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Introduction

We work in the Euclidean space Rn (n ≥ 2). We denote by Ω a bounded
non-tangentially accessible (NTA for short) domain (see definition in [15]). In
this paper we study the existence, the uniqueness and a sharp estimate of a
positive continuous solution of the nonlinear elliptic problem{

∆v(x) + ψ(x, v(x)) = 0, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,
(0.1)

where ψ is required to satisfy some appropriate hypothesis related to a func-
tional class. The existence results of problem (0.1) have been extensively stud-
ied for the special nonlinearity ψ(x, t) = p(x) q(t), for both bounded and un-
bounded domains in Rn (n ≥ 2) with smooth compact boundary (see for ex-
ample [4, 8, 9, 10, 12, 13, 14, 18]). In [14] Edelson studied (0.1) in R2, when
ψ(x, t) = p(x)t−γ , 0 < γ < 1. He proved the existence of an entire positive
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solution with the growth ln|.| near infinity. This result is generalized later by
Zeddini in [29], he studied (0.1) in D = {x ∈ R2 : |x| > 1}, and he proved
the existence of positive solutions with the same growth as ln|.| near infinity. In
[2] Ben Boubaker and Gharbi studied (0.1) on NTA-cones in Rn(n ≥ 3). They
study the existence, the uniqueness and the asymptotic behavior of positive
solutions. In [10] Crandall, Rabinowitz and Tatar studied (0.1) on a bounded
open domain, where they proved the existence of solutions, and continuity prop-
erties of the solutions if ψ(x, t) does not depend on x, by using the method of
sub- and supersolutions. Lazer and MacKenna [20] also dealt the problem (0.1),
when ψ(x, t) = p(x)t−γ , γ > 0 on a bounded open domain, with p a continuous
function, proving existence and regularity results at the boundary for the solu-
tions. In [18], Lair and Shaker proved the result of [20] in Rn (n ≥ 3). These
results were generalized later by Lair and Shaker in [19]. They studied (0.1) on a
bounded smooth domain when ψ(x, t) = p(x) q(t), q is a positive non-increasing
and differentiable function on ]0,+∞[ which is integrable near 0. They proved
that the problem (0.1) has a unique weak positive solution v ∈ H1

0 (Ω), provided
that q is a nontrivial, nonnegative L2(Ω) function. In [6] Canino, Grandinetti
and Sciunzi studied (0.1) on a bounded smooth domain of Rn (n ≥ 1). They
considered a jumping problem for singular elliptic equations, by using trunca-
tion argument and exploiting minimax methods they proved the existence of
solutions to the truncated problem. In [4] Boccardo and Orsina studied (0.1)
when ψ(x, t) = p(x)t−γ , γ > 0 on a bounded open set of Rn (n ≥ 2), with p
is a nonnegative function. They proved existence, regularity and non existence
results which depend on the summability of p in some Lebesgue spaces, and on
the value of γ. Recently in [8] Canino and Sciunzi prove the uniqueness of the
solution for the problem studied by Boccardo and Orsina in [4]. Yet recently in
[9] Carmona and Martinez-Aparicio studied (0.1) when ψ(x, t) = p(x) t−γ(x) on
an open bounded set of Rn (n ≥ 2), with γ(x) is a positive continuous function
and p is a positive function that belongs to a certain Lebesgue space. Inspired by
[4], they proved existence results for the problem (0.1). In [28] Wang, Zhao and
Zhang studied (0.1), when ψ(x, t) = λtβ+p(x)t−γ in a bounded smooth domain
Ω, with 1 < β, 0 < γ < 1 and p ∈ Cα0 (Ω) (0 < α < 1). They proved that (0.1)
has at least two positive solutions. In [7] Canino, Montoro and Sciunzi studied
(0.1) in a bounded smooth domain of Rn (n ≥ 1), when ψ(x, t) = 1

tγ + f(x, t),
γ > 0 and f is a carathéodory function which is uniformly locally Lipschitz
continuous with respect to the second variable. They proved symmetry and
monotonicity properties of the solutions under general assumptions on the non-
linearity. In [5] Canino, Esposito and Sciunzi studied (0.1) in a bounded C2,α

