Biharmonic Hermitian vector bundles over compact Kähler manifolds and compact Einstein Riemannian manifolds

Hajime Urakawa
Division of Mathematics, Graduate School of Information Sciences, Tohoku University, Aoba 6-3-09, Sendai, 980-8579, Japan urakawa@math.is.tohoku.ac.jp

Received: 1.7.2019; accepted: 18.11.2019.

Abstract

We show, for every Hermitian vector bundle $\pi:(E, g) \rightarrow(M, h)$ over a compact Kähler Einstein manifold (M, h), if the projection π is biharmonic, then it is harmonic. On a biharmonic Hermitian vector bundle over a compact Riemannian manifold with positive Ricci curvature, we show a new estimate of the first eigenvalue of the Laplacian.

Keywords: biharmonic maps, harmonic maps, Kähler Einstein manifolds, Hermitian vector bundles

MSC 2000 classification: primary 53C43; secondary 58E20, 53C07

Introduction

Research of harmonic maps, which are critical points of the energy functional, is one of the central problems in differential geometry including minimal submanifolds. The Euler-Lagrange equation is given by the vanishing of the tension field. In 1983, Eells and Lemaire ([8]) proposed to study biharmonic maps, which are critical points of the bienergy functional, by definition, half of the integral of square of the norm of tension field $\tau(\varphi)$ for a smooth map φ of a Riemannian manifold (M, g) into another Riemannian manifold (N, h). After a work by G.Y. Jiang [21], several geometers have studied biharmonic maps (see [4], [12], [13], [20], [24], [26], [38], [39], etc.). Note that a harmonic maps is always biharmonic. One of central problems is to ask whether the converse is true. B.-Y. Chen's conjecture is to ask whether every biharmonic submanifold of the Euclidean space \mathbb{R}^{n} must be harmonic, i.e., minimal ([5]). There are many works supporting this conjecture ([7], [10], [22], [1]). However, B.-Y. Chen's conjecture is still open. R. Caddeo, S. Montaldo, P. Piu ([4]) and C. Oniciuc ([36]) raised the generalized B.-Y. Chen's conjecture to ask whether each biharmonic submanifold in a Riemannian manifold (N, h) of non-positive sectional curvature must be harmonic (minimal). For the generalized Chen's conjecture,

[^0]Ou and Tang gave ([37], [38]) a counter example in some Riemannian manifold of negative sectional curvature. But, it is also known (cf. [27], [28], [30]) that every biharmonic map of a complete Riemannian manifold into another Riemannian manifold of non-positive sectional curvature with finite energy and finite bienergy must be harmonic. For the target Riemannian manifold (N, h) of non-negative sectional curvature, theories of biharmonic maps and biharmonic immersions seems to be quite different from the case (N, h) of non-positive sectional curvature. There exit biharmonic submanifolds which are not harmonic in the unit sphere. S. Ohno, T. Sakai and myself [33], [34] determined (1) all the biharmonic hypersurfaces in irreducible symmetric spaces of compact type which are regular orbits of commutative Hermann actions of cohomogeneity one, and gave (2) a complete table of all the proper biharmonic singular orbits of commutative Hermann actions of cohomogeneity two, and (3) a complete list of all the proper biharmonic regular orbits of ($K_{2} \times K_{1}$)-actions of cohomogeneity one on G for every commutative compact symmetric triad $\left(G, K_{1}, K_{2}\right)$. We note that recently Inoguchi and Sasahara ([19]) investigated biharmonic homogeneous hypersurfaces in compact symmetric spaces. Sasahara ([40]) classified all biharmonic real hypersurfaces in a complex projective space, and Ohno studied biharmonic orbits of isotropy representations of symmetric spaces in the sphere (cf. [31], [32]).

In this paper, we treat with an Hermitian vector bundle $(E, g) \rightarrow(M, h)$ over a compact Riemannian manifold (M, h). We assume (M, h) is a compact Kähler Einstein Riemannian manifold, that is, the Ricci transform Ric ${ }^{h}$ of the Kähler metric h on M satisfies $\operatorname{Ric}^{h}=c \mathrm{Id}$, for some constant c. Then, we show the following (cf. Theorems 4 and 5):

Theorem 1. Let $\pi:(E, g) \rightarrow(M, h)$ be an Hermitian vector bundle over a compact Kähler Einstein Riemannian manifold (M, h). If π is biharmonic, then it is harmonic.

Theorem 2. Let $\pi:(E, g) \rightarrow(M, h)$ be a biharmonic Hermitian vector bundle over a compact Einstein manifold (M, h) with Ricci curvature Ric $^{h}=c$ for some positive constant $c>0$. Then, either (i) π is harmonic, (ii) $f_{0}=$ $\langle\tau(\pi), \tau(\pi)\rangle$ is constant, or (iii) the first eigenvalue $\lambda_{1}(M, h)$ of (M, h) satisfies the following inequality:

$$
\begin{equation*}
0<\frac{n}{n-1} c \leq \lambda_{1}(M, h) \leq \frac{2 c}{1-X} \tag{0.1}
\end{equation*}
$$

where

$$
\begin{equation*}
0<X:=\frac{1}{\operatorname{Vol}(M, h)} \frac{\left(\int_{M} f_{0} v_{h}\right)^{2}}{\int_{M} f_{0}^{2} v_{h}}<1 \tag{0.2}
\end{equation*}
$$

and $f_{0}:=\langle\tau(\pi), \tau(\pi)\rangle \in C^{\infty}(M)$ is the pointwise inner product of the tension field $\tau(\pi)$.

