Generalization of certain well-known inequalities for rational functions

M. Bidkham
Department of Mathematics, Semnan University, Semnan, Iran. mbidkham@semnan.ic.ir
T. Shahmansouri
Department of Mathematics, Semnan University, Semnan, Iran. t.sh.math2016@gmail.com

Received: 21.7.2019; accepted: 21.10.2019.
Abstract. Let P_{m} be a class of all polynomials of degree at most m and let $R_{m, n}=$ $R_{m, n}\left(d_{1}, \ldots, d_{n}\right)=\left\{p(z) / w(z) ; p \in P_{m}, w(z)=\prod_{j=1}^{n}\left(z-d_{j}\right)\right.$ where $\left|d_{j}\right|>1, j=1, \ldots, n$ and $m \leq n\}$ denote the class of rational functions. It is proved that if the rational function $r(z)$ having all its zeros in $|z| \leq 1$, then for $|z|=1$

$$
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|-(n-m)\right\}|r(z)| .
$$

The main purpose of this paper is to improve the above inequality for rational functions $r(z)$ having all its zeros in $|z| \leq k \leq 1$ with t-fold zeros at the origin and some other related inequalities. The obtained results sharpen some well-known estimates for the derivative and polar derivative of polynomials.

Keywords: Rational functions, Polynomials, Polar derivative, Inequalities, Poles, Restricted Zeros.

MSC 2000 classification: primary: 26A84, 26D07.

1 Introduction and statement of results

Let $p(z)$ be a polynomial of degree at most n. We denote by U_{-}and U_{+}the regions inside and out side the set $U:=\{z:|z|=1\}$, respectiveily.

In 1930, Bernstein [2] revisited his inequality and established the following comparative result by assuming that $p(z)$ and $q(z)$ are polynomials such as $p(z)$ has at most of degree n and $q(z)$ has exactly n zeros in $U \cup U_{-}$and for $z \in U$

$$
|p(z)| \leq|q(z)|
$$

then for $z \in U$

$$
\begin{equation*}
\left|p^{\prime}(z)\right| \leq\left|q^{\prime}(z)\right| \tag{1.1}
\end{equation*}
$$

http://siba-ese.unisalento.it/ © 2020 Università del Salento

Let $D_{\alpha} p(z)$ denote the polar derivative of the polynomial $p(z)$ of degree n with respect to the point $\alpha ; \alpha \in \mathbb{C}$, then

$$
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z) .
$$

The polynomial $D_{\alpha} p(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty}\left[\frac{D_{\alpha} p(z)}{\alpha}\right]=p^{\prime}(z) . \tag{1.2}
\end{equation*}
$$

In the past few years many papers were published concerning the polar derivative of polynomials (for example see ([3], [8])). Aziz and Rather[1] proved that if all zeros of $p(z)$ lie in $|z| \leq k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$, we get

$$
\begin{equation*}
\max _{z \in U}\left|D_{\alpha} p(z)\right| \geq \frac{n}{1+k}(|\alpha|-k) \max _{z \in U}|p(z)| . \tag{1.3}
\end{equation*}
$$

Let P_{m} be a class of all polynomials of degree at most m and $d_{1}, d_{2}, \ldots, d_{n}$ be n given points in U_{+}. Consider the following space of rational functions with prescribed poles and with a finite limit at infinity:

$$
R_{m, n}=R_{m, n}\left(d_{1}, \ldots, d_{n}\right)=\left\{\frac{p(z)}{w(z)}: p \in \mathrm{P}_{m}\right\}
$$

where

$$
w(z)=\Pi_{j=1}^{n}\left(z-d_{j}\right) .
$$

The inequalities of Bernstein and Erdös-Lax have been extended to the rational functions ([4], [7]) by replacing the polynomial $\mathrm{p}(\mathrm{z})$ with a rational functions $\mathrm{r}(\mathrm{z})$ and z^{n} with Blaschke product $\mathrm{B}(\mathrm{z})$ defined by

$$
B(z)=\frac{w^{*}(z)}{w(z)}=\frac{z^{n} \overline{w\left(\frac{1}{z}\right)}}{w(z)}=\Pi_{j=1}^{n}\left(\frac{1-\bar{d}_{j} z}{z-d_{j}}\right) .
$$

