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Abstract. Let S = {Ts : s ∈ S} be a representation of a semigroup S. We show that
the mapping Tµ introduced by a mean on a subspace of l∞(S) inherits some properties of S
in Banach spaces and locally convex spaces. The notions of Q-G-nonexpansive mapping and
Q-G-attractive point in locally convex spaces are introduced. We prove that Tµ is a Q-G-
nonexpansive mapping when Ts is Q-G-nonexpansive mapping for each s ∈ S and a point in
a locally convex space is Q-G-attractive point of Tµ if it is a Q-G-attractive point of S.
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Introduction and preliminaries

Let C be a nonempty closed and convex subset of a Banach space E and
E∗ be the dual space of E. Let 〈., .〉 denote the pairing between E and E∗. The
normalized duality mapping J : E → E∗ is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2},

for all x ∈ E. For more details, see [13].
The space of all bounded real-valued functions defined on S with supremum

norm is denoted by l∞(S).
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ls and rs in l∞(S) are defined as follows: (ltg)(s) = g(ts) and (rtg)(s) = g(st),
for all s ∈ S, t ∈ S and g ∈ l∞(S).
Suppose that X is a (linear) subspace of l∞(S) containing 1 and let X∗ be
its topological dual space. An element m of X∗ is said to be a mean on X,
provided ‖m‖ = m(1) = 1. For m ∈ X∗ and g ∈ X, mt(g(t)) is often written
instead of m(g). Suppose that X is left invariant (respectively, right invariant),
i.e., lt(X) ⊂ X (respectively, rt(X) ⊂ X) for each t ∈ S. A mean m on X
is called left invariant (respectively, right invariant), provided m(ltg) = m(g)
(respectively, m(rtg) = m(g)) for each t ∈ S and g ∈ X. X is called left
(respectively, right) amenable if X possesses a left (respectively, right) invariant
mean. X is amenable, provided X is both left and right amenable.
Let D be a directed set in X. A net {mα : α ∈ D} of means on X is called left
regular, provided

lim
α∈D
‖l∗tmα −mα‖ = 0,

for every t ∈ S, where l∗t is the adjoint operator of lt.

Let E a reflexive Banach space. Let g be a function on S into E such that
the weak closure of {g(s) : s ∈ S} is weakly compact and suppose that X is
a subspace of l∞(S) owning all the functions s → 〈g(s), x∗〉 with x∗ ∈ E∗. We
know from [3] that, for any m ∈ X∗, there exists a unique element gm in E such
that 〈gm, x∗〉 = ms 〈g(s), x∗〉 for all x∗ ∈ E∗. We denote such gm by

∫
g(s)m(s).

Moreover, if m is a mean on X, then from [5],
∫
g(s)m(s) ∈ co {g(s) : s ∈ S}),

where co {g(s) : s ∈ S}) denotes the closure of the convex hull of {g(s) : s ∈ S}.

The following definitions and basic results are needed in the next section.

(1) Let E be a Banach space or a locally convex space, C be a nonempty
closed and convex subset of E and S be a semigroup. Then, a family
S = {Ts : s ∈ S} of mappings from C into itself is called a representation
of S as mappings on C into itself provided Tstx = TsTtx for all s, t ∈ S
and x ∈ C. Note that, Fix(S) is the set of common fixed points of S, that
is

Fix(S) =
⋂
s∈S
{x ∈ C : Tsx = x}.