The inequalities (1) and (2) can be rewritten as follows:

$$
\begin{equation*}
-1<\frac{2-n}{n}=1-2 \frac{n-1}{n} \leq 1-\frac{2 c}{\lambda_{1}(M, h)} \leq \frac{1}{\operatorname{Vol}(M, h)} \frac{\left(\int_{M} f_{0} v_{h}\right)^{2}}{\int_{M} f_{0}^{2} v_{h}}<1 \tag{0.3}
\end{equation*}
$$

Theorem 1 shows the sharp contrasts on the biharmonicities between the case of vector bundles and the one of the principle G-bundles. Indeed, we treated with the biharmonicity of the projection of the principal G-bundle over a Riemannian manifold (M, h) with negative definite Ricci tensor field (cf. Theorem 2.3 in [45]). In Theorem 2, the behavior of the quantity $1-\frac{2 c}{\lambda_{1}(M, h)}$ in (3) is very important. Indeed, $0 \leq 1-\frac{2 c}{\lambda_{1}(M, h)}$ if and only if $2 c \leq \lambda_{1}(M, h)$ which is the theorem of M. Obata (cf [42] p.181, Theorem (3.23)), and $-\frac{n-1}{n} \leq 1-\frac{2 c}{\lambda_{1}(M, h)}<0$ if and only if $\frac{n}{n-1} c \leq \lambda_{1}(M, h)<2 c$ under the condition Ric $^{h} \geq c>0$, which is the theorem of Lichnerowicz and Obata [42], p.182, Theorem (3.26).

We give an example of the projection of the principal G-bundle over a Riemannian manifold (M, h) which is biharmonic but not harmonic (cf. Example 1 in this paper, and also Theorem 5 in [46]). Finally, it should be mentioned that Oniciuc ([36]) gave examples of non-harmonic biharmonic projections of the tangent bundle over a compact Riemannian manifold, which has a sharp contrast our case of the Hermitian vector bundles over a compact Kähler-Einstein manifold.

1 Preliminaries

In this section, we prepare materials for the first variation formula for the bi-energy functional and bi-harmonic maps. Let us recall the definition of a harmonic map $\varphi:(M, g) \rightarrow(N, h)$, of a comoact Riemannian manifold (M, g) into another Riemannian manifold (N, h), which is an extremal of the energy functional defined by

$$
E(\varphi)=\int_{M} e(\varphi) v_{g},
$$

where $e(\varphi):=\frac{1}{2}|d \varphi|^{2}$ is called the energy density of φ. That is, for all variation $\left\{\varphi_{t}\right\}$ of φ with $\varphi_{0}=\varphi$,

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} E\left(\varphi_{t}\right)=-\int_{M} h(\tau(\varphi), V) v_{g}=0 \tag{1.1}
\end{equation*}
$$

where $V \in \Gamma\left(\varphi^{-1} T N\right)$ is a variation vector field along φ which is given by $V(x)=\left.\frac{d}{d t}\right|_{t=0} \varphi_{t}(x) \in T_{\varphi(x)} N(x \in M)$, and the tension field of φ is given by $\tau(\varphi)=\sum_{i=1}^{m} B(\varphi)\left(e_{i}, e_{i}\right) \in \Gamma\left(\varphi^{-1} T N\right)$, where $\left\{e_{i}\right\}_{i=1}^{m}$ is a locally defined frame field on (M, g). The second fundamental form $B(\varphi)$ of φ is defined by

$$
\begin{align*}
B(\varphi)(X, Y) & =(\widetilde{\nabla} d \varphi)(X, Y) \\
& =\left(\widetilde{\nabla}_{X} d \varphi\right)(Y) \\
& =\bar{\nabla}_{X}(d \varphi(Y))-d \varphi\left(\nabla_{X} Y\right) \\
& =\nabla_{d \varphi(X)}^{N} d \varphi(Y)-d \varphi\left(\nabla_{X} Y\right) \tag{1.2}
\end{align*}
$$

for all vector fields $X, Y \in \mathfrak{X}(M)$. Furthermore, ∇, and ∇^{N}, are connections on $T M, T N$ of $(M, g),(N, h)$, respectively, and $\bar{\nabla}$, and $\widetilde{\nabla}$ are the induced one on $\varphi^{-1} T N$, and $T^{*} M \otimes \varphi^{-1} T N$, respectively. By (4), φ is harmonic if and only if $\tau(\varphi)=0$.

The second variation formula of the energy functional is also well known which is given as follows. Assume that φ is harmonic. Then,

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} E\left(\varphi_{t}\right)=\int_{M} h(J(V), V) v_{g} \tag{1.3}
\end{equation*}
$$

where J is an elliptic differential operator, called Jacobi operator acting on $\Gamma\left(\varphi^{-1} T N\right)$ given by

$$
\begin{equation*}
J(V)=\bar{\Delta} V-\mathcal{R}(V) \tag{1.4}
\end{equation*}
$$

where $\bar{\Delta} V=\bar{\nabla}^{*} \bar{\nabla} V$ is the rough Laplacian and \mathcal{R} is a linear operator on $\Gamma\left(\varphi^{-1} T N\right)$ given by $\mathcal{R} V=\sum_{i=1}^{m} R^{N}\left(V, d \varphi\left(e_{i}\right)\right) d \varphi\left(e_{i}\right)$, and R^{N} is the curvature tensor of (N, h) given by $R^{N}(U, V)=\nabla^{N}{ }_{U} \nabla^{N} V_{V}-\nabla^{N_{V}} \nabla^{N}{ }_{U}-\nabla^{N}{ }_{[U, V]}$ for $U, V \in \mathfrak{X}(N)$.
J. Eells and L. Lemaire proposed ([8]) polyharmonic (k-harmonic) maps and Jiang studied ([21]) the first and second variation formulas of bi-harmonic maps. Let us consider the bi-energy functional defined by

$$
\begin{equation*}
E_{2}(\varphi)=\frac{1}{2} \int_{M}|\tau(\varphi)|^{2} v_{g} \tag{1.5}
\end{equation*}
$$

where $|V|^{2}=h(V, V), V \in \Gamma\left(\varphi^{-1} T N\right)$.
Then, the first variation formula is given as follows.