Li et al.([6], [7]) obtained Bernstein-type inequalities for rational function $r(z)$. They proved that if $r(z) \in R_{m, n}$ and all the zeros of $r(z)$ in $U \cup U_{-}$, then for $z \in U$

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|-(n-m)\right\}|r(z)| . \tag{1.4}
\end{equation*}
$$

Xin $\mathrm{Li}[6]$ extended the inequality (1.1) for rational functions by showing that, if $r(z), s(z) \in R_{n, n}$ such that $s(z)$ has all its n zeros in $U \cup U_{-}$and for $z \in U$

$$
|r(z)| \leq|s(z)|
$$

then for $z \in U$

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \leq\left|s^{\prime}(z)\right| \tag{1.5}
\end{equation*}
$$

Recently, Hans and Tripathi [5] proved that, if $r(z), s(z) \in R_{n, n}$ such that $s(z)$ has all its n zeros in $U \cup U_{-}$and $|r(z)| \leq|s(z)|$ for $z \in U$, then for every real or complex number β with $|\beta| \leq 1$ and $z \in U$

$$
\begin{equation*}
\left|z r^{\prime}(z)+\frac{\beta}{2}\right| B^{\prime}(z)|r(z)| \leq\left|z s^{\prime}(z)+\frac{\beta}{2}\right| B^{\prime}(z)|s(z)| \tag{1.6}
\end{equation*}
$$

Also, they obtained that if $r(z) \in R_{n, n}$, then for every real or complex number β with $|\beta| \leq 1$ and $z \in U$

$$
\begin{equation*}
\left|z r^{\prime}(z)+\frac{\beta}{2}\right| B^{\prime}(z)|r(z)| \leq\left|1+\frac{\beta}{2}\right|\left|B^{\prime}(z)\right| \max _{z \in U}|r(z)| \tag{1.7}
\end{equation*}
$$

In this paper, we first prove the following theorem which not only leads to several conclutions about inequality for rational function, but also generalize inequality (1.4).

Theorem 1.1. If $r(z) \in R_{m, n}$ has a zero of order μ at z_{0} with $\left|z_{0}\right|>k, k \leq$ 1 , and the remaining $m-\mu$ zeros are in $|z| \leq k$, then for $z \in U$

$$
\begin{align*}
& \max _{z \in U}\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)^{\mu}\left(\left|B^{\prime}(z)\right|+\frac{2(m-\mu)}{1+k}-n\right)\right. \tag{1.8}\\
& \left.-\frac{2 \mu}{1+\left|z_{0}\right|}\right\} \max _{z \in U}|r(z)|
\end{align*}
$$

For $\mu=0$ in Theorem 1.1, we have the following generalization of the inequality (1.4).

Corollary 1.1. If $r(z) \in R_{m, n}$ has all its zeros in $|z| \leq k \leq 1$, then for $z \in U$

$$
\begin{equation*}
\max _{z \in U}\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|+\frac{2 m}{1+k}-n\right\} \max _{z \in U}|r(z)| \tag{1.9}
\end{equation*}
$$

Furthermore, if we take $k=1$ and $m=n$ in inequality (1.8), then we have the following result.

Corollary 1.2. If $r(z) \in R_{n, n}$ has a zero of order μ at z_{0} with $\left|z_{0}\right|>1$, and the remaining $n-\mu$ zeros are in $U \cup U_{-}$, then for $z \in U$

$$
\max _{z \in U}\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)^{\mu}\left(\left|B^{\prime}(z)\right|-\mu\right)-\frac{2 \mu}{1+\left|z_{0}\right|}\right\} \max _{z \in U}|r(z)|
$$

Remark 1.1. If we consider $p(z)$ as a polynomial of degree m, then for rational function $r(z)=\frac{p(z)}{(z-\alpha)^{n}}$, we have

$$
r^{\prime}(z)=\left(\frac{p(z)}{(z-\alpha)^{n}}\right)^{\prime}=-\left[\frac{(n-m) p(z)+D_{\alpha} p(z)}{(z-\alpha)^{n+1}}\right] .
$$