domain of Rn, with 0 < α < 1, n ≥ 1. They proved a Höpf type boundary
lemma via a suitable scaling argument that allows to deal with the lack of reg-
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ularity of the solutions up to the boundary. Thus, our aim in this paper is to
extend the results of [13, 14, 12, 29] and [28] to a more general problem on
bounded non-smooth domains in Rn, n ≥ 2. Moreover we give sharp estimates
for the solutions. In order to establish our results we are required to use technical
methods, we apply sharp estimates for the Green’s function and 3-G inequalities
established by Ben Boubaker and Selmi in [3], Hirata in [17], Hansen in [15] and
Riahi in [26]. Let z0 be a fixed point in Ω. By G, we denote the Green function
for the Laplacian in Ω and by g = min(1, G(., z0)).

Definition 1 (Kato class). (see [25], p.61)
A Borel measurable function q on Ω belongs to the Kato class K(Ω) if

lim
r−→0

sup
x∈Ω

∫
Ω∩(|x−y|<r)

g(y)

g(x)
G(x, y) |q(y)| dy = 0. (0.2)

The following hypothesis on ψ are adopted :

(H1) ψ : Ω × (0,∞) −→ [0,+∞), is a Borel measurable function which is
continuous and nonincreasing with respect to the second variable .

(H2) The function ψ(., c) belongs to the Kato class K(Ω), for every c > 0.

(H3) The function V (ψ(., c)) is strictly positive for every c > 0.
Where V is the potential kernel associated to ∆ (i.e. V = (−∆)−1).

The following notations will be adopted:

i) Let f and h be two positive functions on Ω. We say that f is comparable
to h on Ω and we denote f ' h, if there exists C ≥ 1, such that ∀x ∈ Ω,
1

C
h(x) ≤ f(x) ≤ C h(x).

ii) B(x, r) denotes the open ball of center x and radius r.

iii) B(Ω) be the set of Borel measurable functions in Ω and B+(Ω) be the set
of non-negative one.

iv) C0(Ω) will denote the set of continuous functions in Ω vanishing on ∂Ω.

v) We denote by δ(x) (respectively d), the distance from x to ∂Ω for all x ∈ Ω
(respectively the diameter of Ω).

vi) By the symbol C, we denote an absolute positive constant whose value is
unimportant and may change from line to line.

vii) For two constants a, b ∈ R, we denote a ∨ b = max(a, b) and a ∧ b =
min(a, b).
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We define the potential kernel V on B+(Ω) by VΨ(x) =

∫
Ω
G(x, y)Ψ(y) dy. We

note that, for any Ψ ∈ B+(Ω) such that Ψ ∈ L1
loc(Ω) and VΨ ∈ L1

loc(Ω), we
have in the distributional sense

∆(VΨ) = −Ψ in Ω. (0.3)

We point out that for any Ψ ∈ B+(Ω) such that VΨ 6≡ ∞, we have VΨ ∈ L1
loc(Ω)

(see [11], p51). Let us recall that V satisfies the complete maximum principle,
i.e for each Ψ ∈ B+(Ω) and a nonnegative superharmonic function v on Ω such
that VΨ ≤ v in {Ψ > 0} we have VΨ ≤ v in Ω, (cf. [24], Theorem 3.6, p 175).
Our main result is the following :

Theorem 1. Assume (H1),(H2) and (H3) are satisfied. Then the problem
(0.1) has a unique positive solution v continuous on Ω, satisfying for all x ∈ Ω,

Cg(x) ≤ v(x) ≤ min

(
ν,

∫
Ω
G(x, y) ψ(y, Cg(y))dy

)
,

where ν = inf
σ>0

(
σ + ‖V ψ(., σ)‖∞

)
.

This paper consists of 4 sections devoted to the following topics. In section
2 we recall and establish some results which will be the basic tools to prove
Theorem 1 in section 3. In section 4, by using some results that we estab-
lished recently in [1], we give an interesting example. (see Example 1). More
precisely, we study the problem (0.1), in a bounded simply connected piecewise
Dini-smooth Jordan domain in R2. By using conformal mapping and taking
inspiration from [ [22], Proposition 4, p.403], we establish sharp estimates for
the solution of problem (0.1). Note that a bounded simply connected piecewise
Dini-smooth Jordan domain in R2 is an NTA- domain.