Theorem 3. (the first variation formula)

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} E_{2}\left(\varphi_{t}\right)=-\int_{M} h\left(\tau_{2}(\varphi), V\right) v_{g} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{2}(\varphi)=J(\tau(\varphi))=\bar{\Delta} \tau(\varphi)-\mathcal{R}(\tau(\varphi)), \tag{1.7}
\end{equation*}
$$

J is given in (7).

For the second variational formula, see [21] or [12].
Definition 1. A smooth map φ of M into N is called to be bi-harmonic if $\tau_{2}(\varphi)=0$.

2 The case of compact Kähler manifolds.

To prove Theorem 1, we need the following:
Proposition 1. Let $\pi:(E, g) \rightarrow(M, h)$ be an Hermitian vector bundle over a compact Kähler Einstein manifold (M, h). Assume that π is biharmonic. Then the following hold:
(1) The tension field $\tau(\pi)$ satisfies that

$$
\begin{equation*}
\bar{\nabla}_{X^{\prime}} \tau(\pi)=0 \quad\left(\forall X^{\prime} \in \mathfrak{X}(M)\right) \tag{2.1}
\end{equation*}
$$

(2) The pointwise inner product $\langle\tau(\pi), \tau(\pi)\rangle=|\tau(\pi)|^{2}$ is constant on (M, g), say $d \geq 0$.
(3) The energy $E_{2}(\pi)$ satisfies that

$$
\begin{equation*}
E_{2}(\pi):=\frac{1}{2} \int_{M}|\tau(\pi)|^{2} v_{h}=\frac{d}{2} \operatorname{Vol}(M, h) . \tag{2.2}
\end{equation*}
$$

By Proposition 1, Theorem 1 can be proved as follows. Assume that π : $(E, g) \rightarrow(M, h)$ is biharmonic. Due to (11) in Proposition 1, we have

$$
\begin{equation*}
\operatorname{div}(\tau(\pi)):=\sum_{i=1}^{n}\left(\bar{\nabla}_{e_{i}^{\prime}} \tau(\pi)\right)\left(e_{i}^{\prime}\right)=0 \tag{2.3}
\end{equation*}
$$

where $\left\{e_{i}^{\prime}\right\}_{i=1}^{n}$ is a locally defined orthonormal frame field on (M, h) and we put $n=\operatorname{dim}_{\mathbb{R}} M$. Then, for every $f \in C^{\infty}(M)$, it holds that, due to Proposition (3.29) in [42], p. 60, for example,

$$
\begin{equation*}
0=\int_{M} f \operatorname{div}(\tau(\pi)) v_{h}=-\int_{M} h(\nabla f, \tau(\pi)) v_{h} \tag{2.4}
\end{equation*}
$$

Therefore, we obtain $\tau(\pi) \equiv 0$.
We will prove Proposition 1, later. Here, we give examples of the line bundles over some compact homogeneous Kähler Einstein manifolds (M, h) :

Example 1. A generalized flag manifold G / H admits a unique Kähler Einstein metric $h([3]$ and [6]). Here, G is a compact semi-simple Lie group, and H is the centralizer of a torus S in G, i.e., $G^{\mathbb{C}}$ is the complexification of G, and B is its Borel subgroup. Then,

$$
M=G / H=G^{\mathbb{C}} / B
$$

The Borel subgroup B is written as $B=T N$, where T is a maximal torus of B and N is a nilpotent Lie subgroup of B. Every character ξ_{λ} of a Borel subgroup B is given as a homomorphism $\xi_{\lambda}: B \rightarrow \mathbb{C}^{*}=\mathbb{C}-\{0\}$ which is written as

$$
\begin{equation*}
\xi_{\lambda}(t n)=\xi_{\lambda}(t) \quad(t \in T, n \in N) \tag{2.5}
\end{equation*}
$$

Here $\xi_{\lambda}: T \rightarrow U(1)$ is a character of T which is written as

$$
\begin{equation*}
\xi_{\lambda}\left(\exp \left(\theta_{1} H_{1}+\cdots+\theta_{\ell} H_{\ell}\right)\right)=e^{2 \pi \sqrt{-1}\left(k_{1} \theta_{1}+\cdots+k_{\ell} \theta_{\ell}\right)}, \quad\left(\theta_{1}, \ldots, \theta_{\ell} \in \mathbb{R}\right), \tag{2.6}
\end{equation*}
$$

where k_{1}, \ldots, k_{ℓ} are non-negative integers, and $\ell=\operatorname{dim} T$.
Note that every character ξ_{λ} of a nilpotent Lie group N must be $\xi_{\lambda}(n)=1$ because $\xi_{\lambda}(n)=\xi_{\lambda}(\exp X)=e^{\xi_{\lambda^{\prime}}(X)}$ where $n=\exp X(X \in \mathfrak{n})$, and $\lambda^{\prime}: \mathfrak{t} \rightarrow \mathbb{C}$ is a homomorphism, i.e., $\xi_{\lambda^{\prime}}(X+Y)=\xi_{\lambda^{\prime}}(X)+\xi_{\lambda^{\prime}}(Y),(X, Y \in \mathfrak{t})$. Then, there exists $k \in \mathbb{N}$ which satisfies that $\exp (k X)=n^{k}=e$. Then, $e^{k \xi_{\lambda^{\prime}}(X)}=\xi_{\lambda}\left(n^{k}\right)=$ $\xi_{\lambda}(e)=1$. Thus, for every $a \in \mathbb{R}$,

$$
e^{a k \xi_{\lambda^{\prime}}(X)}=\left(e^{k \xi_{\lambda^{\prime}}(X)}\right)^{a}=1
$$

This implies that $k \xi_{\lambda^{\prime}}(X)=0$. Thus, $\xi_{\lambda^{\prime}}(X)=0$ for all $X \in \mathfrak{n}$, i.e., $\xi_{\lambda^{\prime}} \equiv 0$. Therefore, we have that $\xi_{\lambda}(n)=e(n \in N)$. We have (15).

