Note di Matematica *Note Mat.* **39** (2019) no. 2, 111–119.

Lacunary Statistically ϕ - Convergence

Ekrem Savas

Department of Mathematics, Uşak University, Uşak, Turkey ekremsavas@yahoo.com

Shyamal Debnath

Department of Mathematics, Tripura University, Suryamaninagar, Agartala, India shyamalnitamath@gmail.com

Received: 17.10.2019; accepted: 11.12.2019.

Abstract. In this paper by using the lacunary sequence and Orlicz function ϕ , we introduce a new concept of lacunary statistically ϕ -convergence, as a generalization of the statistically ϕ -convergence and ϕ -convergence. Based on this concepts, introduce a new sequence space $S_{\theta} - \phi$ and investigate some of its basic properties. Also studied some inclusion relations.

Keywords: Orlicz function, lacunary sequence, statistical convergence, ϕ -convergence.

MSC 2000 classification: 40A05, 40C05, 40D25.

1 Introduction

The idea of *convergence* of a real sequence was extended to *statistical con*vergence by Fast [5] (see also Steinhaus [18]) as follows:

A real number sequence $x = (x_n)$ is said to be *statistically convergent* to the number L if for each $\varepsilon > 0$,

where the vertical bars indicate the number of elements in the enclosed set. L is called the statistical limit of the sequence (x_n) and we write $S - \lim_{n \to \infty} x = \sum_{n \to \infty} x^n$ L or $x_k \to L(S)$. We shall also use S to denote the set of all statistically convergent sequences. Statistical convergence turned out to be one of the most active areas of research in summability theory after the works of Fridy [9], Salat [15]. Some applications of statistical convergence in number theory and mathematical analysis can be found in [1, 2, 8, 11, 12, 13, 16, 17, 19]. There is a natural relationship [3] between statistical convergence and strong Cesàro summability:

 $|\sigma_1| = \{x = (x_n) : \text{ for some } L, \lim \left(\frac{1}{n} \sum_{k=1}^n |x_k - L|\right) = 0\}.$

In another direction, a new type of convergence called *lacunary statistical* convergence was introduced in [10] as follows (for details one may refer [4]):

http://siba-ese.unisalento.it/ © 2019 Università del Salento

A lacunary sequence is an increasing integer sequence $\theta = (k_r)_{r \in N \cup \{0\}}$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$, as $r \to \infty$. Let $I_r = (k_{r-1}, k_r]$ and $q_r = \frac{k_r}{k_{r-1}}$.

A real number sequence $x = (x_n)$ is said to be *lacunary statistically conver*gent to the number L if for each $\varepsilon > 0$,

$$\lim_{r} \frac{1}{h_r} \mid \{k \in I_r : |x_k - L| \ge \varepsilon\} \mid = 0;$$

L is called the lacunary statistical limit of the sequence (x_n) and we write $S_{\theta} - \lim x = L$ or $x_k \to L(S_{\theta})$. We shall also use S_{θ} to denote the set of all lacunary statistically convergent sequences with respect to the lacunary sequence θ . The relation between lacunary statistical convergence and statistical convergence was established among other related things in[10]. There is a strong connection between $|\sigma_1|$ and the sequence space N_{θ} [6], which is defined as

$$N_{\theta} = \{ x = (x_n) : \text{ for some } L, \lim_{r} \left(\frac{1}{h_r} \sum_{k \in I_r} |x_k - L| \right) = 0 \}$$

In the literature, statistical convergence of any real sequence is defined relatively to absolute value. While, we know that the absolute value of real numbers is a special case of an *Orlicz function* [14] i.e. a function $\phi : \mathbb{R} \to \mathbb{R}$ such that it is even, non-decreasing on \mathbb{R}^+ , continuous on \mathbb{R} , and satisfying

 $\phi(x) = 0 \iff x = 0 \text{ and } \phi(x) \to \infty \text{ as } x \to \infty.$

Rao and Ren [14] describe the important roles and applications that Orlicz functions have in many areas such as economics, stochastic problems etc.

An Orlicz function $\phi : \mathbb{R} \to \mathbb{R}$ is said to satisfy the Δ_2 condition, if there exists an M > 0 such that $\phi(2x) \leq M . \phi(x)$, for every $x \in \mathbb{R}^+$.

Example 1. (i) The function $\phi : \mathbb{R} \to \mathbb{R}$ defined $\phi(x) = |x|$ is an Orlicz function.

