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Abstract. In this paper, sets of points of PG(3, q) of size q2 + q + 1 and intersecting every
plane in 1, m or n points are studied.
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1 Introduction

In finite geometry, there are many papers devoted to the characterizater-
ization of special subsets of points of projective spaces, such as e.g. quadrics,
hermitian varieties and subgeometries, having few intersection sizes with respect
to all the subspaces of a prescribed family of subspaces,

Recently, we can find some papers containing characterizations of quadratic
cones as subsets of points of PG(3, q) of size q2 +q+1, q odd, with exactly three
intersections sizes with respect to the planes and satisfying some extra condition
(cf [2, 4, 6, 3]). In [5], within this approach, the authors give new characteri-
zations of (ovoids and) cones projecting an oval of a plane π from a point V
not in π in PG(3, q), q = ph, with an assumption on the integer h and they
conclude pointing out that certain extra assumptions in such characterizations
are essential.

Starting from these conclusions, in this paper we study subsets of points of
PG(3, q) of size q2 +q+1 having exactly three intersection sizes with the planes
of PG(3, q) and containing at least one line.

A quadratic cone of PG(3, q) has size q2 +q+1, intersects every plane of the
projective space in 1, q + 1 or 2q + 1 points and contains q + 1 lines. Examples
1 and 2 show that there are sets of points of PG(3, q) containing at least one
line, with the same size as a quadratic cone and intersecting every plane in 1,
q + 1 or 2q + 1 wich are not cones.
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Let P a projective space of dimension r and let h ≤ r and 0 ≤ m1 < · · · < ms

be s+ 1 non–negative integers. We recall [7] that a subset K of points of P is of
class [m1, . . . ,ms]h with respect to the dimension h if |π∩K| ∈ {m1, . . . ,ms} for
every h–dimensional subspace π of P. The set K is of type (m1, . . . ,ms)h with
respect to the dimension h if for every mi, i = 1, . . . , s (intersection numbers)
there exists at least one h–dimensional subspace π such that |π∩K| = mi. When
h = 1, 2 the set K is of line(respectively plane)–class (or type). As costumary,
a k–set is a set of size k, and a plane (line) intersecting K in i points is called
i–plane (i–line). For i = 1 the line or the plane are called tangent. A secant line
is an i–line with 2 ≤ i ≤ q. Throughout the paper, let ci (bi) denote the number
of i–planes (i–lines).

The next examples show that there are (q2 +q+1)–sets of plane type (1, q+
1, 2q+ 1)2 and containing exactly one line wich are not cones projecting an oval
of a plane of the space.

Example 1. Let C(V,Γ) a cone projecting an oval Γ from a point V not in
Γ, and let ` be a generator of C(V,Γ). Let K′ = C(V,Γ) \ `. It is a set of points
of PG(3, q) of size q2 and of plane–type (0, q, 2q). Let L be an external line to
C(V,Γ) and let K = K′ ∪ L. The set K has size q2 + q + 1 contains exactly one
line and is of plane–type (1, q + 1, 2q + 1)2.

Example 2. Let C(V,Γ), ` and K′ as in the above example. Let L be a
tangent line at V to C(V,Γ) and let K = K′ ∪ L. The set K has size q2 + q + 1
contains exactly one line and is of plane–type (1, q + 1, 2q + 1)2.

In this paper we prove the following two theorems.

Theorem 1. Let K be a (q2 + q + 1)–set of plane type (1,m, n)2 containing
at least one line. Then m = q + 1, and there exists an integer r ≥ 2 such that

n = rq+1, (r−1)|q and r|q(q+1). The number of tangent planes is c1 ≤
q(q − 1)

2
and the equality occurs if and only if r = 2 and either K is a cone projecting an
oval of a plane π from a point V not in π or K contains exactly one line ` and
K = `∪K′, with K′ a q2–set of plane–type (0, q, 2q)2 (examples of such sets are
described in Examples 1 and 2) .

Theorem 2. Let K be a (q2 + q+ 1)–set of plane type (1, q+ 1, rq+ 1)2, r ≥ 2,
containing at least two lines. Then K is a cone projecting a (q + 1)–set X of
line–type (0, 1, r)1 of a plane π from a point V not in π.