(2) Let E be a real Banach space and C be a subset of E. The mapping
T : C → C is called:

a. nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C;

b. quasi nonexpansive [10] if ‖Tx − f‖ ≤ ‖x − f‖ for all x ∈ C and
f ∈ Fix(T ), the fixed point set of T ;
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c. strongly quasi nonexpansive [10] if ‖Tx − f‖ ≤ ‖x − f‖ for all x ∈
C \ Fix(T ) and f ∈ Fix(T );

d. F -quasi nonexpansive (for a subset F ⊆ Fix(T )) if
‖Tx− f‖ ≤ ‖x− f‖ for all x ∈ C and f ∈ F ;

e. strongly F -quasi nonexpansive [10] (for a subset F ⊆ Fix(T )) if

‖Tx− f‖ ≤ ‖x− f‖,

for all x ∈ C \ Fix(T ) and f ∈ F ,

f. retraction [10] if T 2 = T ,

g. asymptotically nonexpansive [6] if for all x, y ∈ C the following in-
equality holds:

lim sup
n→∞

‖Tnx− Tny‖ ≤ ‖x− y‖. (0.1)

(3) Suppose that S = {Ts : s ∈ S} is a representation of a semigroup S on a
set C in a Banach space E. An element a ∈ E is called:

a. asymptotically attractive point of S for C provided

lim sup
n→∞

‖a− Tnt x‖ ≤ ‖a− x‖, (0.2)

for all t ∈ S and x ∈ C,

b. uniformly asymptotically nonexpansive representation, if for each
x, y ∈ C,

lim sup
n→∞

sup
t
‖Tnt x− Tnt y‖ ≤ ‖x− y‖, (0.3)

c. uniformly asymptotically attractive point, if for each x ∈ C,

lim sup
n→∞

sup
t
‖a− Tnt x‖ ≤ ‖a− x‖. (0.4)

(4) Let X be a locally convex topological vector space ( for short, locally
convex space) generated by a family of seminorms Q, C be a nonempty
closed and convex subset of X and G = (V (G), E(G)) be a directed graph
such that V (G) = C ( for more details refer to [4]). A mapping T of C
into itself is called Q-G-nonexpansive if q(Tx− Ty) ≤ q(x− y), whenever
(x, y) ∈ E(G) for any x, y ∈ C and q ∈ Q, and a mapping f is a Q-
contraction on E if q(f(x)− f(y)) ≤ βq(x− y), for all x, y ∈ E such that
0 ≤ β < 1.
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It is easy to see that the locally convex space X generated by a fam-
ily of seminorms Q is separated (Hausdorff) if and only if the family of
seminorms Q possesses the following property:

for each x ∈ X\{0} there exists q ∈ Q such that q(x) 6= 0 or equivalently⋂
q∈Q
{x ∈ X : q(x) = 0} = {0},

( see [1]).

The following results play crucial role in the next section.

Lemma 1. [12, 3] Suppose that g is a function of S into E such that the
weak closure of {g(t) : t ∈ S} is weakly compact and let X be a subspace of
l∞(S) containing all the functions t → 〈g(t), x∗〉 with x∗ ∈ E∗. Then, for any
µ ∈ X∗, there exists a unique element gµ in E such that

〈gµ, x∗〉 = µt〈g(t), x∗〉,

for all x∗ ∈ E∗. Moreover, if µ is a mean on X then∫
g(t) dµ(t) ∈ co {g(t) : t ∈ S}.

We can write gµ by ∫
g(t) dµ(t).

Next, we will need some concepts in locally convex spaces.
Consider a family of seminorms Q on the locally convex space X which deter-
mines the topology of X and the seminorm q ∈ Q. Let Y be a subset of X, we
put

q∗Y (f) = sup{|f(y)| : y ∈ Y, q(y) ≤ 1}
and

q∗(f) = sup{|f(x)| : x ∈ X, q(x) ≤ 1},
for every linear functional f on X. Observe that, for each x ∈ X that q(x) 6= 0
and f ∈ X∗, then |〈x, f〉| ≤ q(x)q∗(f). We will make use of the following
Theorems.

Theorem 1. [2] Suppose that Q is a family of seminorms on a real locally
convex space X which determines the topology of X and q ∈ Q is a continuous
seminorm and Y is a vector subspace of X such that

Y ∩ {x ∈ X : q(x) = 0} = {0}.