1 Preliminary results

In this section we need to recall and prove some results which are the basic
tools to prove Theorem 1. The following set is introduced by K. Hirata in [17].
For each pair of points x, y ∈ Ω, let

B(x, y) =

{
b ∈ Ω :

1

C

(
|x− b| ∧ |b− y|

)
≤ |x− y| ≤ 2C δ(b)

}
, (1.1)

where C is a constant strictly grater than 1 depending only on Ω.
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Lemma 1. (see [17]) For each x, y ∈ Ω and b ∈ B(x, y),

G(x, y) '


g(x)g(y)
g(b)2

(
1 + ln+ (δ(x)∧δ(y))

|x−y|

)
if n = 2,

g(x)g(y)

g(b)2
|x− y|2−n if n ≥ 3,

(1.2)

where ln+ t = (0 ∨ ln t) and the constant of comparison depends only on n and
Ω.

By using (1.1) and (1.2), we get :

Lemma 2. There exists a constant C > 0 depending only on Ω such that
for all x, y ∈ Ω

G(x, y) ≥ Cg(x)g(y).

Proposition 1. Let r > 0, then there exists a constant C depending only
on r and Ω such that for all x, y ∈ Ω, satisfying |x− y| ≥ r,

G(x, y) ≤ C g(x) g(y) (1.3)

The following 3G-Theorem is established for NTA-domains by W. Hansen
in [15] Rn, n ≥ 3 and for Jordan domains by L. Riahi in R2 [26]. It is also true
for NTA-domains in R2 by similar arguments as in [15].

Theorem 2 (3G-Theorem). There exists a constant C > 0 depending
only on n and Ω such that for all x, y, z ∈ Ω,

G(x, z)G(z, y)

G(x, y)
≤ C

(
g(z)

g(x)
G(x, z) +

g(z)

g(y)
G(z, y)

)
. (1.4)

Proposition 2. ( see [25]) If q ∈ K(Ω), then

‖q‖ = sup
x∈Ω

∫
Ω

g(y) G(x, y)

g(x)
|q(y)| dy < +∞.

Corollary 1. ( see [25]) Let q ∈ K(Ω), h a positive superharmonic function
h on Ω and C as in Theorem 2, we have

sup
x∈Ω

∫
Ω

h(y)

h(x)
G(x, y) |q(y)| dy ≤ 2C‖q‖. (1.5)

In particular

sup
x∈Ω

∫
Ω
G(x, y) |q(y)| dy ≤ 2C‖q‖. (1.6)
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From (1.6), we deduce

Corollary 2. Let q be a function in K(Ω), then∫
Ω
g(y) |q(y)| dy < +∞. (1.7)

In particular q ∈ L1
loc(Ω)

Proposition 3. Let q ∈ K(Ω) and h be a positive superharmonic function
on Ω, then for each x0 ∈ Ω,

lim
r−→0

sup
x∈Ω

1

h(x)

∫
B(x0,r)∩Ω

h(y) G(x, y) |q(y)| dy = 0. (1.8)

Proof. Let h be a positive superharmonic function in Ω. Then by ( [18],Theorem
2.1, p.164), there exists a sequence (fn)n∈N of positive measurable functions in
Ω such that

h(y) = sup
n∈N

∫
Ω
G(y, z) fn(z) dz.

Hence we need to verify (1.8) only for h(y) = G(y, z), uniformly for z ∈ Ω. Let
r > 0. By using Theorem 2, we get

1

G(x, z)

∫
B(x0,r)∩Ω

G(x, y) G(y, z) |q(y)| dy ≤

2C sup
z∈Ω

∫
B(x0,r)∩Ω

g(y) G(z, y)

g(z)
|q(y)| dy.

Let η > 0, then∫
B(x0,r)∩Ω

g(y) G(z, y)

g(z)
|q(y)| dy ≤

∫
Ω∩B(z,η)

g(y) G(z, y)

g(z)
|q(y)| dy+

+

∫
B(x0,r)∩Ω\B(z,η)

g(y) G(z, y)

g(z)
|q(y)| dy.

Since q is in K(Ω), it follows from (0.2), that for all ε > 0, we can find some
η0 > 0, such that

sup
z∈Ω

∫
Ω∩B(z,η0)

g(y) G(z, y)

g(z)
|q(y)| dy < ε.