Thus, when r = 2 by the results in [3] the set K is a cone projecting an oval
of a plane π from a point V not in π .
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Note that, the set X of the above Theorem 2 together with the r–secant
lines is a Steiner system and so the existence of such sets K, for r ≥ 3, is related
to the embeddability of a Steiner system in a projective plane (cf e.g. [1]).

We end this section, by remarking that we have only considered (q2 +q+1)–
sets of points of PG(3, q) of plane type (1,m, n)2 and not those of plane–class
[1,m, n]2, since as remarked in [6] a (q2 + q + 1)–set of class [1,m, n]2 is either
a plane or of type (1,m, n)2.

2 Proof of Theorems 1 and 2

Let K be a set of points of PG(3, q) of size q2 +q+1 of plane–type (1,m, n)2

and containing at least one line, say `.

If on ` there are only n–planes then q2 + q + 1 = q + 1 + (q + 1)(n− q − 1)
and so (q+ 1)|q2, a contradiction. Thus on ` there are m–planes, it follows that
m ≥ q + 1.

Similarly, if on ` there are only m–planes then m ≥ q + 2 and q2 + q + 1 =
q + 1 + (q + 1)(m− q − 1), again a contradiction.

Moreover, from q2 + q + 1 ≤ (q + 1) + (q + 1)(n − q − 1) it follows that
n ≥ 2q + 1.

Proposition 1. If K is a (q2 +q+1)–set of plane–type (1,m, n)2 containing
at least one line, then m = q+1 and there exists an integer r such that n = rq+1,

(r − 1)|q and every line contained in K belongs to exactly
q

r − 1
n–planes.

PROOF. Let ` be a line contained in K and let p be a point of K not in `. Since
k = q2 + q + 1 we have that on p there is at least one tangent line.

Let t be a tangent line (skew with `), counting the number of points K via
the planes on t gives

q2 + q + 1 = k ≥ 1 + (q + 1)(m− 1)

and so m = q + 1.

Let x be the number of n–planes on `, counting the number of points of K
via the planes on ` we get

q2 + q + 1 = q + 1 + x(n− (q + 1))

and so n− (q + 1) divides q2.

Let q = ph then n− (q+1) = ps with e ≤ 2h. But ph+ps+1 = n ≥ 2q+1 =
2ph + 1 implies s ≥ h.
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Write n = ph(ps−h + 1) + 1 and put r := ps−h + 1, thus n = rq + 1 and

x =
q2

n− q − 1
=

q

r − 1
.

So, any line contained in K belongs to exactly
q

r − 1
n–planes. QED

Proposition 2. Let K be a (q2 + q+ 1)–set of plane–type (1, q+ 1, rq+ 1)2

containing at least one line , with r ≥ 2 defined as above, then

c1 =
q(q + 1)

r
− q, cq+1 = q3 + q2 + 2q + 1− q(q + 1)

r − 1
and cn =

q(q + 1)

r(r − 1)
.

PROOF. Let p be a point of K not in `, on p there is no tangent plane. Let σp
and τp denote the number of m–planes and n–planes on p, respectively. Then,
σp + τp = q2 + q + 1.

Consider the set of pairs {((p, x), π), x 6= p, x ∈ K, x, p ∈ π}. Double counting
give

q(q + 1)2 = σp · q + τp · (rq + 1− 1) =

= σp · q + (q2 + q + 1− σp)rq = −σp · q(r − 1) + rq(q2 + q + 1).

So,

q2 + 2q + 1 = −σp · (r − 1) + r(q2 + q + 1)

σp · (r − 1) = (r − 1)q2 + (r − 1)q + r − 1− q

σp = q2 + q + 1− q

r − 1

It follows that any point p ∈ K \ ` belongs to exactly
q

r − 1
n–planes.

Again double counting give

q2 q

r − 1
=

q

r − 1
(r − 1)q + (cn −

q

r − 1
)(rq)

q2

r − 1
= q + cnr −

rq

r − 1

q2 − rq + q + rq

r − 1
= cnr

cn =
q(q + 1)

r(r − 1)
.

A similar counting argument shows that
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cq+1 = q3 + q2 + 2q + 1− q(q + 1)

r − 1
.