(ii) The function $\phi : \mathbb{R} \to \mathbb{R}$ defined by $\phi(x) = x^3$ is not an Orlicz function.

(iii) The function $\phi : \mathbb{R} \to \mathbb{R}$ defined by $\phi(x) = x^2$ is an Orlicz function satisfying the Δ_2 condition.

(iv) The function $\phi : \mathbb{R} \to \mathbb{R}$ defined by $\phi(x) = e^{|x|} - |x| - 1$ is an Orlicz function not satisfying the Δ_2 condition.

In this paper by using the lacunary sequence θ and Orlicz function ϕ , we introduce a new concept of *lacunary statistically* ϕ -convergence, as a generalization of the statistically convergence [5] and lacunary statistically convergence[10] and based on this concepts, introduce a new sequence space $S_{\theta} - \phi$. We investigate some of its basic properties. Also we study some inclusion relations.

Lacunary Statistically ϕ -Convergence

2 Definitions and Preliminaries

Definition 1. Let $\phi : \mathbb{R} \to \mathbb{R}$ be an Orlicz function. A sequence $x = (x_n)$ is said to be ϕ -convergent to L if $\lim_{n \to \infty} \phi(x_n - L) = 0$.

In this case, L is called the ϕ -limit of (x_n) and denoted by ϕ - lim x = L.

Note 1. If we take $\phi(x) = |x|$, then ϕ -convergent concepts coincide with usual convergence. Also it is easy to check, if $x = (x_n)$ is ϕ -convergent to L, then any of its subsequence is ϕ -convergent to L as well.

Definition 2. Let $\phi : \mathbb{R} \to \mathbb{R}$ be an Orlicz function. A sequence $x = (x_n)$ is said to be *statistically* ϕ -convergent to L if for each $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} \mid \{k \le n : \phi(x_k - L) \ge \varepsilon\} \mid = 0.$$

L is called the statistical ϕ - limit of the sequence (x_n) and we write $S - \phi$ lim x = L or $x_k \to L(S - \phi)$. We shall also use $S - \phi$ to denote the set of all statistically ϕ -convergent sequences.

Note 2. If we take $\phi(x) = |x|$, then $S - \phi$ convergence concepts coincide with statistically convergence.

Definition 3. Let $\phi : \mathbb{R} \to \mathbb{R}$ be an Orlicz function. We define new sequence spaces $|\sigma_1|_{\phi}$ and $N_{\theta} - \phi$ are as follows:

$$| \sigma_1 |_{\phi} = \{ x = (x_n) : \text{ for some } L, \lim_n (\frac{1}{n} \sum_{k=1}^n \phi(x_k - L)) = 0 \},\$$

$$N_{\theta} - \phi = \{ x = (x_n) : \text{ for some } L, \lim_r (\frac{1}{h_r} \sum_{k \in I_r} \phi(x_k - L)) = 0 \}.$$

Note 3. If we take $\phi(x) = |x|$, then the spaces $|\sigma_1|_{\phi}$ and $N_{\theta} - \phi$ coincides with $|\sigma_1|$ and N_{θ} respectively.

3 Main Results

Definition 4. Let $\phi : \mathbb{R} \to \mathbb{R}$ be an Orlicz function and θ be a lacunary sequence. A sequence $x = (x_n)$ is said to be *lacunary statistically* ϕ -convergent to L if for each $\varepsilon > 0$,

$$\lim_{r} \frac{1}{h_r} \mid \{k \in I_r : \phi(x_k - L) \ge \varepsilon\} \mid = 0.$$

In this case, L is called the lacunary statistical ϕ -limit of the sequence (x_n) and we write $S_{\theta} - \phi \lim x = L$ or $x_k \to L(S_{\theta} - \phi)$. We shall also use $S_{\theta} - \phi$ to denote the set of all lacunary statistically ϕ -convergent sequences. **Note 4.** If we take $\phi(x) = |x|$, then $S_{\theta} - \phi$ convergence coincide with S_{θ} -convergence; which was studied by Fridy and Orhan [10]. Thus $S_{\theta} - \phi$ convergence is a generalization of S_{θ} -convergence.