Let f be a real linear functional on Y such that q∗Y (f) < ∞. Then there exists
a continuous linear functional h on X that extends f such that q∗Y (f) = q∗(h).
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Theorem 2. [2] Suppose that Q is a family of seminorms on a real locally
convex space X which determines the topology of X and q ∈ Q a nonzero con-
tinuous seminorm. Let x0 be a point in X. Then there exists a continuous linear
functional f on X such that q∗(f) = 1 and f(x0) = q(x0).

Consider a reflexive Banach space E, a nonempty closed convex subset C of
E, a semigroup S and a representation S = {Ts : s ∈ S} of S and let X be a
subspace of l∞(S) and µ be a mean on X. We write Tµx instead of

∫
Ttx dµ(t).

The relations between the representation S and the mapping Tµ have been
studied by many authors, for instance see [6, 7, 10, 11].

In this paper, we establish some relations between the representation S and
Tµ in Banach and locally convex spaces.

1 Main results

In the following theorem, we prove that Tµ inherits some properties of rep-
resentation S in Banach spaces.

Theorem 3. Suppose that C is a nonempty closed, convex subset of a re-
flexive Banach space E, S a semigroup, S = {Ts : s ∈ S} a representation of S
as self mappings on C such that weak closure of {Ttx : t ∈ S} is weakly compact
for each x ∈ C. If X is a subspace of B(S) such that 1 ∈ X and the mapping
t→ 〈Ttx, x∗〉 is an element of X for each x ∈ C and x∗ ∈ E∗, then the following
assertions hold:

(a) Let the mapping t→ 〈Tnt x− Tnt y, x∗〉 be an element of X for each x, y ∈
C, n ∈ N and x∗ ∈ E. Let µ be a mean on X and S = {Ts : s ∈ S}
be a representation of S as uniformly asymptotically nonexpansive self
mappings on C, then Tµ is an asymptotically nonexpansive self mapping
on C,

(b) Tµx = x for each x ∈ Fix(S),

(c) Tµx ∈ co {Ttx : t ∈ S} for each x ∈ C,

(d) if X is rs-invariant for each s ∈ S and µ is right invariant, then TµTt = Tµ
for each t ∈ S,

(e) let a ∈ C be a uniformly asymptotically attractive point of S and the
mapping t → 〈a− Tnt x, x∗〉 be an element of X for each x ∈ C, n ∈ N
and x∗ ∈ E. Then a is an asymptotically attractive point of Tµ,

(f) let S = {Ts : s ∈ S} be a representation of S as the affine self mappings
on C, then Tµ is an affine self mapping on C,
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(g) let P be a self mappings on C that commutes with Ts ∈ S = {Ts : s ∈ S}
for each s ∈ S. Let the mapping t → 〈PTtx, x∗〉 be an element of X for
each x ∈ C and x∗ ∈ E. Then Tµ commutes with P ,

(h) let S = {Ts : s ∈ S} be a representation of S as quasi nonexpansive self
mappings on C, then Tµ is a Fix(S)-quasi nonexpansive self mapping on
C,

(i) let S = {Ts : s ∈ S} be a representation of S as F -quasi nonexpansive
self mappings on C (for a subset F ⊆ Fix(S)), then Tµ is an F -quasi
nonexpansive self mapping on C,

(j) let S = {Ts : s ∈ S} be a representation of S as strongly F -quasi non-
expansive self mappings on C (for a subset F ⊆ Fix(S)), then Tµ is an
strongly F -quasi nonexpansive self mapping on C,

(k) let S = {Ts : s ∈ S} be a representation of S as retraction self mappings
on C, then Tµ is a retraction self mapping on C,

(l) let E = H be a Hilbert space and S = {Ts : s ∈ S} be a representation of
S as monotone self mappings on H, then Tµ is a monotone self mapping
on H.