For every ξ_{λ} given by (15) and (16), we obtain the associated holomorphic vector bundle $E_{\xi_{\lambda}}$ over $G^{\mathbb{C}} / B$ as $E_{\xi_{\lambda}}:=\left\{[x, v] \mid(x, v) \in G^{\mathbb{C}} \times \mathbb{C}\right\}$, where the equivalence relation $(x, v) \sim\left(x^{\prime}, v^{\prime}\right)$ is $(x, v)=\left(x^{\prime}, v^{\prime}\right)$ if and only if there exists $b \in B$ such that $\left(x^{\prime}, v^{\prime}\right)=\left(x b^{-1}, \xi_{\lambda}(b) v\right)$, denoted by $[x, v]$, the equivalence class including $(x, v) \in G^{\mathbb{C}} \times \mathbb{C}$ (for example, [2], [41]).

3 Proof of Proposition 1.

For an Hermitian vector bundle $\pi:(E, g) \rightarrow(M, g)$ with $\operatorname{dim}_{\mathbb{R}} E=m$, and $\operatorname{dim}_{\mathbb{R}} M=n$, let us recall the definitions of the tension field $\tau(\pi)$ and the bitension field $\tau_{2}(\pi)$:

$$
\left\{\begin{align*}
\tau(\pi) & =\sum_{j=1}^{m}\left\{\bar{\nabla}_{e_{j}}^{h} \pi_{*} e_{j}-\pi_{*}\left(\nabla_{e_{j}}^{g} e_{j}\right)\right\} \tag{3.1}\\
\tau_{2}(\pi) & =\bar{\Delta} \tau(\pi)-\sum_{j=1}^{m} R^{h}\left(\tau(\pi), \pi_{*} e_{j}\right) \pi_{*} e_{j}
\end{align*}\right.
$$

Then, we have

$$
\begin{align*}
\tau_{2}(\pi) & :=\bar{\Delta} \tau(\pi)-\sum_{j=1}^{m} R^{h}\left(\tau(\pi), \pi_{*} e_{j}\right) \pi_{*} e_{j} \\
& =\bar{\Delta} \tau(\pi)-\sum_{j=1}^{n} R^{h}\left(\tau(\pi), e_{j}^{\prime}\right) e_{j}^{\prime} \tag{3.2}\\
& =\bar{\Delta} \tau(\pi)-\operatorname{Ric}^{h}(\tau(\pi)) \tag{3.3}
\end{align*}
$$

Here, recall that $\pi:(E, g) \rightarrow(M, h)$ is the Riemannian submersion and $\left\{e_{i}\right\}_{i=1}^{m}$ and $\left\{e_{j}^{\prime}\right\}_{j=1}^{n}$ are locally defined orthonormal frame fields on (E, g) and (M, h), respectively, satisfying that $\pi_{*} e_{j}=e_{j}^{\prime}(j=1, \cdots, n)$ and $\pi_{*}\left(e_{j}\right)=0(j=$ $n+1, \cdots, m)$. Therefore, we have (18) and (19) by means of the definition of the Ricci tensor field Ric^{h} of (M, h).

Assume that (M, h) is a real n-dimensional compact Kähler Einstein manifold with $\operatorname{Ric}^{h}=c \mathrm{Id}$, where n is even. Then, due to (19), we have that $\pi:(E, g) \rightarrow(M, h)$ is biharmonic if and only if

$$
\begin{equation*}
\bar{\Delta} \tau(\pi)=c \tau(\pi) . \tag{3.4}
\end{equation*}
$$

Since $\langle\tau(\pi), \tau(\pi)\rangle$ is a C^{∞} function on a Riemannian manifold (M, h), we have, for each $j=1, \cdots, n$,

$$
\begin{align*}
e_{j}^{\prime}\langle\tau(\pi), \tau(\pi)\rangle & =\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \tau(\pi)\right\rangle+\left\langle\tau(\pi), \bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right\rangle \\
& =2\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \tau(\pi)\right\rangle, \tag{3.5}\\
e_{j}^{\prime 2}\langle\tau(\pi), \tau(\pi)\rangle & =2 e_{j}^{\prime}\left\langle\bar{\nabla}_{e^{\prime}} \tau(\pi), \tau(\pi)\right\rangle \\
& =2\left\langle\bar{\nabla}_{e_{j}^{\prime}}\left(\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right), \tau(\pi)\right\rangle+2\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right\rangle, \tag{3.6}\\
\nabla_{e_{j}^{\prime}} e_{j}^{\prime}\langle\tau(\pi), \tau(\pi)\rangle & =2\left\langle\bar{\nabla}_{\nabla_{e_{j}^{\prime}}^{e_{j}^{\prime}}} \tau(\pi), \tau(\pi)\right\rangle . \tag{3.7}
\end{align*}
$$

Therefore, the Laplacian $\Delta_{h}=-\sum_{j=1}^{n}\left(e_{j}^{\prime 2}-\nabla_{e_{j}^{\prime}} e_{j}^{\prime}\right)$ acting on $C^{\infty}(M)$, so that

$$
\begin{align*}
\Delta_{h} & \langle\tau(\pi), \tau(\pi)\rangle= \tag{3.8}\\
& =2 \sum_{j=1}^{n}\left\{-\left\langle\bar{\nabla}_{e_{j}^{\prime}}\left(\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right), \tau(\pi)\right\rangle-\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \nabla_{e_{j}^{\prime}} \tau(\pi)\right\rangle+\left\langle\bar{\nabla}_{\nabla_{e_{j}^{\prime}}} \tau(\pi), \tau(\pi)\right\rangle\right\} \\
& =2\left\langle-\sum_{j=1}^{n}\left\{\bar{\nabla}_{e_{j}^{\prime}} \bar{\nabla}_{e_{j}^{\prime}}-\bar{\nabla}_{\nabla_{e_{j}^{\prime}} e_{j}^{\prime}}\right\} \tau(\pi), \tau(\pi)\right\rangle-2 \sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right\rangle \\
& =2\langle\bar{\Delta} \tau(\pi), \tau(\pi)\rangle-2 \sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right\rangle \tag{3.9}\\
& \leq 2\langle\bar{\Delta} \tau(\pi), \tau(\pi)\rangle, \tag{3.10}
\end{align*}
$$

because of $\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right\rangle \geq 0,(j=1, \cdots, n)$.
If $\pi:(E, g) \rightarrow(M, h)$ is biharmonic, due to $(20), \bar{\Delta} \tau(\pi)=c \tau(\pi)$, the right hand side of (25) coincides with

$$
\begin{align*}
(25) & =2 c\langle\tau(\pi), \tau(\pi)\rangle-2 \sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right\rangle \tag{3.11}\\
& \leq 2 c\langle\tau(\pi), \tau(\pi)\rangle . \tag{3.12}
\end{align*}
$$