On the other hand it follows from Proposition 1, that for all y ∈
(
B(x0, r) ∩

Ω
)
\B(z, η0)

g(y) G(z, y)

g(z)
≤ C g2(y) ≤ C g(y).

Thus the result follows by using (1.7). QED
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2 Proof of Theorem 1

For σ ≥ 0, we denote by Pσ the following nonlinear boundary value problem

Pσ =


∆u(x) + ψ(x, u(x)) = 0 x ∈ Ω,

u(x) = σ x ∈ ∂Ω,

u ∈ C(Ω).

Proposition 4. Assume that (H1) is satisfied. Then, for each σ ≥ 0, the
problem Pσ has at most one positive solution.

Proof. (see [13])Assume that there exist two positive solutions u, v of (Pσ) with
u 6= v. Suppose that there exists x0 ∈ Ω such that v(x0) > u(x0).
Put w = v − u ∈ C0(Ω). Then we have{

∆w + ψ(., v)− ψ(., u) = 0 in Ω,

w = 0 on ∂Ω.

Let U = {x ∈ Ω, w(x) > 0} . Then U is an open nonempty set. Since the func-
tion ψ satisfies (H1), we deduce that{

∆w ≥ 0 in U,

w = 0 on ∂U.

Hence by the maximum principle (see [12], pages 465-466), we get w ≤ 0 in U.
Which is in contradiction with the definition of U QED

Theorem 3. Let σ > 0. Then the problem Pσ has a unique positive solution
uσ.

Proof. Let σ > 0 and Cσ =
{
v ∈ C(Ω) : v ≥ σ

}
. We define the operator T on

Cσ by

Tv(x) = σ +

∫
Ω
G(x, y)ψ(y, v(y))dy , x ∈ Ω.

We propose to prove the equicontinuity of T (Cσ) in Ω. Let x0 ∈ Ω and η > 0.
Let x, x′ ∈ B(x0,

η
2 ) ∩ Ω. Let v ∈ Cσ then

∣∣Tv(x)− Tv(x′)
∣∣ =

∫
Ω

∣∣G(x, y)−G(x′, y)
∣∣ψ(y, v(y)) dy.
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Since for all v ∈ Cσ, ψ(., v) ≤ ψ(., σ) then

∣∣Tv(x)− Tv(x′)
∣∣ ≤ ∫

Ω

∣∣G(x, y)−G(x′, y)
∣∣ ψ(y, σ) dy

≤ 2 sup
ζ∈Ω

∫
Ω∩B(x0,η)

G(ζ, y) ψ(y, σ) dy

+

∫
Ω\B(x0,η)

∣∣G(x, y)−G(x′, y)
∣∣ ψ(y, σ) dy.

By (1.8), the first quantity of the right hand side is bounded by ε whenever η is
sufficiently small. For η sufficiently small, G(., y) is continuous on B(x0,

η
2 )∩Ω,

whenever y ∈ Ω \ B(x0, η). Moreover, by (1.3), there exists C > 0 depending
only on Ω such that

G(x, y) ≤ C g(y), ∀(x, y) ∈
(
B(x0,

η

2
) ∩ Ω

)
×
(

Ω \B(x0, η)
)
.

Since ψ(., σ) ∈ K(Ω), it follows from (1.7) and Lebesgue’s theorem that∫
Ω\B(x0,η)

∣∣G(x, y)−G(x′, y)
∣∣ ψ(y, σ) dy −→

|x−x′|→0
0.

Hence Tv is continuous in Ω uniformly on Cσ.
Now, we will show that lim

x−→∂Ω
V ψ(., σ)(x) = 0. Let x0 ∈ ∂Ω, η ∈]0, 1[ and

x ∈ B(x0,
η
2 ) ∩ Ω. Then

|V ψ(., σ)(x)| ≤
∫

Ω
G(x, y) |ψ(y, σ)| dy

≤ sup
x∈Ω

∫
B(x0,η)∩Ω

G(x, y) |ψ(y, σ)| dy +

∫
Ω\B(x0,η)

G(x, y) |ψ(y, σ)| dy.