Proof. (a) Since S is a representation as uniformly asymptotically nonexpansive
self mappings on C, hence, from (0.3) and the part (b) of Theorem 3. 1. 7 in
[8], there exists an integer m0 ∈ N such that

sup
t
‖Tnt x− Tnt y‖ ≤ ‖x− y‖,

for all n ≥ m0, x, y ∈ C. Suppose that x∗1 ∈ J(Tnµ x− Tnµ y) and x, y ∈ C, where
J is the normalized duality mapping on E. We know from [3], see Lemma 1.1,
that for any µ ∈ X∗, there exists a unique element fµ in E such that

〈fµ, x∗〉 = µs 〈f(s), x∗〉 , (1.1)

for all x∗ ∈ E∗, where f is a function of S into E such that the weak closure of
{f(t) : t ∈ S} is weakly compact. Then from (1.1) we have

‖Tnµ x− Tnµ y‖2 =〈Tnµ x− Tnµ y, x∗1〉 = µt〈Tnt x− Tnt y, x∗1〉
≤ sup

t
‖Tnt x− Tnt y‖‖Tnµ x− Tnµ y‖

≤‖x− y‖‖Tnµ x− Tnµ y‖,
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and

‖Tnµ x− Tnµ y‖ ≤‖x− y‖,

for all n ≥ m0, x, y ∈ C. Therefore, we get

lim sup
n→∞

‖Tnµ x− Tnµ y‖ ≤ ‖x− y‖.

(b) Suppose that x ∈ Fix(S) and x∗ ∈ E∗. Hence

〈Tµx, x∗〉 = µt〈Ttx, x∗〉 = µt〈x, x∗〉 = 〈x, x∗〉.

(c) The assertion follows from Lemma 1.
(d) It follows from

〈Tµ(Tsx), x∗〉 = µt〈Ttsx, x∗〉 = µt〈Ttx, x∗〉 = 〈Tµx, x∗〉.

(e) Since a is a uniformly attractive point, hence, from (0.4) and from part
(b) of Theorem 3. 1. 7 in [8], for each x ∈ C there exists an integer m0 ∈ N such
that

sup
t
‖a− Tnt x‖ ≤ ‖a− x‖,

for all n ≥ m0. Suppose that x∗2 ∈ J(a− Tnµ x), therefore from (1.1) we have,

‖a− Tnµ x‖2 =〈a− Tnµ x, x∗2〉 = µt〈a− Tnt x, x∗2〉
≤ sup

t
‖a− Tnt x‖‖a− Tnµ x‖

≤‖a− x‖‖a− Tnµ x‖.

Hence,

‖a− Tnµ x‖ ≤‖a− x‖,

for all n ≥ m0. Thus, we get

lim sup
n→∞

‖a− Tnµ x‖ ≤ ‖a− x‖,

for each x ∈ C.
(f) If x∗1 ∈ E∗, then for all positive integers α, β and x, y ∈ C with α + β = 1,
we have

〈Tµ(αx+ βy), x∗1〉 =µt〈Tt(αx+ βy), x∗1〉
=µt〈αTtx+ βTty, x

∗
1〉

=αµt〈Ttx, x∗1〉+ βµt〈Tty, x∗1〉
=α〈Tµx, x∗1〉+ β〈Tµy, x∗1〉
=〈αTµx+ βTµy, x

∗
1〉,
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and so

Tµ(αx+ βy) = αTµx+ βTµy.

(g) Let x∗1 ∈ E∗. Then considering the functions f1, f2 : S −→ E, by f1(t) =
TtPx and f2(t) = PTtx and applying them in (1.1), then we have

µt〈TtPx, x∗1〉 = 〈f1(t), x∗1〉 = µt〈(f1)µ, x
∗
1〉 = 〈TµPx, x∗1〉

and

µt〈PTtx, x∗1〉 = 〈f2(t), x∗1〉 = µt〈(f2)µ, x
∗
1〉 = 〈PTµx, x∗1〉,

for each x ∈ C. Since P commutes with Tt ∈ S = {Tt : t ∈ S} for each s ∈ S,
we conclude that