Example 2. Let $\phi(x) = x^2$ and $\theta = (2^r)$. It is obvious that ϕ , satisfies the Δ_2 condition. Let us consider the sequence (x_n) , defined by

$$x_n = \begin{cases} \sqrt{n}, & n = k^2, k \in N \\ \frac{1}{\sqrt{n}}, & otherwise \end{cases}$$

then the sequence (x_n) is $S_{\theta} - \phi$ convergent to 0, although (x_n) is not convergent.

$$\begin{aligned} Justification: \text{ We have} \\ \lim_{r} \frac{1}{h_{r}} \mid \{k \in I_{r} : \phi(x_{k} - L) \geq \varepsilon\} \mid &= \lim_{r} \frac{1}{2^{r-1}} \mid \{k \in (2^{r-1}, 2^{r}] : \phi(x_{k} - 0) \geq \varepsilon\} \mid \\ &= 2 \lim_{r} \frac{1}{2^{r}} \mid \{k \in (2^{r-1}, 2^{r}] : x_{k}^{2} \geq \varepsilon\} \mid \leq 2 \lim_{r} \frac{1}{2^{r}} \mid \{k \leq 2^{r} : x_{k}^{2} \geq \varepsilon\} \mid \\ &= 2 \lim_{r} \frac{1}{n} \mid \{k \leq n : x_{k}^{2} \geq \varepsilon\} \mid = 0. \end{aligned}$$

This shows that the sequence (x_n) is $S_{\theta} - \phi$ convergent to 0, although (x_n) is not convergent.

Example 3. Let $\phi : \mathbb{R} \to \mathbb{R}$ be an Orlicz function with $\phi(x) = |x|$, θ be any lacunary sequence, then the sequence (x_n) defined by $x_n = n^2$, for every $n \in N$ is not $S_{\theta} - \phi$ convergent.

Justification: Take any $x \in \mathbb{R}$. Then $x \leq 0$ or x > 0. If $x \leq 0$, choose $\epsilon = \frac{1}{2}$, then for every $n \in N$,

$$K(\varepsilon) = \{k \in I_r : |x_k - x| \ge \varepsilon\} = I_r.$$

Therefore for $x \leq 0$, $\lim_{r} \frac{1}{h_r} \mid \{k \in I_r : |x_k - x| \geq \varepsilon\} \mid = \lim_{r} \frac{1}{h_r} \mid I_r \mid = 1$.

If x > 0, then there exists $n_0 \in N$ such that $x_{n_0-1} \leq x \leq x_{n_0}$.

In this case, if x < 1, by taking $\epsilon = \frac{1}{2} \min\{x, 1 - x\}$, we get $K(\varepsilon) = \{k \in I_r : |x_k - x| \ge \varepsilon\} = I_r$.

Again, if $x \ge 1$, by taking $\epsilon = \frac{1}{2} \min\{x - x_{n_0-1}, x_{n_0} - x\}$, we get $K(\varepsilon) = \{k \in I_r : |x_k - x| \ge \varepsilon\} = I_r.$

Thus for x > 0, $\lim_{r} \frac{1}{h_r} \mid \{k \in I_r : |x_k - x| \ge \varepsilon\} \mid = \lim_{r} \frac{1}{h_r} \mid I_r \mid = 1.$

Hence the result.

Definition 5. A sequence $x = (x_n)$ is said to be ϕ -bounded with respect to the Orlicz function ϕ , if there exists M > 0 such that $\phi(x_n) \leq M$, for every $n \in \mathbb{N}$.

In the following theorem we give some inclusion relations between the spaces $N_{\theta} - \phi$ and $S_{\theta} - \phi$ and show that they are equivalent for ϕ - bounded sequences.

Theorem 1. Let $\theta = (k_r)$ be a lacunary sequence, then (i) $x_k \to L(N_\theta - \phi)$ implies $x_k \to L(S_\theta - \phi)$, and reverse is not true. (ii) If x is ϕ -bounded and $x_k \to L(S_\theta - \phi)$ then $x_k \to L(N_\theta - \phi)$.

Proof. (i) If
$$\varepsilon > 0$$
 and $x_k \to L(N_\theta - \phi)$, we may write

$$\sum_{k \in I_r} \phi(x_k - L) \ge \sum_{\substack{k \in I_r \\ \phi(x_k - L) \ge \varepsilon}} \phi(x_k - L) \ge \varepsilon \mid \{k \in I_r : \phi(x_k - L) \ge \varepsilon\} \mid$$

from which the first result follows.