Also for $B(z)=\frac{w^{*}(z)}{w(z)}$, we have $B^{\prime}(z)=\frac{n\left(|\alpha|^{2}-1\right)}{(z-\alpha)^{2}}\left(\frac{1-\bar{\alpha} z}{z-\alpha}\right)^{n-1}$, hence for $z \in U,\left|B^{\prime}(z)\right|=\frac{n\left(|\alpha|^{2}-1\right)}{|z-\alpha|^{2}}$. Now by taking $m=n$ and $d_{j}=\alpha ; j=1,2, \ldots, n$ in Theorem 1.1 for $z \in U$, we get

$$
\begin{aligned}
& \max _{z \in U} \frac{\left|D_{\alpha} p(z)\right|}{|z-\alpha|^{n+1}} \geq \frac{1}{2}\left\{\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)^{\mu}\left(\frac{n\left(|\alpha|^{2}-1\right)}{|z-\alpha|^{2}}-\mu\right)\right. \\
& \left.-\frac{2 \mu}{1+\left|z_{0}\right|}\right\} \max _{z \in U} \frac{|p(z)|}{|z-\alpha|^{n}},
\end{aligned}
$$

that is

$$
\begin{aligned}
& \max _{z \in U}\left|D_{\alpha} p(z)\right| \geq \frac{1}{2}\left\{\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)^{\mu}\left(\frac{n\left(|\alpha|^{2}-1\right)}{|z-\alpha|}-\mu|z-\alpha|\right)\right. \\
& \left.-\frac{2 \mu|z-\alpha|}{1+\left|z_{0}\right|}\right\} \max _{z \in U}|p(z)|,
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \max _{z \in U}\left|D_{\alpha} p(z)\right| \geq \frac{1}{2}\left\{\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)^{\mu}\left(\frac{n\left(|\alpha|^{2}-1\right)}{1+|\alpha|}-\mu(1+|\alpha|)\right)\right. \\
& \left.-\frac{2 \mu}{1+\left|z_{0}\right|}(1+|\alpha|)\right\} \max _{z \in U}|p(z)| .
\end{aligned}
$$

Therefore, we obtain the following result on the polar derivatives of a polynomial which is an improvement and generalization of the inequality (1.3).
Corollary 1.3. If $p(z) \in P_{n}$ has a zero of order μ at z_{0} with $\left|z_{0}\right|>1$, and the remaining $n-\mu$ zeros are in $U \cup U_{-}$, then for every real or complex number α with $|\alpha| \geq 1$ and $z \in U$

$$
\begin{align*}
& \max _{z \in U}\left|D_{\alpha} p(z)\right| \geq \frac{1}{2}\left\{n\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)^{\mu}(|\alpha|-1)\right. \tag{1.10}\\
& \left.-\left[\mu\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)^{\mu}+\frac{2 \mu}{1+\left|z_{0}\right|}\right](|\alpha|+1)\right\} \max _{z \in U}|p(z)| .
\end{align*}
$$

Dividing two sides of inequality (1.10) by $|\alpha|$ and letting $|\alpha| \longrightarrow \infty$, we have the following extension of a result which is proved by Turán[10].

Corollary 1.4. If $p(z) \in P_{n}$ has a zero of order μ at z_{0} with $\left|z_{0}\right|>1$, and the remaining $n-\mu$ zeros are in $U \cup U_{-}$, then for $z \in U$

$$
\max _{z \in U}\left|p^{\prime}(z)\right| \geq \frac{1}{2}\left\{(n-\mu)\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)^{\mu}-\frac{2 \mu}{1+\left|z_{0}\right|}\right\} \max _{z \in U}|p(z)|
$$

Next, we obtain the following generalization of inequality (1.6) as follows:
Theorem 1.2. Let $r(z), s(z) \in R_{m, n}$ and assume $s(z)$ has all its zeros in $|z| \leq k \leq 1$. If $r(z)$ and $s(z)$ have zeros of order t at origin and for $z \in U$

$$
|r(z)| \leq|s(z)|
$$

then for every real or complex number ρ with $|\rho| \leq \frac{1}{2}$

$$
\begin{align*}
& \left|z r^{\prime}(z)+\rho\left(\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right) r(z)\right| \\
\leq & \left|z s^{\prime}(z)+\rho\left(\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right) s(z)\right| . \tag{1.11}
\end{align*}
$$

If we take $t=0, k=1$ and $s(z)=B(z) \max _{z \in U}|r(z)|$ in inequality (1.11), then we have the following generalization of inequality (1.7).