〈TµPx, x∗1〉 =µt〈TtPx, x∗1〉
=µt〈PTtx, x∗1〉
=〈PTµx, x∗1〉,

therefore TµP = PTµ.
(h)SinceX is a subspace of l∞(S), 1 ∈ X and the mapping t→ 〈Ttx, x∗〉 is an

element of X for each x ∈ C and x∗ ∈ E, hence, the mapping t→ 〈Ttx− f, x∗〉
is an element of X for each x ∈ C, x∗ ∈ E and f ∈ Fix(S). For each t ∈ S, we
have

‖Ttx− f‖ ≤ ‖x− f‖,

for each f ∈ Fix(Tt) and x ∈ C.
Suppose f ∈ Fix(S) and x∗2 ∈ J(Tµx− f), then from (1.1), we have

‖Tµx− f‖2 =〈Tµx− f, x∗2〉 = µt〈Ttx− f, x∗2〉
≤ sup

t
‖Ttx− f‖‖Tµx− f‖

≤‖x− f‖‖Tµx− f‖.

Then

‖Tµx− f‖ ≤ ‖x− f‖,

and so Tµ is a Fix(S)-quasi nonexpansive self mapping on C.
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(i) Let S = {Ts : s ∈ S} be a representation of S as F -quasi nonexpansive
self mappings on C that F ⊆ Fix(S). Then for each t ∈ S, we have

‖Ttx− f‖ ≤ ‖x− f‖,

for each f ∈ F and x ∈ C. Suppose that f ∈ F , x ∈ C and x∗2 ∈ J(Tµx − f),
then, as in the proof of (h), from (1.1), we have

‖Tµx− f‖2 =〈Tµx− f, x∗2〉 = µt〈Ttx− f, x∗2〉
≤ sup

t
‖Ttx− f‖‖Tµx− f‖

≤‖x− f‖‖Tµx− f‖,

thus

‖Tµx− f‖ ≤ ‖x− f‖.

This means that Tµ is an F -quasi nonexpansive self mapping on C.
(j) Let S = {Ts : s ∈ S} be a representation of S as strongly F -quasi

nonexpansive self mappings on C such that F ⊆ Fix(S), then for each t ∈ S
we have

‖Ttx− f‖ < ‖x− f‖, ∀(x, f) ∈ C\F × F.

Suppose that f ∈ F , x ∈ C\F and x∗2 ∈ J(Tµx− f), then from (1.1), we have

‖Tµx− f‖2 =〈Tµx− f, x∗2〉 = µt〈Ttx− f, x∗2〉
≤ sup

t
‖Ttx− f‖‖Tµx− f‖

<‖x− f‖‖Tµx− f‖,

then we have

‖Tµx− f‖ < ‖x− f‖,

therefore Tµ is a strongly F -quasi nonexpansive self mapping on C.
(k) Since T 2

t = Tt and the mapping t → 〈Ttx, x∗〉 is an element of X for
each x ∈ C and x∗ ∈ E, hence the mapping t →

〈
T 2
t x, x

∗〉 is an element of X
for each x ∈ C and x∗ ∈ E. Suppose that x ∈ C and x∗1 ∈ E∗, then from (1.1),
we have

〈T 2
µx, x

∗
1〉 =µt〈T 2

t x, x
∗
1〉

=µt〈Ttx, x∗1〉
=〈Tµx, x∗1〉,

hence T 2
µ = Tµ.
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(l) Since Ts is monotone for every s ∈ S, then we have 〈Tsx−Tsy, x−y〉 ≥ 0
for every x, y ∈ H and s ∈ S. As in the proof of Theorem 1.4.1 in [13] we know
that µ is positive i.e., 〈µ, f〉 ≥ 0 for each f ∈ X that f ≥ 0 . Then for each
x, y ∈ H, from (1.1) we have

〈Tµx− Tµy, x− y〉 =µt〈Ttx− Tty, x− y〉 ≥ 0,

then Tµ is a monotone self mapping on H. QED

Now we present some properties of Tµ in locally convex spaces.