In order to establish the 2nd part, we will construct a sequence which is in $S_{\theta} - \phi$ but not in $N_{\theta} - \phi$. For this, let $\phi(x) = |x|$, proceeding as in [10], page-45, θ be given and define x_k to be 1,2,..., $[\sqrt{h_r}]$ at the first $[\sqrt{h_r}]$ integers in I_r and $x_k = 0$, otherwise. Note that x is not bounded. It was shown in [10] that $x_k \to 0(S_{\theta})$, but x_k is not convergent to $0(N_{\theta})$. By Note 3 and 4, we conclude that $x_k \to 0(S_{\theta} - \phi)$ but x_k is not convergent to $0(N_{\theta} - \phi)$. Hence we may write $(N_{\theta} - \phi) \subseteq (S_{\theta} - \phi)$.

(*ii*) Let $x_k \to L(S_\theta - \phi)$ and x is ϕ -bounded, i.e $\phi(x_k) \leq M$ for every $k \in N$. Given $\varepsilon > 0$, we get

$$\frac{1}{h_r} \sum_{k \in I_r} \phi(x_k - L) = \frac{1}{h_r} \sum_{\substack{k \in I_r \\ \phi(x_k - L) \ge \varepsilon}} \phi(x_k - L) + \frac{1}{h_r} \sum_{\substack{k \in I_r \\ \phi(x_k - L) < \varepsilon}} \phi(x_k - L)$$

$$\leq \frac{M + \phi(L)}{h_r} \mid \{k \in I_r : \phi(x_k - L) \ge \varepsilon\} \mid +\varepsilon, \text{ which yields the result.}$$

$$\boxed{QED}$$

Note 5. As a consequence of the result (i) and (ii) of the above theorem, we can conclude that, if x is ϕ - bounded then $S_{\theta} - \phi = N_{\theta} - \phi$.

In the following lemmas we study the inclusions $S - \phi \subseteq S_{\theta} - \phi$ and $S_{\theta} - \phi \subseteq S - \phi$ under certain restrictions on $\theta = (k_r)$.

Lemma 1. For any lacunary sequence θ and any Orlicz function ϕ , $S - \phi \lim x = L$ implies $S_{\theta} - \phi \lim x = L$ if and only if $\liminf_{r} q_r > 1$. If $\liminf_{r} q_r = 1$, then there exists a bounded $S - \phi$ summable sequence that is not $S_{\theta} - \phi$ summable (to any limit).

Proof. (Sufficiency) Suppose that $\liminf_{r} q_r > 1$, then there exists a $\delta > 0$ such that $q_r > 1 + \delta$, for sufficiently large r, which implies that $\frac{h_r}{k_r} > \frac{\delta}{1+\delta}$.

If $x_k \to L(S - \phi)$, then for every $\varepsilon > 0$ and for sufficiently large r, we have

$$\begin{split} \frac{1}{h_r} \mid \{k \in I_r : \phi(x_k - L) \ge \varepsilon\} \mid &= \frac{k_r}{h_r} \frac{1}{k_r} \mid \{k \in I_r : \phi(x_k - L) \ge \varepsilon\} \mid \\ &\leq \frac{1 + \delta}{\delta} \frac{1}{k_r} \mid \{n \le k_r : \phi(x_n - L) \ge \varepsilon\} \mid . \end{split}$$

Thus $x_k \to L(S_\theta - \phi).$

(Necessity) Assume that $\liminf_{r} q_r = 1$ and construct a sequence which is $S - \phi$ convergent but not $S_{\theta} - \phi$ convergent. For this, let $\phi(x) = |x|$, proceeding as in ([7], page-510 and [10], page-46), we can select a subsequence (k_{r_j}) of the lacunary sequence θ such that $\frac{k_{r_j}}{k_{r_{j-1}}} < 1 + \frac{1}{j}$ and $\frac{k_{r_j-1}}{k_{r_{j-1}}} > j$, where $r_j \ge r_{j-1} + 2$.

Now we define a bounded sequence $x = (x_i)$ by $x_i = \begin{cases} 1, & i \in I_{r_j}, j = 1, 2, 3... \\ 0, & otherwise \end{cases}$ Then for any real L, we have $\frac{1}{h_{r_i}} \sum_{i=1}^{n} |x_i - L| = |1 - L|, j = 1, 2, 3, ...$

and
$$\frac{1}{h_{r_j}} \sum_{I_r} |x_i - L| = |L|$$
, for $r \neq r_j$
i.e $\lim_r \frac{1}{h_r} |\{k \in I_r : \phi(x_k - L) \geq \varepsilon\} |\neq 0$

Thus x is not $S_{\theta} - \phi$ convergent to L.

