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Abstract. In the present paper, we investigate the commutativity of a prime Banach algebra
with skew derivations and prove that if A is prime Banach algebra and A has a nonzero
continuous linear skew derivation F from A to A such that [F(xm),F(yn)] − [xm, yn] ∈ Z(A)
for an integers m = m(x, y) > 1 and n = n(x, y) > 1 and sufficiently many x, y, then A is
commutative.
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Introduction

Several theorems in ring theory, mostly due to Herstein, are devoted to
showing that certain rings must be commutative as a consequence of conditions
which are seemingly too weak to imply commutativity. Consider the following
theorem of Herstein [9, p 412] which states that a ring R is commutative if for
each x and y ∈ R there is a positive integer n(x, y) > 1 such that xn(x,y) − x
permutes with y.

This research is motivated by the work of Ali and Khan [1] and Yood [16].
Throughout this manuscript A represents a Banach algebra over the complex
field, Z(A) denote the center of A and M be a closed linear subspace of A.
Recall that an algebra A is said to be prime if for any a, b ∈ A, aAb = (0)
implies that a = 0 or b = 0, and A is semiprime if for any a ∈ A, aAa = (0)
implies a = 0. We shall use several times the readily fact. Let p(t) =

∑n
r=0 brt

r

be a polynomial in the real variable t with coefficients in A. If p(t) ∈M for all
t in an infinite subset of the reals, then every br lies in M . A linear map F of A
into itself is called a linear derivation if F(xy) = F(x)y + xF(y) for all x, y ∈ A.
Let σ be an automorphism of A. A linear map F : A → A is called a linear
skew-derivation if F(xy) = F(x)y + σ(x)F(y) for all x, y ∈ A. When σ = IA on
A, linear skew-derivation is simply an ordinary linear derivation. For σ 6= IA,
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the example of linear skew-derivation is the map IA − σ, where IA denoted the
identity automorphism of A. Thus, the results on linear skew-derivations are
the generalizations of both linear derivations and automorphisms.

The problems of characterizing maps that preserve certain subsets or rela-
tions had been investigated on various rings and algebras. In [2] Bell and Daif
initiated the study of a certain kind of commutativity preserving map as follows:
”Let S be a subset of a ring R. A map f : S → R is called strong commutativity
preserving (SCP) on S if [f(x), f(y)] = [x, y] for all x, y ∈ S.” More precisely,
they proved that R must be commutative if R is a prime ring and R admits
derivation or a non-identity endomorphism which is SCP on right ideal of R.
Later, Bres̆ar and Miers [4] studied additive strong commutativity preserving
maps on semiprime rings and characterized an additive map f : R → R which
is SCP on the entire semiprime ring R and showed that f must be of the form
f(x) = λx + ν(x), which λ ∈ C, λ2 = 1 and ν : R → C is an additive map,
where C is the extended centroid of R. In 2008, Lin and Liu [14] discussed
the strong commutativity preserving maps on Lie ideals of prime rings. Many
authors have studied the strong commutativity preserving map in the setting
of rings and algebras. Our results on commutativity of Banach algebras take a
different direction. In [7, 8], Herstein proved that ”a ring R is commutative if
it has no nonzero nilpotent ideal and there is a fixed integer n > 1 such that
(xy)n = xnyn for all x, y ∈ R.” In the case of Banach algebras, Yood [17] proved
these results. More precisely, he proved the following result:

Theorem 1. Suppose that there are nonempty open subsets G1 and G2 of
A such that for each x ∈ G1 and y ∈ G2 there is an integer n = n(x, y) > 1
where either (xy)n − xnyn or (xy)n − ynxn lies in M . Then [x, y] ∈ M for all
x, y ∈ A

Motivated by the work of Ali and Khan [1] and Yood [16, 17, 18], in the
present paper our aim is to explore strong commutativity preserving skew-
derivation on Banach algebras.

1 Main Results

We begin with the following result due to Lin and Liu [14] which is essential
for developing the proof of our main result.

Lemma 1. [14, Corollary 1.4.] Let R be a prime ring, L a Lie ideal of R
and F a nonzero σ-derivation of R. Suppose that [F(x),F(y)]− [x, y] ∈ Z(R) for
all x, y ∈ L. Then R ⊆ Z(R) unless char R = 2 and R satisfies the standard
identity of degree 4.
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Before proving our main theorem, we prove the following key theorem.