Theorem 4. Let S be a semigroup, E a locally convex space with predual
locally convex space D, U a convex neighbourhood of 0 in D and pU be the
Minkowski functional. Let f : S → E be a function such that

〈x, f(t)〉 ≤ 1,

for all t ∈ S and x ∈ U . Let X be a subspace of l∞(S) such that the mapping
t→ 〈x, f(t)〉 is an element of X, for each x ∈ D. Then, for any µ ∈ X∗, there
exists a unique element Fµ ∈ E such that

〈x, Fµ〉 = µt〈x, f(t)〉,

for each x ∈ D. Furthermore, if 1 ∈ X and µ is a mean on X, then Fµ is

contained in co{f(t) : t ∈ S}w
∗
.

Proof. We define Fµ by
〈x, Fµ〉 = µt〈x, f(t)〉,

for each x ∈ D. Obviously, Fµ is linear in x. Moreover it follows from Proposition
3.8 in [9] that

|〈x, Fµ〉| =|µt〈x, f(t)〉| ≤ sup
t
|〈x, f(t)〉|.‖µ‖ ≤ pU (x).‖µ‖, (1.2)

for all x ∈ D. Assume that (xα) is a net in D that converges to x0. Then by
(1.2) we have

|〈xα, Fµ〉 − 〈x0, Fµ〉| = |〈xα − x0, Fµ〉| ≤ pU (xα − x0).‖µ‖,

taking limit and using the continuity (see Theorem 3.7 in [9]) of pU , we get Fµ
is continuous on D and so Fµ ∈ E.

Now, let 1 ∈ X and µ be a mean on X. Then, there exists a net {µα}I of
finite means on X such that {µα}I converges to µ with the weak∗ topology on
X∗. For each α, we may consider that

µα =

nα∑
i=1

λα,iδtα,i ,
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such that λα,i ≥ 0 for each i = 1, · · · , nα and

nα∑
i=1

λα,i = 1. Therefore,

〈x, Fµα〉 = (µα)t〈x, f(t)〉 = 〈x,
nα∑
i=1

λα,if(tα,i)〉,

for each x ∈ D and α ∈ I. Then we have

Fµα =

nα∑
i=1

λα,if(tα,i) ∈ co{f(t) : t ∈ S}.

Also

〈x, Fµα〉 = (µα)t〈x, f(t)〉 → µt〈x, f(t)〉 = 〈x, Fµ〉,

for each x ∈ D, therefore {Fµα} converges to Fµ in the weak∗ topology and

Fµ ∈ co{f(t) : t ∈ S}w
∗
,

we can write Fµ by
∫
f(t)dµ(t). QED

In the next we show that Tµ inherits some properties of the representation
S in locally convex spaces.

Theorem 5. Let S be a semigroup, C a closed convex subset of the locally
convex space E. Let G = (V (G), E(G)) be a directed graph such that V (G) = C,
B a base at 0 for the topology E which consists of convex and balanced sets. Let
Q = {qV : V ∈ B} where qV is the associated Minkowski functional with V . Let
S = {Ts : s ∈ S} be a representation of S as Q-G-nonexpansive mappings from
C into itself and X be a subspace of B(S) with 1 ∈ X and µ be a mean on X
such that the mapping t → 〈Ttx, x∗〉 is an element of X for each x ∈ C and
x∗ ∈ E∗. If we write Tµx instead of

∫
Ttx dµ(t), then the following facts hold:

(i) Tµ is a Q-G-nonexpansive mapping from C into C.

(ii) Tµx = x for each x ∈ Fix(S).