And so, c1 =
q(q + 1)

r
− q. QED

In order to complete the proofs of theorems 1 and 2 we distinguish two cases.

2.1 K has the maximum number of tangent planes.

Being r ≥ 2 one gets

c1 =
q(q + 1)

r
− q ≤ q(q − 1)

2

and the equality holds if and only if r = 2 and so K is a (q2 + q + 1)–set of
plane–type (1, q + 1, 2q + 1)2.

By the results in [3] it follows that if K contains at least two lines it is a
cone projecting an oval of a plane π from a point V not in π.

Thus, we may assume that ` is the unique line contained in K. Let K′ = K\`.
Planes through ` are either (q + 1)–planes or (2q + 1)–planes, so they intersect
K′ in either 0 or q points. Planes not through ` intersect K in either 1 or q+1 or
2q+1 points and so they intersect K′ in either 0 or q or 2q points. It follows that
K′ is a set of q2 points of plane–type (0, q, 2q)2. A set of this type is described
in Example 1

2.2 K contains at least two lines

Throughout this section, let ` and m denote two lines contained in K. Since
through a line contained in K there is at least one (q+ 1)–plane, it follows that
the two lines ` and m interset each other in one point, say V .

Since there are tangent planes it follows that external lines to K do exist.

Proposition 3. Let K be a (q2 + q+ 1)–set of plane–type (1, q+ 1, rq+ 1)2

containing at least two lines. Any line external to K belongs to exactly one
tangent plane and q (q + 1)–planes.

PROOF. Let `0 be a line external to K. Being `0 skew with both ` and m,
it belongs to at most one tangent plane (which has to contain V ) and so the
assertion follows by counting as usual the size of K via the planes on `0. QED

On each point of K there is at least one tangent line, let t be a tangent line
not through V . Since through t there is no tangent plane, it follows that all the
planes containing t are (q + 1)–planes.
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Let π be a (q + 1)–plane not containing V , let p be a point of π ∩ K and t
be a tangent line through p contained in π. The plane 〈V, t〉 is a (q + 1)–plane
and it does not contain an external line. Namely this is true if 〈V, t〉 contains `
or m. So we may assume that it does contain neither ` nor m. Since any line
of 〈V, t〉 belongs to planes intersecting both ` and m by Proposition 3 it follows
that no line in 〈V, t〉 may be an external one. So, the set 〈V, t〉∩K is a (q+1)–set
intersected by every line of 〈V, t〉 and so it is necessarily a line.

It follows that for any point p ∈ π ∩ K the line V p is a line contained in K
and so K is the set of points contained in the set union of the lines pV with
p ∈ π ∩ K.

Thus, there is no (rq+1)–plane outside V , each one of these planes contains r
lines contained in K and passing through V and so the lines of PG(3, q) intersect
K in 0, 1, r and q + 1 points. This proves Theorem 2.

References

[1] L.M. Batten, Minimally Projectively Embeddable Steiner Systems, Discrete Math. 77
(1989), 21–27.

[2] E. De Bernardinis, A note on a characterization of a quadric cone, Journal of Interdisci-
plinary Mathematics 20 (2017), 1711-1714.

[3] N. Durante, V. Napolitano and D. Olanda, On quadrics of PG(3, q), Quaderni di Matem-
atica ( ARACNE – Rome) 19 (2010), 67–75.

[4] S. Ferri, On some (l,m, n)–type sets of PG(3, q), Journal of Discrete Mathematical Sci-
ences and Cryptography, 5 (2002), 227–230.

[5] S. Innamorati, M. Zannetti, In PG(3, p2
h

) any (p2
h+1

+1)–set of class [0,m, n]1 is an ovoid

and any (p2
h+1

+ p2
h

+ 1)–set of class [1,m, n]2 containing at least two lines is either a
plane or a cone projecting an oval from a point, Journal of Combinatorial Mathematics
and Combinatorial Computing 110 (2019), pp. 103–108.

[6] V. Napolitano, On (q2 + q + 1)–sets of class [1,m, n]2 in PG(3, q), J. Geom. 105 (2014),
449–455.

[7] V. Napolitano, A characterization of the Hermitian variety in finite 3-dimensional pro-
jective spaces, The Electronic Journal of Combinatorics 22 (1) (2015), 1–22.