However x is $S - \phi$ convergent, since if t is any sufficiently large integer we can find the unique j for which $k_{r_j-1} < t \leq k_{r_{j+1}-1}$ and write

$$\frac{1}{t}\sum_{i=1}^{t}\phi(x_i) = \frac{1}{t}\sum_{i=1}^{t} |x_i| \le \frac{k_{r_{j-1}} + h_{r_j}}{k_{r_{j-1}}} \le \frac{1}{j} + \frac{1}{j} = \frac{2}{j}$$

as $t \to \infty$, it follows that $j \to \infty$. Hence $x \in |\sigma_1|^0$. It follows from Theorem 2.1 of [3] that x is statistically convergent. The above Note 2 implies x is $S - \phi$ convergent.

The following example shows that there exists a $S_{\theta} - \phi$ convergent sequence which has a subsequence that is not $S_{\theta} - \phi$ -convergent.

Example 4. Let $\theta = (2^r)$ be the lacunary sequence, $\phi(x) = |x|$ be an Orlicz function and (x_n) be a sequence defined by $x_n = \begin{cases} n, & n = k^2, k \in N \\ \frac{1}{n}, & otherwise \end{cases}$.

Then the sequence (x_n) is $S_{\theta} - \phi$ convergent to 0. However, (x_n) has a subsequence, which is not $S_{\theta} - \phi$ convergent.

Lemma 2. For any lacunary sequence θ and any Orlicz function ϕ , $S_{\theta} - \phi \lim x = L$ implies $S - \phi \lim x = L$ if and only if $\limsup_{r} q_r < \infty$. If $\limsup_{r} q_r = \infty$, then there exists a bounded $S_{\theta} - \phi$ summable sequence that is not $S - \phi$ summable (to any limit).

116

Lacunary Statistically ϕ -Convergence

Proof. If $\limsup_{r} q_r < \infty$ then there is an H > 0 such that $q_r < H$ for all r. Suppose that $x_k \to L(S_\theta - \phi)$, and let $N_r = |\{k \in I_r : \phi(x_k - L) \ge \varepsilon\}|$.

By the definition of $S_{\theta} - \phi$ convergence we have, given any $\varepsilon' > 0$, there is an $r_0 \in N$ such that

 $\frac{N_r}{h_r} < \varepsilon' \text{ for all } r > r_0.$ Now let $M = \max\{N_r : 1 \le r \le r_0\}$ and let n be any integer satisfying $k_{r-1} < n \le k_r$; the we can write

$$\begin{aligned} \frac{1}{n} &| \{k \le n : \phi(x_k - L) \ge \varepsilon\} \mid \le \frac{1}{k_{r-1}} \mid \{k \le k_r : \phi(x_k - L) \ge \varepsilon\} \mid \\ &= \frac{1}{k_{r-1}} \{N_1 + N_2 + \dots + N_{r_0} + N_{r_0+1} + \dots + N_r\} \\ &\le \frac{M}{k_{r-1}} r_0 + \frac{1}{k_{r-1}} \{h_{r_0+1} \frac{N_{r_0+1}}{h_{r_0+1}} + \dots + h_r \frac{N_r}{h_r}\} \\ &\le \frac{r_0 M}{k_{r-1}} + \frac{1}{k_{r-1}} (\sup_{r > r_0} \frac{N_r}{h_r}) \{h_{r_0+1} + \dots + h_r\} \\ &\le \frac{r_0 M}{k_{r-1}} + \varepsilon' \frac{k_r - k_{r_0}}{k_{r-1}} \le \frac{r_0 M}{k_{r-1}} + \varepsilon' q_r \le \frac{r_0 M}{k_{r-1}} + \varepsilon' H \end{aligned}$$

and the sufficiency follows immediately.