By Proposition 1, we get∫
Ω\B(x0,η)

G(x, y) |ψ(y, σ)| dy ≤ C g(x)

∫
Ω
g(y) |ψ(y, σ)| dy.

Thus, we obtain from (1.8) and (1.7), that lim
x−→∂Ω

V ψ(., σ)(x) = 0. In the se-

quel, we deduce that V ψ(., σ) ∈ C0(Ω). On the other hand, for all v ∈ Cσ we
have ‖Tv‖∞ ≤ σ+ ‖V ψ(., σ)‖∞. Thus, the family {Tv(x), v ∈ Cσ} is uniformly
bounded on Ω. It follows, by Ascoli’s theorem, that T (Cσ) is relatively compact
in C(Ω).
Next, we propose to prove the continuity of T on Cσ.
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Let (un)n∈N be a sequence in Cσ which converges uniformly to a function u in
Cσ. Since ψ is continuous with respect to the second variable and

|ψ(y, un(y))− ψ(y, u(y))| ≤ 2 ψ(y, σ).

It follows, by the dominated convergence theorem, that

∀x ∈ Ω, Tun(x)− Tu(x) −→
n→∞

0.

Since T (Cσ) is relatively compact in C(Ω), then Tun converges uniformly to
Tu.
Finally, we deduce, by the Schauder’s fixed point theorem, that there exists
vσ ∈ Cσ such that

vσ = σ +

∫
Ω
G(x, y)ψ(y, vσ(y)) dy. (2.1)

Hence vσ is a positive solution of Pσ. The uniqueness follows from Proposition
4. QED

Proposition 5. Let 0 < µ ≤ σ. Then we have 0 ≤ vσ − vµ ≤ σ − µ.

Proof. Let f be the function defined on Ω by

f(x) =


ψ(x, vµ(x))− ψ(x, vσ(x))

vσ(x)− vµ(x)
if vµ(x) 6= vσ(x),

0 if vµ(x) = vσ(x).

Let us put g = vσ − vµ, and denote by g+ = max(g, 0) and g− = max(−g, 0).
It is easily to see that g ∈ B(Ω), f ∈ B+(Ω) and g + V (fg) = σ − µ.
Since V ψ(., σ) and V ψ(., µ) ∈ C0(Ω), we deduce by (H2) that V (f |g|) ≤ ∞.
Which implies that

g+ + V (fg+) = (σ − µ) + g− + V (fg−).

In consequence, we get

V (fg+) ≤ (σ − µ) + V (fg−) on the set
{
g+ > 0

}
.

Since (σ−µ) +V (fg−) is a nonnegative superharmonic function on Ω, then the
complete maximum principle implies that

V (fg+) ≤ (σ − µ) + V (fg−) on Ω.
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And so,
V (fg) ≤ (σ − µ) = g + V (fg) on Ω.

Thus, we deduce that
0 ≤ g ≤ σ − µ.

QED

Proof. (of Theorem 1)Let (σn)n≥0 be a positive sequence of real numbers that
decreases to zero. Let us put for all n ∈ N, θn = σn + ‖V (ψ(., σn))‖∞ and and
let vn be the unique positive solution of the problem Pσn given in Theorem 3. It
follows by Proposition 5, that the sequence(vn − σn)n≥0 increases to a function
v. By (H3), we deduce that, for each x ∈ Ω,

v(x) ≥ vn(x)− σn ≥
∫

Ω
G(x, y)ψ(y, θn) dy > 0.

So, using the monotone convergence theorem, we obtain

v(x) =

∫
Ω
G(x, y) ψ(y, v(y)) dy, ∀x ∈ Ω. (2.2)

Now, we shall prove that v is continuous on Ω. By using (2.2), we see that
v is a lower semicontinuous function on Ω. On the other hand, (vn)n≥0 is a
decreasing sequence of positive continuous functions on Ω, then v = infn≥0 vn is
an upper semicontinuous function on Ω. Which implies that v is continuous on
Ω. Hence, it follows from (2.2) that V ψ(., v) ∈ L1

loc(Ω). Since v is continuous and
positive on Ω, we deduce, by hypothesis (H2) and corollary 2, that the function
y 7−→ ψ(y, v(y)) is in L1

loc(Ω). Applying ∆ on both sides of equality (2.2) and
using (0.3), we conclude that v satisfies the equation

∆v + ψ(., v) = 0 in Ω.