Remember that due to M. Obata's theorem, (see Proposition 2 below),

$$
\begin{equation*}
\lambda_{1}(M, h) \geq 2 c \tag{3.13}
\end{equation*}
$$

since $\operatorname{Ric}_{h}=c \mathrm{Id}$, And the equation in (28) holds, i.e., $\lambda_{1}(M, h)=2 c$ and

$$
\begin{equation*}
\Delta_{h}\langle\tau(\pi), \tau(\pi)\rangle=2 c\langle\tau(\pi), \tau(\pi)\rangle \tag{3.14}
\end{equation*}
$$

holds. Then, (29) implies that the equality in the inequality (28) holds. We have that

$$
\begin{equation*}
\sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right\rangle=0, \tag{3.15}
\end{equation*}
$$

which is equivalent to that

$$
\begin{equation*}
\bar{\nabla}_{X^{\prime}} \tau(\pi)=0 \quad\left(\forall X^{\prime} \in \mathfrak{X}(M)\right) \tag{3.16}
\end{equation*}
$$

Due to (32), for every $X^{\prime} \in \mathfrak{X}(M)$,

$$
\begin{equation*}
X^{\prime}\langle\tau(\pi), \tau(\pi)\rangle=2\left\langle\bar{\nabla}_{X^{\prime}} \tau(\pi), \tau(\pi)\right\rangle=0 \tag{3.17}
\end{equation*}
$$

Therefore, the function $\langle\tau(\pi), \tau(\pi)\rangle$ on M is a constant function on M. Thus, it implies that the right hand side of (29) must vanish. Thus, $c=0$ or $\tau(\pi) \equiv 0$. If we assume that $\tau(\pi) \not \equiv 0$, then by (29), it must hold that $2 c=0$. Then, $\bar{\Delta} \tau(\pi)=c \tau(\pi)=0$, so that $\tau(\pi) \equiv 0$ due to (20).

Let $\lambda_{1}(M, g)$ be the first eigenvalue of the Laplacian Δ of a compact Riemannian manifold (M, g). Recall the theorem of M. Obata:

Proposition 2. (cf. [42], pp. 180, 181) Assume that (M, h) is a compact Kähler manifold, and the Ricci transform ρ of (M, h) satisfies that

$$
\begin{equation*}
h(\rho(u), u) \geq \alpha h(u, u), \quad\left(\forall u \in T_{x} M\right) \tag{3.18}
\end{equation*}
$$

for some positive constant $\alpha>0$. Then, it holds that

$$
\begin{equation*}
\lambda_{1}(M, h) \geq 2 \alpha \tag{3.19}
\end{equation*}
$$

If the equality holds, then M admits a non-zero holomorphic vector field.
Thus, we obtain Proposition 1, and the following theorem (cf. Theorem 1):
Theorem 4. Let $\pi:(E, g) \rightarrow(M, h)$ be an Hermitian vector over a compact Kähler Einstein manifold (M, h). If π is biharmonic, then it is harmonic.

4 Einstein manifolds and proof of Theorem 5.

Let $\pi:\left(E^{m}, g\right) \rightarrow\left(M^{n}, h\right)$ be an Hermitian vector bundle over a compact Riemannian manifold (M, h), and again let us recall the tension field and the bitension field

$$
\begin{align*}
\tau(\pi) & =\sum_{j=1}^{m}\left\{\bar{\nabla}_{e_{j}}^{h} \pi_{*} e_{j}-\pi_{*}\left(\nabla_{e_{j}}^{g} e_{j}\right)\right\} \tag{4.1}\\
\tau_{2}(\pi) & =\bar{\Delta} \tau(\pi)-\sum_{j=1}^{m} R^{h}\left(\tau(\pi), \pi_{*} e_{j}\right) \pi_{*} e_{j} \tag{4.2}
\end{align*}
$$

respectively. Then, we have

$$
\begin{align*}
& \tau_{2}(\pi)=\sum_{j=1}^{m}\left\{\bar{\nabla}_{e_{j}}^{h} \pi_{*} e_{j}-\pi_{*}\left(\nabla_{e_{j}}^{g} e_{j}\right)\right\} \tag{4.3}\\
& \tau_{2}(\pi)=\bar{\Delta} \tau(\pi)-\sum_{j=1}^{m} R^{h}\left(\tau(\pi), \pi_{*} e_{j}\right) \pi_{*} e_{j}
\end{align*}
$$

$$
\begin{align*}
& =\bar{\Delta} \tau(\pi)-\sum_{j=1}^{n} R^{h}\left(\tau(\pi), e_{j}^{\prime}\right) e_{j}^{\prime} \\
& =\bar{\Delta} \tau(\pi)-\operatorname{Ric}^{h}(\tau(\pi)) \\
& =\bar{\Delta} \tau(\pi)-c \tau(\pi) \tag{4.4}
\end{align*}
$$

since it holds that $\operatorname{Ric}^{h}=c h$ because of (M, h) is Einstein. Therefore, that $\pi:(E, g) \rightarrow(M, h)$ is biharmonic if and only if

$$
\begin{equation*}
\bar{\Delta} \tau(\pi)=c \tau(\pi) \tag{4.5}
\end{equation*}
$$