Conversely, suppose that $\limsup_{r} q_r = \infty$ and construct a sequence which is $S_{\theta} - \phi$ convergent but not $S - \phi$ convergent. For this, let $\phi(x) = |x|$. Following the idea in ([6], page-511 and [10], page-47), we can select a subsequence (k_{r_j}) of the lacunary sequence $\theta = (k_r)$ such that $q_{r_j} > j$, and defined a bounded sequence $x = (x_i)$ by

$$x_i = \begin{cases} 1, & k_{r_j-1} < i \le 2k_{r_j-1}, \ j = 1, 2, 3... \\ 0, & otherwise \end{cases}$$

It is shown in ([7], page-511) that $x \in N_{\theta}$ but $x \notin |\sigma_1|$. By Theorem 1(i) of ([10], page-44), we have x is S_{θ} -convergent. The above Note 5 implies x is $S_{\theta} - \phi$ convergent, but it follows from Theorem 2.1 of [3] that x is not S-convergent. By above Note 2 implies x is not $S - \phi$ convergent. QED

Combining the above two lemmas we get

Theorem 2. Let θ be any lacunary sequence; then $S - \phi = S_{\theta} - \phi$ if and only if $1 \leq \liminf_{r} q_r \leq \limsup_{r} q_r < \infty$.

Theorem 3. Let θ be a lacunary sequence and ϕ be a convex Orlicz function. If the sequence (x_n) is $S_{\theta} - \phi$ convergent, then $S_{\theta} - \phi$ limit of (x_n) is unique.

Proof. If possible, let $S_{\theta} - \phi \lim x_n = x_0$ and $S_{\theta} - \phi \lim x_n = y_0$. Then $\lim_r \frac{1}{h_r} | \{k \in I_r : \phi(x_k - x_0) \ge \varepsilon\} |= 0$ and $\lim_r \frac{1}{h_r} | \{k \in I_r : \phi(x_k - y_0) \ge \varepsilon\} |= 0$ i.e., $\lim_r \frac{1}{h_r} | \{k \in I_r : \phi(x_k - x_0) < \varepsilon\} |= 1$ and $\lim_{r} \frac{1}{h_r} \mid \{k \in I_r : \phi(x_k - y_0) < \varepsilon\} \mid = 1$

Let us consider such $k \in I_r$ for which both of $\phi(x_k - x_0) < \varepsilon$ and $\phi(x_k - y_0) < \varepsilon$ ε are true. For such $k \in I_r$ we have

 $\phi(\frac{1}{2}(x_0 - y_0)) = \phi(\frac{1}{2}(x_0 - x_k + x_k - y_0)) \le \frac{1}{2}\phi(x_k - x_0) + \frac{1}{2}\phi(x_k - y_0) = \epsilon$ Hence the theorem.

For the next result we assume the convex Orlicz function which satisfies \triangle_2 -condition.

Theorem 4. If (x_n) and (y_n) are $S_{\theta} - \phi$ convergent and α is any real constant, then

(i) $(x_n + y_n)$ is $S_\theta - \phi$ convergent and $S_\theta - \phi \lim(x_n + y_n) = S_\theta - \phi \lim x_n + S_\theta - \phi \lim y_n$.

(ii) (αx_n) is $S_{\theta} - \phi$ convergent and $S_{\theta} - \phi \lim(\alpha x_n) = \alpha \cdot S_{\theta} - \phi \lim x_n$.

Proof. Since ϕ satisfies the Δ_2 - condition, then there exists M > 0 such that $\phi(2x) \leq M.\phi(x)$, for every $x \in R$.

(i) Let $S_{\theta} - \phi \lim x_n = x$ and $S_{\theta} - \phi \lim y_n = y$ i.e $\lim_r \frac{1}{h_r} | \{k \in I_r : \phi(x_k - x) \ge \varepsilon\} |= 0 = \lim_r \frac{1}{h_r} | \{k \in I_r : \phi(y_k - y) \ge \varepsilon\} |$ i.e $\lim_r \frac{1}{h_r} | \{k \in I_r : \phi(x_k - x) < \varepsilon\} |= 1 = \lim_r \frac{1}{h_r} | \{k \in I_r : \phi(y_k - y) < \varepsilon\} |$ Let us consider such $k \in I_r$ for which both of $\phi(x_k - x) < \frac{\varepsilon}{2M}$ and $\phi(y_k - y) < \frac{\varepsilon}{2M}$ are true.