Theorem 2. Let R be a prime ring with characteristic different from two.
If R admits a skew derivation F satisfies [F(xm),F(yn)] − [xm, yn] ∈ Z(R) for
all x, y ∈ R, where m and n are fixed positive integers, then R is commutative.

Proof. We have

[F(xm),F(yn)]− [xm, yn] ∈ Z(R) for all x, y ∈ R.

If F = 0, then [xm, yn] ∈ Z(R) for all x, y ∈ R. For m,n = 1, R is obviously
commutative. If m > 1 and n = 1 or n > 1 and m = 1, then by [15, Lemma 1], R
has no nonzero nilpotent elements and hence [11, Theorem 1], R is commutative
and for m,n > 1 by [6, Theorem 1.1], R is commutative. Now we assume that
F 6= 0.
Let δ1 be the additive subgroup generated by the subset {rm|r ∈ R} and δ2 the
additive subgroup generated by the subset {rn|r ∈ R}. It is easy to show that

[F(x),F(y)]− [x, y] ∈ Z(R) for all x ∈ δ1, y ∈ δ2. (1.1)

In the light of main theorem in [5] either δ1 have a non-central Lie ideal L1 or
rm ∈ R for all r ∈ R. The later case concludes R is commutative. Similarly,
assume that there exists a non-central Lie ideal L2 of R, which is contained in
δ2. Moreover, by [10, page 4-5], there exist L1 and L2 ideals of R, such that
0 6= [L1,R] ⊆ L1 and 0 6= [L2,R] ⊆ L2. Hence, we have

[F(x),F(y)]− [x, y] ∈ Z(R), (1.2)

for each x ∈ [L1,L1] and y ∈ [L2,L2]. Since L1,L2 and R satisfy the same
differential identities [13, Theorem 3], the we have

[F(x),F(y)]− [x, y] ∈ Z(R)

for each x, y ∈ [R,R]. Hence, application of Lemma 1 we find that [R,R] ⊆ Z(R)
that is, R is commutative.

Theorem 3. Let A be a prime Banach algebra and F be a continuous linear
skew derivation. Suppose that there are non-empty open subsets G1 and G2 of
A such that [F(xm),F(yn)]− [xm, yn] ∈ Z(A) for each x ∈ G1 and y ∈ G2. Then
A is commutative.

Proof. We adopt the notation

λ(x, y,m, n) = [F(xm),F(yn)]− [xm, yn].
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If F = 0, then [xm, yn] ∈ Z(A) for all x ∈ G1 and y ∈ G2. Then by [18,
Theorem 2], A is commutative. Now we assume that F 6= 0 and for fix x ∈ G1.
For each m and n, we define the set

Φm,n = {y ∈ A|λ(x, y,m, n) 6∈ Z(A)}.

We claim that each Φm,n is open in A. To show Φm,n is open we have to show
ΦC
m,n, the complement of Φm,n is closed. For this we take a sequence (zk) ∈ ΦC

m,n,

such that zk → z as k → ∞, we need to show that z ∈ ΦC
m,n. Since zk ∈ ΦC

m,n,
then

[F(xm),F(znk)]− [xm, znk ] ∈ Z(A). (1.3)

Taking limit on k, we obtain

lim
k→∞

([F(xm),F(znk)]− [xm, znk ]) ∈ Z(A) (1.4)

Since F is continuous, the last expression yields that

[F(xm),F( lim
k→∞

(znk))]− [xm, lim
k→∞

(znk)] = [F(xm),F(zn)]− [xm, zn] ∈ Z(A).

This implies that z ∈ ΦC
m,n, therefore ΦC

m,n is closed and hence each Φm,n is
open. If Φm,n is dense in A then, by the Baire category theorem, ∩{Φm,n} is
also dense. But this would contradict the existence of G2. Therefore for some
integers r = r(x) > 1 and s = s(x) > 1, the set Θr,s is not dense. Let Γ be a
non-empty open set in the compliment of Θr,s, and q ∈ Γ. Take w ∈ A. For all
real t sufficiently small, q + tw ∈ Γ, so λ(x, q + tw, r, s) ∈ Z(A) for each such t.

[F(x)r,F(q + tw)s]− [xr, (q + tw)s] ∈ Z(A).