Corollary 1.5. If $r(z) \in R_{m, n}$, then for every real or complex ρ with $|\rho| \leq \frac{1}{2}$ and for $z \in U$

$$
\begin{aligned}
& \left|z r^{\prime}(z)+\rho\left\{\left|B^{\prime}(z)\right|-(n-m) r(z)\right\}\right| \leq \\
& \left\{|1+\rho|\left|B^{\prime}(z)\right|+(n-m)|\rho|\right\} \max _{z \in U}|r(z)|
\end{aligned}
$$

Finally, by involving the coefficients c_{0} and c_{m-t} of $p(z)$, we give a refinement of Corollary 1.1 by proving the following theorem.

Theorem 1.3. If $r(z) \in R_{m, n}$ has all its zeros in $U \cup U_{-}$with t-fold zeros at the origin then for $z \in U$

$$
\operatorname{Re}\left\{\frac{z r^{\prime}(z)}{r(z)}\right\} \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|-(n-m-t)+\frac{\left|c_{m-t}\right|-\left|c_{0}\right|}{\left|c_{m-t}\right|+\left|c_{0}\right|}\right\}
$$

We can immediately get from Theorem 1.3 the following result.

Corollary 1.6. If $r(z) \in R_{m, n}$ has all its zeros in $U \cup U_{-}$with t-fold zeros at the origin, then for $z \in U$

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|-(n-m-t)+\frac{\left|c_{m-t}\right|-\left|c_{0}\right|}{\left|c_{m-t}\right|+\left|c_{0}\right|}\right\}|r(z)| . \tag{1.12}
\end{equation*}
$$

Since all the zeros of $r(z)$ and therefore the zeros of $p(z):=\sum_{j=0}^{m-t} c_{j} z^{j}$ are in $U \cup U_{-}$, therefore $\left|c_{m-t}\right| \geq\left|c_{0}\right|$. Hence inequality (1.12) is an improvement of Corollary 1.1.

If we assume that $r(z)$ has a pole of order n at $z=\alpha,|\alpha| \geq 1$, then $r^{\prime}(z)=-\frac{D_{\alpha} p(z)}{(z-\alpha)^{n+1}}$, where $D_{\alpha} p(z)$ is the polar derivative of $p(z)$.
Also for $z \in U,\left|B^{\prime}(z)\right|=\frac{n\left(|\alpha|^{2}-1\right)}{|z-\alpha|^{2}}$.
Now by taking $m=n$ and $d_{j}=\alpha ; j=1,2, \ldots, n$ in inequality (1.12) for $z \in U$, we get

$$
\left|D_{\alpha} p(z)\right| \geq \frac{1}{2}\left\{\frac{n\left(|\alpha|^{2}-1\right)}{1+|\alpha|}+\left(t+\frac{\left|c_{n-t}\right|-\left|c_{0}\right|}{\left|c_{n-t}\right|+\left|c_{0}\right|}\right)(|\alpha|-1)\right\}|p(z)| .
$$

Therefore, we obtain the following result on $D_{\alpha} p(z)$, which is an improvement and generalization of the inequality (1.3) in particular case.

Corollary 1.7. If $p(z) \in P_{n}$ has all its zeros in $U \cup U_{-}$, with t -fold zeros at the origin, then for every real or complex number α with $|\alpha| \geq 1$ and for $z \in U$

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \geq \frac{|\alpha|-1}{2}\left\{n+t+\frac{\left|c_{n-t}\right|-\left|c_{0}\right|}{\left|c_{n-t}\right|+\left|c_{0}\right|}\right\}|p(z)| . \tag{1.13}
\end{equation*}
$$

Dividing two sides of inequality (1.13) by $|\alpha|$ and letting $|\alpha| \longrightarrow \infty$, we get the following generalization of the result due to Turán [10].

Corollary 1.8. If $p(z) \in P_{n}$ has all its zeros in $U \cup U_{-}$, with t -fold zeros at the origin, then for $z \in U$

$$
\left|p^{\prime}(z)\right| \geq\left\{\frac{n+t}{2}+\frac{1}{2} \frac{\left|c_{n-t}\right|-\left|c_{0}\right|}{\left|c_{n-t}\right|+\left|c_{0}\right|}\right\}|p(z)| .
$$

2 Lemmas

For the proofs of these theorems, we need the following lemmas.