Since the Laplacian Δ_{h} of a Riemannian manifold (M, h) is expressed as

$$
\begin{equation*}
\Delta_{h}=-\sum_{j=1}^{n}\left(e_{j}^{\prime 2}-\nabla_{e_{j}^{\prime}}^{h} e_{j}^{\prime}\right) \tag{4.6}
\end{equation*}
$$

and

$$
\begin{aligned}
e_{j}^{\prime}\langle\tau(\pi), \tau(\pi)\rangle & =2\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \tau(\pi)\right\rangle, \\
e_{j}^{\prime 2}\langle\tau(\pi), \tau(\pi)\rangle & =2 e_{j}^{\prime}\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \tau(\pi)\right\rangle, \\
& =2\left\langle\bar{\nabla}_{e_{j}^{\prime}}\left(\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right), \tau(\pi)\right\rangle+2\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right\rangle \\
\nabla_{e_{j}^{\prime}} e_{j}^{\prime}\langle\tau(\pi), \tau(\pi)\rangle & =2\left\langle\bar{\nabla}_{\nabla_{e_{j}^{\prime}}^{\prime}} \tau(\pi), \tau(\pi)\right\rangle,
\end{aligned}
$$

we have

$$
\begin{align*}
\Delta_{h}\langle\tau(\pi), \tau(\pi)\rangle & =-\sum_{j=1}^{n}\left(e_{j}^{\prime} 2-\nabla_{e_{j}^{\prime}}^{h} e_{j}^{\prime}\right)\langle\tau(\pi), \tau(\pi)\rangle \\
& =2\langle\bar{\Delta} \tau(\pi), \tau(\pi)\rangle-2 \sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}^{\prime}} \tau(\pi), \bar{\nabla}_{e_{j}^{\prime}} \tau(\pi)\right\rangle \\
& \leq 2\langle\bar{\Delta} \tau(\pi), \tau(\pi)\rangle \tag{4.7}
\end{align*}
$$

Assume that $\pi:(E, g) \rightarrow(M, h)$ is biharmonic. Then, we have

$$
\begin{equation*}
\bar{\Delta} \tau(\pi)=c \tau(\pi) \tag{4.8}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\Delta_{h}\langle\tau(\pi), \tau(\pi)\rangle \leq 2 c\langle\tau(\pi), \tau(\pi)\rangle \tag{4.9}
\end{equation*}
$$

Then, we show the following theorem (cf. Theorem 2):

Theorem 5. Let $\pi:(E, g) \rightarrow(M, h)$ be an Hermitian vector bundle over a compact Einstein manifold (M, h) with Ricci curvature Ric ${ }^{h}=c$ for some positive constant $c>0$. Assume that $\pi:(E, g) \rightarrow(M, h)$ is biharmonic. Then, either $(i) \pi$ is harmonic, or (ii) the first eigenvalue $\lambda_{1}(M, h)$ of (M, h) satisfies the following inequality:

$$
\begin{equation*}
0<\frac{n}{n-1} c \leq \lambda_{1}(M, h) \leq \frac{2 c}{1-X} \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
0<X:=\frac{1}{\operatorname{Vol}(M, h)} \frac{\left(\int_{M} f_{0} v_{h}\right)^{2}}{\int_{M} f_{0}^{2} v_{h}}<1 \tag{4.11}
\end{equation*}
$$

and $f_{0}:=\langle\tau(\pi), \tau(\pi)\rangle \in C^{\infty}(M)$ is the pointwise inner product of the tension field $\tau(\pi)$.

The inequalities (1) and (2) can be rewritten as follows:

$$
\begin{equation*}
-1<\frac{2-n}{n}=1-2 \frac{n-1}{n} \leq 1-\frac{2 c}{\lambda_{1}(M, h)} \leq \frac{1}{\operatorname{Vol}(M, h)} \frac{\left(\int_{M} f_{0} v_{h}\right)^{2}}{\int_{M} f_{0}^{2} v_{h}}<1 . \tag{4.12}
\end{equation*}
$$

First, let us recall the theorem of Lichinerowicz and Obata:
Theorem 6. Assume that the Ricci curvature Ric of (M, h) is bounded below by a positive constant $c>0$. Then, the first eigenvalue satisfies that

$$
\begin{equation*}
\lambda_{1}(h) \geq \frac{n}{n-1} c, \tag{4.13}
\end{equation*}
$$

and the equality in (45) holds if and only if (M, h) is isometric to the n dimensional standard unit sphere $\left(S^{n}, h_{0}\right)$.

The inequality (44) means that a C^{∞} function f_{0} on M defined by $f_{0}=$ $\langle\tau(\pi), \tau(\pi)\rangle \in C^{\infty}(M)$ satisfies that

$$
\begin{equation*}
\Delta_{h} f_{0} \leq 2 c f_{0} \tag{4.14}
\end{equation*}
$$

(The first step) We assume that $f_{0} \not \equiv 0$ and not a constant. Then $\int_{M} f_{0}{ }^{2} v_{h}>$ 0 , and we have by (45),

$$
\begin{equation*}
2 c \geq \frac{\int_{M} f_{0}\left(\Delta_{h} f_{0}\right) v_{h}}{\int_{M} f_{0}{ }^{2} v_{h}}=\frac{\int_{M}\left|\nabla f_{0}\right|^{2} v_{h}}{\int_{M} f_{0}{ }^{2} v_{h}} . \tag{4.15}
\end{equation*}
$$

(The second step) If we define $f_{1}:=f_{0}-\frac{\int_{M} f_{0} v_{h}}{\operatorname{Vol}(M, h)} \in C^{\infty}(M)$, we have

$$
\begin{align*}
& \int_{M} f_{1} v_{h}=0 \tag{4.16}\\
& \quad \nabla f_{1}=\nabla f_{0}, \quad\left|\nabla f_{1}\right|^{2}=\left|\nabla f_{0}\right|^{2} \tag{4.17}\\
& \int_{M} f_{1}^{2} v_{h}=\int_{M} f_{0}^{2} v_{h}-\frac{\left(\int_{M} f_{0} v_{h}\right)^{2}}{\operatorname{Vol}(M, h)} \tag{4.18}
\end{align*}
$$