The above expression can be written as

[F(xr),Cs,0(q,w)]− [xr,Bs,0(q,w)]
+([F(xr),Cs−1,1(q,w)]− [xr),Bs−1,1(q,w)])t

+ · · · · · · + · · · · · ·

+([F(xr),C1,s−1(q,w)]− [xr),B1,s−a(q,w)])ts−1

+([F(xr),C0,s(q,w)]− [xr),B0,s(q,w)])ts,

where Cσ,τ (q,w) denotes the sum of all terms in which q appears exactly σ times
and w appears exactly τ times in the expansion of (q+ tw)s, where σ and τ are
nonnegative integers such that s = σ+ τ . The coefficient of ts in the polynomial
expansions of [F(xr),F(ws)] − [xr,ws]. Therefore we obtain λ(x,w, r, s) ∈ Z(A).
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Therefore for x ∈ G1 there are positive integers r, s depending on w such that
for each w ∈ A, λ(x,w, r, s) ∈ Z(A).

Next we show that for each y ∈ A there are integers M = M(y) > 1 and
N = N(y) > 1 such that for each u ∈ A λ(u, y,M,N) ∈ Z(A). Fix y ∈ A. For
each positive integers k, l, set

Qk,l = {u ∈ A|λ(u, y, k, l) 6∈ Z(A)}.

Each Qk,l is open. If each Qk,l is dense then, by the Baire category theorem,
so is ∩{Qk,l}. But this is contrary to what was shown earlier concerning the
open set G1. Hence there are integers M > 1 and N > 1 and a nonempty
open set Ω in the QCM,N. Let v ∈ Ω and h ∈ A. For all real t sufficiently small
λ(v+ th), y,M,N) ∈ Z(A). Arguing as above, we see that λ(h, y,M,N) ∈ Z(A)
for each h ∈ A.

Now consider ∆p,q, p > 1 and q > 1, be the set of y ∈ A such that for each
w ∈ A [F(wp),F(yq)]− [wp, yq] ∈ Z(A). But what we have shown, the union of
the sets ∆p,q is A. It is easy to see that ∆p,q is closed. Again, by Baire cate-
gory theorem, some ∆p1,q1 , p1, q1 > 1, must have a nonempty open subset η. For
z ∈ A, y0 ∈ η and all sufficiently small real t, λ(w, (y0+tz), p1, q1) ∈ Z(A). Hence
by earlier arguments, we see that for each w, z ∈ A, we have λ(w, z, r, s) ∈ Z(A)
that is [F(wr),F(zs)]− [wr, zs] ∈ Z(A), then, by Theorem 2, A is commutative.

As an immediate consequence of Theorem 3 is the following corollary.

Corollary 1. Let A be a prime Banach algebra and F be a continuous
linear derivation. Suppose that there are non-empty open subsets G1 and G2 of
A such that [F(xm),F(yn)]− [xm, yn] ∈ Z(A) for each x ∈ G1 and y ∈ G2. Then
A is commutative.

Now, we conclude with the following Example.

Example 1. Let C be the field of complex numbers, let

M =

{(
x y
z w

)
|x, y, z, w ∈ C

}
be a noncommutative unital prime algebra of all 2× 2 matrices over C with the
usual matrix addition, and define matrix multiplication as follows: A×lB = lAB

for all A,B ∈ M where l =

(
λ 0
0 λ

)
and |λ| > 1. For A = (µij) ∈ M, define

||A|| = maxl
∑2

i=1 |µij |. Then M is a normed linear space. Now, define a map
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F : M→M by

F

(
x y
z w

)
=

(
0 y
z 0

)
,

and

α

(
x y
z w

)
=

(
x −y
−z w

)
for every

(
x y
z w

)
∈ M. Since M is finite-dimensional, it is easily verify that

F is a nonzero skew derivation associated with α-derivation on M. observe that

G1 =

{(
eit 0
0 e−it

)
|t ∈ R

}
and G2 =

{(
e−it 0
0 eit

)
|t ∈ R

}
.

are open subsets of M such that [F(Am),F(Bn)]−[Am,Bn] ∈ Z(A) for all A ∈ G1

and B ∈ G2. Hence,it follows from Theorem 3 that M is not a Banach algebra
under the defined norm.
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