Lemma 2.1. If $z \in U$, then
(i) $\frac{z B^{\prime}(z)}{B(z)}=\left|B^{\prime}(z)\right|$.
(ii) $\operatorname{Re}\left\{\frac{z w^{\prime}(z)}{w(z)}\right\}=\frac{n-\left|B^{\prime}(z)\right|}{2}$.

Proof.
(i). It is proved by Li [7].
(ii). Since $B(z)=\frac{w^{*}(z)}{w(z)}$, then $\frac{z B^{\prime}(z)}{B(z)}=\frac{z\left(w^{*}(z)\right)^{\prime}}{w^{*}(z)}-\frac{z w^{\prime}(z)}{w(z)}$.

Hence by (i) for $z \in U$

$$
\left|B^{\prime}(z)\right|=\frac{z\left(w^{*}(z)\right)^{\prime}}{w^{*}(z)}-\frac{z w^{\prime}(z)}{w(z)}
$$

which gives

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(w^{*}(z)\right)^{\prime}}{w^{*}(z)}\right\}-\operatorname{Re}\left\{\frac{z w^{\prime}(z)}{w(z)}\right\}=\left|B^{\prime}(z)\right| \tag{2.1}
\end{equation*}
$$

For $w^{*}(z)=z^{n} w\left(\frac{1}{\bar{z}}\right)$, we have

$$
z\left(w^{*}(z)\right)^{\prime}=n z^{n} \overline{w\left(\frac{1}{\bar{z}}\right)}-z^{n-1} \overline{w^{\prime}\left(\frac{1}{\bar{z}}\right)}
$$

and one can easily verify that for $z \in U$

$$
\left.\frac{z\left(w^{*}(z)\right)^{\prime}}{w^{*}(z)}=n-\overline{\left(\frac{z w^{\prime}(z)}{w(z)}\right.}\right)
$$

therefore

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(w^{*}(z)\right)^{\prime}}{w^{*}(z)}\right\}+\operatorname{Re}\left\{\frac{z w^{\prime}(z)}{w(z)}\right\}=n \tag{2.2}
\end{equation*}
$$

Using (2.1) in (2.2), we get for $z \in U$

$$
\operatorname{Re}\left\{\frac{z w^{\prime}(z)}{w(z)}\right\}=\frac{n-\left|B^{\prime}(z)\right|}{2}
$$

which is the required result.
Lemma 2.2. Let $r(z) \in R_{m, n}$ has all its zeros in $|z| \leq k \leq 1$, with t-fold zeros at the origin and $m \leq n$, then for $z \in U$

$$
\operatorname{Re}\left\{\frac{z r^{\prime}(z)}{r(z)}\right\} \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right\}
$$

Proof. By the hypothesis of Lemma 2.2

$$
r(z)=\frac{z^{t} p(z)}{w(z)}=\frac{z^{t} \prod_{i=1}^{m-t}\left(z-b_{i}\right)}{\prod_{j=1}^{n}\left(z-d_{j}\right)}
$$

where $b_{i},\left|b_{i}\right| \leq k \leq 1, i=1, \ldots m-t$, are the zeros of $r(z)$. Hence

$$
\frac{z r^{\prime}(z)}{r(z)}=t+\frac{z p^{\prime}(z)}{p(z)}-\frac{z w^{\prime}(z)}{w(z)}=t+\left(\sum_{i=1}^{m-t} \frac{z}{z-b_{i}}\right)-\frac{z w^{\prime}(z)}{w(z)}
$$

Now by (ii) of Lemma 2.1, for $z \in U$

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{z r^{\prime}(z)}{r(z)}\right\}=t+\operatorname{Re}\left(\sum_{i=1}^{m-t} \frac{z}{z-b_{i}}\right)-\frac{n-\left|B^{\prime}(z)\right|}{2} \geq \\
t+\frac{m-t}{1+k}-\frac{n-\left|B^{\prime}(z)\right|}{2}=\frac{1}{2}\left\{\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right\},
\end{gathered}
$$

which proves lemma 2.2 completely.
We need the following lemmas due to Li [6] and Osserman [9] respectively.
Lemma 2.3. Let A and B be any two complex numbers. Then
(i) If $|A| \geq|B|$ and $B \neq 0$, then $A \neq \delta B$ for all complex numbers δ satisfying $|\delta|<1$.
(ii) Conversely, if $A \neq \delta B$ for all complex numbers δ satisfying $|\delta|<1$, then $|A| \geq|B|$.