(The third step) Let us recall the well-known Schwarz inequality (M. Fujiwara, Differentiations and Integrations, Vol. I, page 434, 1934, 2015, ISBN978-4-7536-0163-9):

Lemma 1. (Schwarz inequality) For every two continuous functions f and g on a compact Riemannian manifold (M, h), then it holds that

$$
\begin{equation*}
\left(\int_{M} f(x) g(x) v_{h}(x)\right)^{2} \leq\left(\int_{M} f(x)^{2} v_{h}(x)\right)\left(\int_{M} g(x)^{2} v_{h}(x)\right) \tag{4.19}
\end{equation*}
$$

The equality holds if and only if there exist two real numbers λ and μ such that

$$
\begin{equation*}
\lambda f(x)+\mu g(x) \equiv 0 \quad(\text { everywhere on } M) \tag{4.20}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\left(\int_{M} f_{0} v_{h}\right)^{2} \leq \operatorname{Vol}(M, h) \int_{M} f_{0}^{2} v_{h} \tag{4.21}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\int_{M} f_{0}^{2} v_{h}-\frac{\left(\int_{M} f_{0} v_{h}\right)^{2}}{\operatorname{Vol}(M, h)}>0 \tag{4.22}
\end{equation*}
$$

Because, if (57) does not occur, the equality holds for $f=f_{0}$ and $g \equiv 1$ in (54). Due to Lemma 1 , there exist two real numbers λ and μ satisfying that

$$
\begin{equation*}
\lambda f_{0}(x)+\mu \cdot 1 \equiv 0 \quad(\text { on } M) \tag{4.23}
\end{equation*}
$$

which means that f_{0} must be a constant on M and $\nabla f_{0} \equiv 0$ which contradicts our assumption in Step 1. We have the inequality (57).
(The fourth step) The first eigenvalue $\lambda_{1}(M, h)$ of (M, h) satisfies that

$$
\begin{align*}
\lambda_{1}(M, h) & \leq \frac{\int_{M}\left|\nabla f_{1}\right|^{2} v_{h}}{\int_{M} f_{1}{ }^{2} v_{h}} \\
& =\frac{\int_{M}\left|\nabla f_{0}\right|^{2} v_{h}}{\int_{M} f_{0}{ }^{2} v_{h}-\frac{\left(\int_{M} f_{0}{ }^{2} v_{h}\right)^{2}}{\operatorname{Vol}(M, h)}} \\
& \leq 2 c \frac{\int_{M} f_{0}{ }^{2} v_{h}}{\int_{M} f_{0}{ }^{2} v_{h}-\frac{\left(\int_{M} f_{0} v_{h}\right)^{2}}{\operatorname{Vol}(M, h)}} \\
& =2 c \frac{1}{1-X}, \tag{4.24}
\end{align*}
$$

where we put $X:=\frac{1}{\operatorname{Vol}(M, h)} \frac{\left(\int_{M} f_{0} v_{h}\right)^{2}}{\int_{M} f_{0}{ }^{2} v_{h}},(0<X<1)$. Indeed, $X<1$ if and only if

$$
\begin{equation*}
\left(\int_{M} f_{0} v_{h}\right)^{2}<\operatorname{Vol}(M, h) \int_{M} f_{0}^{2} v_{h} \tag{4.25}
\end{equation*}
$$

and

$$
\begin{equation*}
0<X \quad \Longleftrightarrow \quad 0<\int_{M} f_{0} v_{h} \quad \Longleftrightarrow \quad 0 \not \equiv f_{0} \tag{4.26}
\end{equation*}
$$

Furthermore, since $\lambda_{1}(M, h) \leq 2 c \frac{1}{1-X}$ if and only if

$$
\begin{equation*}
1-\frac{2 c}{\lambda_{1}(M, h)} \leq X \tag{4.27}
\end{equation*}
$$

together with the inequality of Lichnerowicz-Obata, we have also the following inequalities:

$$
\begin{equation*}
-1<\frac{2-n}{n}=1-2 \frac{n-1}{n} \leq 1-\frac{2 c}{\lambda_{1}(M, h)} \leq \frac{1}{\operatorname{Vol}(M, h)} \frac{\left(\int_{M} f_{0} v_{h}\right)^{2}}{\int_{M} f_{0}^{2} v_{h}}<1 . \tag{4.28}
\end{equation*}
$$

We obtain Theorem 5.

