapping in the representation $S = \{T_s : s \in S\}$ can be transferred to the mapping T_{μ} introduced by a mean on a subspace of B(S), for example nonexpansiveness, quasi-nonexpansiveness, strongly quasi-nonexpansiveness, monotonicity, retraction property and another properties in Banach spaces, and Q-G-nonexpansiveness using a directed graph in locally convex spaces.

Acknowledgements. The authors would like to thank the referees for their comments and suggestions that improved the presentation of this paper.

113

QED

References

- [1] V. BARBU: Convexity and Optimization in Banach Spaces, Springer, New York, 2012.
- [2] S. DHOMPONGSA, P. KUMAM, AND E. SOORI: Fixed point properties and Q-nonexpansive retractions in locally convex spaces, Results Math. (2018), doi.org/10.1007/s00025-018-0821-x.
- [3] N. HIRANO, K. KIDO, AND W. TAKAHASHI: Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal. 12 (1988), 1269–1281.
- [4] A. KANGTUNYAKARN: Modified Halpern's iteration for fixed point theory of a finite family of G-nonexpansive mappings endowed with graph, Racsam Rev R Acad A, 2017, doi: 10.1007/s13398-017-0390-y.
- [5] K. KIDO AND W. TAKAHASHI: Mean ergodic theorems for semigroups of linear continuous in Banach spaces, J. Math. Anal. Appl. 103 (1984), 387–394.
- [6] A. T. M. LAU, Y. ZHANG: Fixed point properties for semigroups of nonlinear mappings on unbounded sets, J. Math. Anal. Appl. 433(2)(2016), 1204–1219.
- [7] A. T. M. LAU, N. SHIOJI AND W. TAKAHASHI: Existence of Nonexpansive Retractions for Amenable Semigroups of Nonexpansive Mappings and Nonlinear Ergodic Theorems in Banach Spaces, J. Funct. Anal. 161 (1999), 62–75.
- [8] W. RUDIN: Principles of Mathematical Analysis, McGraw-Hill, Singapore, 1976.
- [9] M. S. OSBORNE: Locally Convex Spaces, Springer, Switzerland, 2014.
- [10] S. SAEIDI: On a nonexpansive retraction result of R. E. Bruck in Banach spaces, Taiwan J. Math. 14 (2010), 1371–1375.
- [11] S. SAEIDI: Ergodic retractions for amenable semigroups in Banach spaces with normal structure, Nonlinear Anal. 71 (2009) 2558–2563.
- [12] W. TAKAHASHI: A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253–256.
- [13] W. TAKAHASHI: Nonlinear Functional Analysis: Fixed Point Theory and its Applications, Yokohama Publishers, Yokohama, 2000.