Lemma 2.4. Let $f: D \rightarrow D$ be holomorphic. Assume that $f(0)=0$. Further assume that there is $b \in \partial D$, so that f extends continuously to $b,|f(b)|=1$ and $f^{\prime}(b)$ exists, then

$$
\left|f^{\prime}(b)\right| \geq \frac{2}{1+\left|f^{\prime}(0)\right|}
$$

3 Proof of theorems

Proof of Theorem 1.1. Let $r(z)=\left(z-z_{0}\right)^{\mu} s(z) \in R_{m, n}$, where $s(z) \in R_{m-\mu, n}$ having all its zeros in $|z| \leq k \leq 1$. Then

$$
r^{\prime}(z)=\left(z-z_{0}\right)^{\mu} s^{\prime}(z)+\mu\left(z-z_{0}\right)^{\mu-1} s(z)
$$

or

$$
\left|r^{\prime}(z)\right|=\left|\left(z-z_{0}\right)^{\mu} s^{\prime}(z)+\mu\left(z-z_{0}\right)^{\mu-1} s(z)\right|
$$

$$
\geq\left|\left(z-z_{0}\right)^{\mu} s^{\prime}(z)\right|-\mu\left|\left(z-z_{0}\right)^{\mu-1} s(z)\right|,
$$

which implies

$$
\max _{z \in U}\left|r^{\prime}(z)\right| \geq \max _{z \in U}\left|\left(z-z_{0}\right)^{\mu} s^{\prime}(z)\right|-\mu \max _{z \in U}\left|\left(z-z_{0}\right)^{\mu-1} s(z)\right| .
$$

or

$$
\begin{equation*}
\max _{z \in U}\left|r^{\prime}(z)\right| \geq\left|1-\left|z_{0}\right|\right|^{\mu} \max _{z \in U}\left|s^{\prime}(z)\right|-\mu\left(1+\left|z_{0}\right|\right)^{\mu-1} \max _{z \in U}|s(z)| . \tag{3.1}
\end{equation*}
$$

By lemma 2.2, for $z \in U$

$$
\max _{z \in U}\left|s^{\prime}(z)\right| \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|+\frac{2(m-\mu)}{1+k}-n\right\} \max _{z \in U}|s(z)| .
$$

By applying this inequality in (3.1), we get

$$
\begin{align*}
\max _{z \in U}\left|r^{\prime}(z)\right| & \geq \frac{1}{2}\left\{\left|1-\left|z_{0}\right|\right|^{\mu}\left(\left|B^{\prime}(z)\right|+\frac{2(m-\mu)}{1+k}-n\right)\right. \tag{3.2}\\
& -2 \mu\left(\left|1+\left|z_{0}\right|\right)^{\mu-1}\right\} \max _{z \in U}|s(z)| .
\end{align*}
$$

For $z \in U$, we obtain

$$
|s(z)|=\frac{1}{\left|z-z_{0}\right|^{\mu}}|r(z)| \geq \frac{1}{\left(\left|1+\left|z_{0}\right|\right)^{\mu}\right.}|r(z)|
$$

or

$$
\begin{equation*}
\max _{z \in U}|s(z)| \geq \frac{1}{\left(\left|1+\left|z_{0}\right|\right)^{\mu}\right.} \max _{z \in U}|r(z)| . \tag{3.3}
\end{equation*}
$$

Using (3.3) in (3.2), we get (1.8). This completes the proof of Theorem 1.1.
Proof of Theorem 1.2. First supposing that $s(z) \neq 0$ for $z \in U$, then for every complex number α with $|\alpha|<1$, it follows by Rouche's Theorem that $\alpha r(z)+s(z)$ has all zeros in $|z| \leq k<1$ with t-fold zeros in origin. Now $\alpha r(z)+s(z) \neq 0$ in $U \cup U_{+}$, hence by Lemma 2.2 for $z \in U$, we get

$$
\left|\frac{z[\alpha r(z)+s(z)]^{\prime}}{\alpha r(z)+s(z)}\right| \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right\},
$$

or

$$
\begin{aligned}
& \left|z\left(\alpha r^{\prime}(z)+s^{\prime}(z)\right)\right| \\
& \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right\}|\alpha r(z)+s(z)| .
\end{aligned}
$$