References

[1] K. Akutagawa and S. MaEta: Properly immersed biharmonic submanifolds in the Euclidean spaces, Geometriae Dedicata, 164 (2013), 351-355.
[2] R. Botт: Homogeneous vector bundles, Ann. Math., 66 (1957), 203-248.
[3] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces, I, II, III, Amer. J. Math., 80 (1958), 458-538; 81 (1959), 315-383; 82 (1960), 491-504.
[4] R. Caddeo, S. Montaldo and P. Piu: On biharmonic maps, Contemp. Math., 288 (2001), 286-290.
[5] B.-Y. Chen: Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17 (1991), 169-188.
[6] I. Chrysikos and Y. Sakane: The classification of homogeneous Einstein metrics on flag manifolds with $b_{2}(M)=1$. Bull. Sci. Math., 138 (2014), 665-692.
[7] F. Defever: Hypersurfaces in \mathbb{E}^{4} with harmonic mean curvature vector, Math. Nachr., 196 (1998), 61-69.
[8] J. EellS and L. Lemaire: Selected Topics in Harmonic Maps, CBMS, Regional Conference Series in Math., Amer. Math. Soc., 50, 1983.
[9] O. Goertsches and G. Thorbergsson: On the geometry of the orbits of Hermann action, Geometriae Dedicata, 129 (2007), 101-118.
[10] T. Hasanis and T. Vlachos: Hypersurfaces in \mathbb{E}^{4} with harmonic mean curvature vector field, Math. Nachr., 172 (1995), 145-169.
[11] D. Hirohashi, H. Tasaki, H.J. Song and R. Takagi: Minimal orbits of the isotropy groups of symmetric spaces of compact type, Differential Geom. Appl. 13 (2000), no. 2, 167-177.
[12] T. Ichiyama, J. Inoguchi and H. Urakawa: Biharmonic maps and bi-Yang-Mills fields, Note di Mat., 28, (2009), 233-275.
[13] T. Ichiyama, J. Inoguchi and H. Urakawa: Classifications and isolation phenomena of biharmonic maps and bi-Yang-Mills fields, Note di Mat., 30, (2010), 15-48.
[14] O. Ikawa: The geometry of symmetric triad and orbit spaces of Hermann actions, J. Math. Soc. Japan 63 (2011), 79-136.
[15] O. Ikawa: A note on symmetric triad and Hermann actions, Proceedings of the workshop on differential geometry and submanifolds and its related topics, Saga, August 4-6, (2012), 220-229.
[16] O. Ikawa: σ-actions and symmetric triads, Tôhoku Math. J., 70 (2018), 547-565.
[17] O. Ikawa, T. Sakai and H. Tasaki: Orbits of Hermann actions, Osaka J. Math., 38 (2001), 923-930.
[18] O. Ikawa, T. Sakai and H. Tasaki: Weakly reflective submanifolds and austere submanifolds, J. Math. Soc. Japan, 61 (2009), 437-481.
[19] J. Inoguchi and T. Sasahara: Biharmonic hypersurfaces in Riemannian symmetric spaces I, Hiroshima Math. J. 46 (2016), no. 1, 97-121.
[20] S. Ishihara and S. Ishikawa: Notes on relatively harmonic immersions, Hokkaido Math. J., 4 (1975), 234-246.
[21] G.Y. Jiang: 2-harmonic maps and their first and second variational formula, Chinese Ann. Math., 7A (1986), 388-402; Note di Mat., 28 (2009), 209-232.
[22] N. Koiso and H. Urakawa: Biharmonic submanifolds in a Riemannian manifold, Osaka J. Math., 55 (2018), 325-346, arXiv: 1408.5494v1, 2014.
[23] A. Kollross: A classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc. 354 (2002), no. 2, 571-612.
[24] E. Loubeau and C. Oniciuc: On the biharmonic and harmonic indices of the Hopf map, Trans. Amer. Math. Soc., 359 (2007), 5239-5256.
[25] T. Matsuki: Double coset decompositions of reductive Lie groups arising from two involutions, J. Algebra, 197 (1997), 49-91.
[26] S. Montaldo and C. Oniciuc: A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), 1-22.
[27] N. Nakauchi and H. URakawa: Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature, Ann. Global Anal. Geom., 40 (2011), 125-131.
[28] N. Nakauchi and H. Urakawa: Biharmonic submanifolds in a Riemannian manifold with non-positive curvature, Results in Math., 63 (2013), 467-474.
[29] N. Nakauchi and H. Urakawa: Polyharmonic maps into the Euclidean space, Note di Mat., 38 (2018), 89-100.
[30] N. Nakauchi, H. Urakawa and S. Gudmundsson: Biharmonic maps into a Riemannian manifold of non-positive curvature, Geom. Dedicata 169 (2014), 263-272.
[31] S. Ohno: A sufficient condition for orbits of Hermann action to be weakly reflective, Tokyo Journal Mathematics 39 (2016), 537-564.
[32] S. Ohno: Biharmonic orbits of isotropy representations of symmetric spaces, arXiv:1704.07541, 2017.
[33] S. Ohno, T. Sakai and H. Urakawa: Biharmoic homogeneous hypersurfaces in compact symmetric spaces, Differential Geom. Appl. 43 (2015), 155-179.
[34] S. Ohno, T. Sakai and H. Urakawa: Rigidity of transversally biharmonic maps between foliated Riemannian manifolds, Hokkaido Math. J., 47 (2018), 1-18.
[35] S. Ohno, T. Sakai and H. Urakawa: Biharmoic homogeneous submanifolds in compact symmetric spaces and compact Lie groups, Hiroshima Math. J., 49 (2019), 47-115.
[36] C. Oniciuc: Biharmonic maps between Riemannian manifolds, Ann. Stiint Univ. A ℓ. I. Cuza Iasi, Mat. (N.S.), 48 No. 2, (2002), 237-248.
[37] Y.-L. OU and L. TANG: The generalized Chen's conjecture on biharmonic submanifolds is false, arXiv: 1006.1838 v 1.
[38] Y.-L. Ou and L. Tang: On the generalized Chen's conjecture on biharmonic submanifolds, Michigan Math. J., 61 (2012), 531-542.
[39] T. SASAHARA: Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen, 67 (2005), 285-303.
[40] T. SASAHARA: Classification theorems for biharmonic real hypersurfaces in a complex projective space, Results Math., bf 74 (2019), to appear.
[41] J.A. Tirao and J.A. Wolf: Homogeneous holomorphic vector bundles, Indiana Univ. Math. J., 20 (1970), 15-31.
[42] H. Urakawa: Calculus of Variations and Harmonic Maps, Amer. Math. Soc., Vol. 132, 1990, Rhode Island.
[43] H. URAKAWA: CR rigidity of pseudo harmonic maps and pseudo biharmonic maps, Hokkaido Math. J., 46 (2017), 141-187.
[44] H. Urakawa: Harmonic maps and biharmonic maps on principal bundles and warped products, J. Korean Math. Soc., 55 (2018), 553-574.
[45] H. Urakawa: Biharmonic maps on principal G-bundles over complete Riemannian manifolds of nonpositive Ricci curvature, Michigan Math. J., 68 (2019), 19-31.
[46] H. URAKAWA: Harmonic maps and biharmonic Riemannian submersions, Note di Mat., 39, (1) (2019), 1-24.

[^0]: http://siba-ese.unisalento.it/ © 2019 Università del Salento