Then for such $k \in I_r$, we have $\begin{aligned} \phi((x_k + y_k) - (x + y)) &= \phi((x_k - x) + (y_k - y)) \leq \phi(2(x_k - x) + 2(y_k - y)) \\ &\leq M(\phi(x_k - x) + \phi(y_k - y)) = M.(\frac{\varepsilon}{2M} + \frac{\varepsilon}{2M}) = \varepsilon. \end{aligned}$ Thus $\lim_r \frac{1}{h_r} \mid \{k \in I_r : \phi(x_k + y_k - x - y) < \varepsilon\} \mid = 1$ i.e $\lim_r \frac{1}{h_r} \mid \{k \in I_r : \phi(x_k + y_k - x - y) \geq \varepsilon\} \mid = 0$ i.e $S_\theta - \phi \, \lim(x_n + y_n) = x + y = S_\theta - \phi \, \lim x_n + S_\theta - \phi \, \lim y_n. \end{aligned}$ (ii) Let $p \in N$ such that $\mid \alpha \mid \leq 2^p$ and $S_\theta - \phi \, \lim x_n = x$ then $\lim_r \frac{1}{h_r} \mid \{k \in I_r : \phi(x_k - x) < \varepsilon\} \mid = 1.$ Let us consider such $k \in I_r$ for which $\phi(x_k - x) < \frac{\varepsilon}{2^p}$, then $\phi(\alpha(x_k - x)) = \phi(\mid \alpha \mid (x_k - x)) \leq \phi(2^p(x_k - x)) \leq 2^p\phi(x_k - x) \leq 2^p.\frac{\varepsilon}{2^p} = \varepsilon.$ Thus $\lim_r \frac{1}{h_r} \mid \{k \in I_r : \phi(\alpha(x_k - \alpha)) < \varepsilon\} \mid = 1$ i.e $\lim_r \frac{1}{h_r} \mid \{k \in I_r : \phi(\alpha(x_k - \alpha x)) \geq \varepsilon\} \mid = 0.$ Hence $S_\theta - \phi \, \lim(\alpha x_n) = \alpha.x = \alpha. S_\theta - \phi \, \lim x_n.$

118

Lacunary Statistically ϕ -Convergence

References

- [1] R. C. BUCK: Generalized asymptotic density. Amer. J. Math. 75 (1953) 335-346.
- [2] H. CAKALLI: A study on statistical convergence. Functional Analysis, Approximation and Computation. 1-2 (2009) 19-24.
- [3] J.CONNOR: The statistical and strong p-Cesàro convergence of sequences. Analysis 8 (1988) 47-63.
- [4] G.DAS AND B.K.PATEL: Lacunary distribution of sequences. Indian J. Pure Appl. Math. 20(1) (1989) 64-74.
- [5] H.FAST: Sur la convergence statistique. Colloq. Math. 2 (1951) 241-244.
- [6] A.R.FREEDMAN AND J.J.SEMBER: Densities and summability. Pacific J. Math. 95 (1981) 293-305.
- [7] A. R. FREEDMAN, J. J. SEMBER AND M. RAPHAEL: Some Cesàro type summability space. Proc. London Math. Soc. 37 (1978) 508-520.
- [8] J. A. FRIDY: Statistical limit points. Proc. Amer. Math. Soc. 4 (1993) 1187-1192.
- [9] J. A. FRIDY: On statistical convergence. Analysis 5 (1985) 301-313.
- [10] J. A. FRIDY AND C. ORHAN: Lacunary statistical convergence. Pacific J. Math. 160(1) (1993) 43-51.
- [11] M. MAMEDOV AND S. PEHLIVAN: Statistical cluster points and turnpike theorem in non convex problems. J. Math. Anal. Appl. 256 (2001) 686-693.
- [12] D. S. MITRINOVIC, J. SANDOR AND B. CRSTICI: Handbook of Number Theory. Kluwer Acad. Publ. Dordrecht-Boston-London, 1996.
- [13] M. MURSALEEN, S. DEBNATH AND D. RAKSHIT: I-statistical limit superior and Istatistical limit inferior. Filomat 31(7) (2017) 2103-2108.
- [14] M. M. RAO AND Z. D. REN: Applications of Orlicz spaces. Marcel Dekker Inc. 2002.
- [15] T. SALAT: On statistically convergent sequences of real numbers. Math. Slova. 30 (1980) 139-150.
- [16] E. SAVAS AND S. BORGOHAIN: On strongly almost lacunary statistical A-convergence defined by a Musielak-Orlicz function. Filomat 30(3) (2016) 689-697.
- [17] E. SAVAS AND P DAS: A generalized statistical convergence via ideals. Appl. Math. Lett. 24 (2011) 826-830.
- [18] H. STEINHAUS: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951) 73-74.
- [19] B. C. TRIPATHY: On statistically convergent and statistically bounded sequences, Bull. Malaysian. Math. Soc. 20 (1997) 31-33.