Since $\left|B^{\prime}(z)\right| \neq 0$ (see formula 14 in [7]), it follows by using (i) of Lemma 2.3 for every real or complex β with $|\beta|<1$,

$$
\begin{aligned}
& z\left\{\alpha r^{\prime}(z)+s^{\prime}(z)\right\} \\
& +\frac{\beta}{2}\left\{\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right\}\{\alpha r(z)+s(z)\} \neq 0
\end{aligned}
$$

in $U \cup U_{+}$. This implies that

$$
\begin{aligned}
& \alpha\left\{z r^{\prime}(z)+\frac{\beta}{2}\left(\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right) r(z)\right\} \\
\neq & -\left\{z s^{\prime}(z)+\frac{\beta}{2}\left(\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right) s(z)\right\} .
\end{aligned}
$$

Now using (ii) of Lemma 2.3, we get for α with $|\alpha|<1$ and $z \in U$,

$$
\begin{aligned}
& \left|z s^{\prime}(z)+\frac{\beta}{2}\left(\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right) s(z)\right| \\
\geq & \left|z r^{\prime}(z)+\frac{\beta}{2}\left(\left|B^{\prime}(z)\right|+\frac{k(2 t-n)+(2 m-n)}{1+k}\right) r(z)\right| .
\end{aligned}
$$

Taking $\rho:=\frac{\beta}{2}$ gives us the desired inequality when $|\rho|<\frac{1}{2}$.
Finally, by continuity, the same must be hold for those zeros of $s(z)$ lie on U and for $|\rho| \leq \frac{1}{2}$. This completes the proof of Theorem 1.2.
Proof of Theorem 1.3. Let

$$
r(z)=\frac{z^{t} p(z)}{w(z)}
$$

where $p(z)=c_{m-t} \prod_{i=1}^{m-t}\left(z-b_{i}\right), b_{i} \in U_{-}, i=1,2, \ldots, m-t$.
Therefore, we have

$$
\operatorname{Re}\left\{\frac{z r^{\prime}(z)}{r(z)}\right\}=t+\operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)}\right\}-\operatorname{Re}\left\{\frac{z w^{\prime}(z)}{w(z)}\right\}
$$

hence by (ii) of Lemma 2.1

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z r^{\prime}(z)}{r(z)}\right\}=t+\operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)}\right\}-\frac{n-\left|B^{\prime}(z)\right|}{2} \tag{3.4}
\end{equation*}
$$

Now we calculate $\operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)}\right\}$.
Since $p(z)$ is a polynomial of degree $m-t$, which has all its zeros in U_{-}, therefore
the polynomial $p^{*}(z)=z^{m-t} \overline{p\left(\frac{1}{\bar{z}}\right)} \neq 0$ in U_{-}.
Hence

$$
\begin{equation*}
H(z)=\frac{z p(z)}{p^{*}(z)}=z \frac{c_{m-t}}{\bar{c}_{m-t}} \prod_{i=1}^{m-t}\left(\frac{z-b_{i}}{1-\overline{b_{i}} z}\right) \tag{3.5}
\end{equation*}
$$

is analytic function in $U \cup U_{-}$with $H(0)=0$ and $|H(z)|=1$ for $z \in U$.
Applying Lemma 2.4 to $H(z)$, we conclude for $z \in U$

$$
\begin{equation*}
\left|H^{\prime}(z)\right| \geq \frac{2}{1+\left|H^{\prime}(0)\right|} \tag{3.6}
\end{equation*}
$$

Also,

$$
\begin{equation*}
z \frac{H^{\prime}(z)}{H(z)}=1+\frac{z p^{\prime}(z)}{p(z)}-\frac{z p^{* \prime}(z)}{p^{*}(z)} \tag{3.7}
\end{equation*}
$$

and for $z \in U$

$$
p^{* \prime}(z)=(m-t) z^{m-t-1} \overline{p\left(\frac{1}{\bar{z}}\right)}-z^{m-t-2} \overline{p^{\prime}\left(\frac{1}{\bar{z}}\right)} .
$$