(iii) If the dual of E is a locally convex space with predual locally convex space
D and C a w∗-closed convex subset of E and U a convex neighbourhood
of 0 in D and pU is the associated Minkowski functional. Let the mapping
t→ 〈z, Ttx〉 be an element of X for each x ∈ C and z ∈ D, then

Tµx ∈ co {Ttx : t ∈ S}w
∗
.
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(iv) if X is rs-invariant for each s ∈ S and µ is right invariant, then

TµTt = Tµ,

for each t ∈ S.

(v) let a ∈ E be a Q-G-attractive point of S and the mapping t→ 〈a− Ttx, x∗〉
be an element of X for each x ∈ C and x∗ ∈ E, then a is a Q-G-attractive
point of Tµ.

Proof. (i) Let x, y ∈ C and V ∈ B. By Proposition 3.33 in [9], the topology on
E induced by Q is the original topology on E. By Theorem 3.7 in [9], qV is a
continuous seminorm and from Theorem 1.36 in [8], qV is a nonzero seminorm
because if x /∈ V then qV (x) ≥ 1, hence from Theorem 2, there exists a functional
x∗V ∈ X∗ such that

qV (Tµx− Tµy) = 〈Tµx− Tµy, x∗V 〉,

and q∗V (x∗V ) = 1. Also from Theorem 3.7 in [9], qV (z) ≤ 1 for each z ∈ V .

We conclude that 〈z, x∗V 〉 ≤ 1 for all z ∈ V . Therefore from Theorem 3.8
in [9], 〈z, x∗V 〉 ≤ qV (z) for all z ∈ E. Hence for each t ∈ S, x, y ∈ C that
(x, y) ∈ E(G) and x∗ ∈ E∗, from (1.1), we have

qV (Tµx− Tµy) =〈Tµx− Tµy, x∗V 〉 = µt〈Ttx− Tty, x∗V 〉
≤‖µ‖ sup

t
|〈Ttx− Tty, x∗V 〉|

≤ sup
t
qV (Ttx− Tty)

≤qV (x− y),

then we have

qV (Tµx− Tµy) ≤qV (x− y),

for all V ∈ B.

(ii) Let x ∈ Fix(S) and x∗ ∈ E∗. Then we have

〈Tµx, x∗〉 = µt〈Ttx, x∗〉 = µt〈x, x∗〉 = 〈x, x∗〉.

(iii) The assertion follows from Theorem 4.

(iv) This part obtains from the following equalities:

〈Tµ(Tsx), x∗〉 = µt〈Ttsx, x∗〉 = µt〈Ttx, x∗〉 = 〈Tµx, x∗〉.
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(v) Let x ∈ C and V ∈ B. From Theorem 2, there exists a linear functional
x∗V ∈ X∗ such that

qV (a− Tµx) = 〈a− Tµx, x∗V 〉,

and q∗V (x∗V ) = 1. It follows from [9, Theorem 3.7] that qV (z) ≤ 1 and 〈z, x∗V 〉 ≤ 1,
for each z ∈ V . Therefore Theorem 3.8 in [9] implies

〈z, x∗V 〉 ≤ qV (z),

for each z ∈ E. Then by applying (1.1) and for each t ∈ S and x, y ∈ C that
(x, y) ∈ E(G) and x∗ ∈ E∗, we have

qV (a− Tµx) =〈a− Tµx, x∗V 〉 = µt〈a− Ttx, x∗V 〉
≤‖µ‖ sup

t
|〈a− Ttx, x∗V 〉|

≤ sup
t
qV (a− Ttx)

≤qV (a− x),

and

qV (a− Tµx) ≤qV (a− x),

for all V ∈ B. QED

2 Conclusion

In this paper, we prove that some properties of the mapping in the rep-
resentation S = {Ts : s ∈ S} can be transferred to the mapping Tµ in-
troduced by a mean on a subspace of B(S), for example nonexpansiveness,
quasi-nonexpansiveness, strongly quasi-nonexpansiveness, monotonicity, retrac-
tion property and another properties in Banach spaces, and Q-G-nonexpansive-
ness using a directed graph in locally convex spaces.
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