Finally, since for each x ∈ Ω and n ∈ N, 0 < v(x) ≤ vn(x), then lim
x−→∂Ω

v(x) = 0.

Thus, v ∈ C(Ω) and v is a positive solution of the problem (0.1). The uniqueness
follows from Proposition 4.
Now we prove the sharp estimates for the solution.
By (H1) and (H3), we see that ν = inf

σ>0

(
σ+ ‖V ψ(., σ)‖∞

)
> 0. Let σ > 0, from

Proposition 5, (H1) and (2.1), we get

v(x) ≤ vσ(x) ≤ σ + V ψ(., σ)(x), for all x ∈ Ω.

This implies that for all x ∈ Ω

v(x) ≤ ν.



Solutions of singular semilinear elliptic equation 67

By (H1), we deduce that for all x ∈ Ω∫
Ω
G(x, y)ψ(x, ν)dy ≤ v(x) ≤ ν.

Then it follows from Lemma 2, that for all x ∈ Ω

Cg(x)

∫
Ω
g(y)ψ(y, ν) dy ≤ v(x) ≤ ν. (2.3)

In particular if x = z0, g(x) = min(1,+∞) = 1, which give∫
Ω
g(y)ψ(y, ν) dy ≤ ν

C
< +∞. (2.4)

Hence, we deduce from (2.3) and (2.4) that for all x ∈ Ω

Cg(x) ≤ v(x).

Since ψ is non-increasing with respect to second variable, we get for all x ∈ Ω

Cg(x) ≤ v(x) ≤ min

(
ν,

∫
Ω
G(x, y) ψ(y, Cg(y))dy

)
.

QED

3 Study of a particular case

The aim of this section is to establish the following example

Example 1. Let Ω be a bounded simply connected piecewise Dini-smooth
Jordan domain in R2 (see definition in [3] or [23], ) having n Dini -smooth corners
at a1, . . . , an of opening angles respectively π

α1
, . . . , π

αn
, αi ∈]1

2 ,+∞[\ {1}.
Let λ, γ a strictly positive constant such that τ = γ + λ < 2, and for all y ∈ Ω,

δλ(y) =
1

n∏
i=1

|y − ai|(λ−2)(αi−1) (δ(y))λ
, then the problem

{
∆v(x) + (v(x))−γ δλ(x) = 0, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,

has a unique positive solution v in C(Ω), satisfying for all x ∈ Ω,
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C
n∏
i=1

|x− ai|αi−1 δ(x) ≤ v(x) ≤

C



(
n∏
i=1

|x− ai|αi−1 δ(x)

)2−τ

, for 1 < τ < 2

n∏
i=1

|x− ai|αi−1 δ(x) ln

 e
n∏
i=1

|x− ai|αi−1 δ(x)

 , for τ = 1

n∏
i=1

|x− ai|αi−1 δ(x) , for 0 < τ < 1.

(3.1)

In the beginning let us recall some results that will be necessary to prove
inequality (3.1).

Theorem 4. (see [3] ) Let Ω be a bounded simply connected piecewise Dini
smooth Jordan domain in R2 having n Dini-smooth corners at a1, a2, . . . , an of
opening angle respectively π

α1
, . . . , π

αn
, αi ∈]1

2 , +∞[\1, φ a conformal mapping

from Ω onto the unit disk D = D(0, 1). Then we have the following results :

G(x, y) ' ln

(
1 +

n∏
k=1

(
(|x− ak| ∧ |y − ak|)
(|x− ak| ∨ |y − ak|)

)αk−1
δ(x)δ(y)

|x− y|2

)
, ∀x, y ∈ Ω , (3.2)

∣∣φ′(x)
∣∣ ' n∏

i=1

|x− ai|αi−1 , ∀x ∈ Ω , (3.3)

δ(φ(x)) '
n∏
i=1

|x− ai|αi−1 δ(x), ∀x ∈ Ω , (3.4)

where δ(φ(x)) is the distance of φ(x) to ∂D(0, 1).