Therefore for $z \in U$

$$
\begin{equation*}
\frac{z p^{* \prime}(z)}{p^{*}(z)}=(m-t)-\overline{\left(\frac{z p^{\prime}(z)}{p(z)}\right)} \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8), we get for $z \in U$

$$
z \frac{H^{\prime}(z)}{H(z)}=-(m-t-1)+2 R e\left\{\frac{z p^{\prime}(z)}{p(z)}\right\} .
$$

Also,

$$
z \frac{H^{\prime}(z)}{H(z)}=\left|z \frac{H^{\prime}(z)}{H(z)}\right|=\left|H^{\prime}(z)\right|
$$

therefore

$$
\begin{equation*}
\left|H^{\prime}(z)\right|=-(m-t-1)+2 \operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)}\right\} \tag{3.9}
\end{equation*}
$$

Using (3.5), we obtain for $z \in U$

$$
\begin{equation*}
\left|H^{\prime}(0)\right|=\prod_{i=1}^{m-t}\left|b_{i}\right|=\frac{\left|c_{0}\right|}{\left|c_{m-t}\right|} . \tag{3.10}
\end{equation*}
$$

Since $p(z) \neq 0$ for $z \in U$, hence by (3.9), (3.10) and (3.6), we get

$$
-(m-t-1)+2 \operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)}\right\} \geq \frac{2\left|c_{m-t}\right|}{\left|c_{0}\right|+\left|c_{m-t}\right|}
$$

or

$$
R e\left\{\frac{z p^{\prime}(z)}{p(z)}\right\} \geq \frac{m-t-1}{2}+\frac{\left|c_{m-t}\right|}{\left|c_{0}\right|+\left|c_{m-t}\right|}
$$

Using this inequality and (3.4), we get for $z \in U$

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{z r^{\prime}(z)}{r(z)}\right\} \geq t+\frac{m-t-1}{2}+\frac{\left|c_{m-t}\right|}{\left|c_{0}\right|+\left|c_{m-t}\right|}-\frac{n-\left|B^{\prime}(z)\right|}{2} \\
\quad=\frac{1}{2}\left\{\left|B^{\prime}(z)\right|-(n-m-t)+\frac{\left|c_{m-t}\right|-\left|c_{0}\right|}{\left|c_{m-t}\right|+\left|c_{0}\right|}\right\},
\end{gathered}
$$

which is the required result.

References

[1] A. Aziz, N. A. Rather: A refinement of a theorem of Paul Turan concerning polynomials, Math. Inequal. Appl. 1 (1998), 231-238.
[2] S. Bernstein: Sur la limitation des derivees des polynômes, C. R. Math. Acad. Sci. Paris. 190 (1930), 338-341.
[3] M. Bidkham, H. A. Soleiman Mezerji: Some inequalities for the polar derivative of a polynomial in complex domain, Complex Anal. Oper. Theory. 7 (2013), 1257-1266.
[4] P. Borwein, T. Erdelyi: Sharp extension of Bernstein inequalities to rational spaces, Mathematika. 43 (1996), 413-423.
[5] S. Hans, D. Tripathi, A. A. Mogbademu, Babita Tyagi: Inequalities for rational functions with prescribed poles, Jornal of Interdisciplinary Mathemathics. 21 (2018), no. 1, 157-169.
[6] X. Li: A comparison inequality for rational functions, Proc. Amer. Math. Soc. 139 (2011), 1659-1665.
[7] X. Li, R. N. Mohapatra, R. S. Rodrigues: Bernstein type inequalities for rational functions with prescribed poles, J. Lond. Math. Soc. 51 (1995), 523-531.
[8] A. Mir: Inequalities cocerning rational functions with prescribed poles, Indian J. Pure Appl. Math. 20 (2019), no. 2, 315-331.
[9] R. Osserman: A sharp Schwarz inequality on the boundary for functions regular in the disk, Proc. Amer. Math. Soc. 12 (2000), 3513-3517.
[10] P. Turán: Uber die ableitung von polynomen, Compositio Math. 7 (1939), 89-95.