Remark 1. Let φ be a conformal mapping from Ω onto D, then by using
relation (3.4) in Theorem 4, we can see that

g(x) ' δ(φ(x)) on Ω . (3.5)

Proposition 6. (see [1]) Let 0 < τ < 2. Then the function defined on Ω by

δτ (y) =
1

n∏
i=1

|y − ai|(τ−2)(αi−1) (δ(y))τ
belong to the Kato class K(Ω).
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Proof. of inequality (3.1) From Theorem 1, (3.4) and (3.5), we deduce that
for all x ∈ Ω,

C
n∏
i=1

|x− ai|αi−1 δ(x) ≤ v(x) ≤ C V δτ (x).

On the other hand,

V δτ (x) =

∫
Ω
G(x, y) δτ (y) dy

=

∫
Ω
G(x, y)

1(
n∏
i=1

|y − ai|αi−1 δ(y)

)τ n∏
i=1

|y − ai|2(αi−1) dy.

Let φ be the conformal mapping from Ω to D defined in Theorem 4. By using
the variable change z = φ(y),(3.3) and (3.4), we obtain

V δτ (y) '
∫
D

ln(1 +
δD(x∗)δD(z)

|x∗ − z|2
)

1

(δD(z))τ
dz,

where x∗ = φ(x) and δD(z) = is the distance from z to ∂D .
In the following, let R = |x∗|. We have to discuss two cases.
Case 1 : If R ≤ 1

4 . For x ∈ D, we have

V δτ (x) ≤ C
(∫

(|z|≤ 1
2

)
ln(1 +

δD(x∗)δD(z)

|x∗ − z|2
)

1

(δD(z))τ
dz︸ ︷︷ ︸

I1

+

+

∫
( 1
2
≤|z|≤1)

ln(1 +
δD(x∗)δD(z)

|x∗ − z|2
)

1

(δD(z))τ
dz︸ ︷︷ ︸

I2

)
.

Since, for z ∈ (|z| ≤ 1
2) we have δD(z) ≥ 1

2 then,

I1 ≤ C
∫ 1

2

0
ln(

1

(R ∨ r)
) r dr

≤ C (ln(
1

R
) +

∫ 1
2

R
r ln(

1

r
) dr).

On the other hand, ln(1+
δD(x∗)δD(z)

|x∗ − z|2
) ≤ C δD(z)

|x∗ − z|2
and for z ∈ (1

2 ≤ |z| ≤ 1),

we have |x∗ − z| ≥ |z| − |x∗| ≥ 1
4 . It follows that

I2 ≤ C
∫
D

1

(δD(z))τ−1
dz.
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Now, using ([20], Lemma, page 726), we have

∫
D

1

(δD(z))τ−1
dz <∞ for τ < 2.

Hence,

V δτ (x) ≤ C

(
ln(

1

R
) +

∫ 1
2

R
ln(

1

r
) r dr + 1

)
≤ C .

Case 2 : If R ≥ 1
4 . For x ∈ D, we have

V δτ (x) ≤ C
(∫

(|z|≤ 1
8

)
ln(1 +

δD(x∗)δD(z)

|x∗ − z|2
)

1

(δD(z))τ
dz︸ ︷︷ ︸

J1

+

+

∫
( 1
8
≤|z|≤1)

ln(1 +
δD(x∗)δD(z)

|x∗ − z|2
)

1

(δD(z))τ
dz︸ ︷︷ ︸

J2

)
.

For z ∈ (|z| ≤ 1
8), we have |x∗ − z| ≥ |x∗| − |z| ≥ 1

8 and 7
8 ≤ δD(z) ≤ 1. It

follows that

J1 ≤ C δD(x∗)

∫ 1
8

0
r dr ≤ C δD(x∗).

So using ( [21], Proposition 2.10, page 290 ), we have

i) If 1 < τ < 2, then

V δτ (x) ≤ C (δD(x∗) + (δD(x∗))2−τ ) ≤ C (δD(x∗))2−τ .

ii) If τ = 1, then

V δτ (x) ≤ C
(
δD(x∗) + δD(x∗) ln

(
e

δD(x∗)

))
≤ C δD(x∗) ln

(
e

δD(x∗)

)
.

iii) If 0 < τ < 1, then

V δτ (x) ≤ C (δD(x∗) + δD(x∗)) ≤ C δD(x∗) .

Thus, the result holds, from relation ( 3.4).

QED
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