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Introduction

Research of harmonic maps, which are critical points of the energy func-
tional, is one of the central problems in differential geometry including minimal
submanifolds. The Euler-Lagrange equation is given by the vanishing of the
tension field. In 1983, Eells and Lemaire ([8]) proposed to study biharmonic
maps, which are critical points of the bienergy functional, by definition, half of
the integral of square of the norm of tension field τ(ϕ) for a smooth map ϕ of
a Riemannian manifold (M, g) into another Riemannian manifold (N,h). After
a work by G.Y. Jiang [21], several geometers have studied biharmonic maps
(see [4], [12], [13], [20], [24], [26], [38], [39], etc.). Note that a harmonic maps is
always biharmonic. One of central problems is to ask whether the converse is
true. B.-Y. Chen’s conjecture is to ask whether every biharmonic submanifold of
the Euclidean space Rn must be harmonic, i.e., minimal ([5]). There are many
works supporting this conjecture ([7], [10], [22], [1]). However, B.-Y. Chen’s
conjecture is still open. R. Caddeo, S. Montaldo, P. Piu ([4]) and C. Oniciuc
([36]) raised the generalized B.-Y. Chen’s conjecture to ask whether each bihar-
monic submanifold in a Riemannian manifold (N,h) of non-positive sectional
curvature must be harmonic (minimal). For the generalized Chen’s conjecture,
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Ou and Tang gave ([37], [38]) a counter example in some Riemannian mani-
fold of negative sectional curvature. But, it is also known (cf. [27], [28], [30])
that every biharmonic map of a complete Riemannian manifold into another
Riemannian manifold of non-positive sectional curvature with finite energy and
finite bienergy must be harmonic. For the target Riemannian manifold (N,h) of
non-negative sectional curvature, theories of biharmonic maps and biharmonic
immersions seems to be quite different from the case (N,h) of non-positive sec-
tional curvature. There exit biharmonic submanifolds which are not harmonic
in the unit sphere. S. Ohno, T. Sakai and myself [33], [34] determined (1) all
the biharmonic hypersurfaces in irreducible symmetric spaces of compact type
which are regular orbits of commutative Hermann actions of cohomogeneity one,
and gave (2) a complete table of all the proper biharmonic singular orbits of
commutative Hermann actions of cohomogeneity two, and (3) a complete list of
all the proper biharmonic regular orbits of (K2×K1)-actions of cohomogeneity
one on G for every commutative compact symmetric triad (G,K1,K2). We note
that recently Inoguchi and Sasahara ([19]) investigated biharmonic homoge-
neous hypersurfaces in compact symmetric spaces. Sasahara ([40]) classified all
biharmonic real hypersurfaces in a complex projective space, and Ohno studied
biharmonic orbits of isotropy representations of symmetric spaces in the sphere
(cf. [31], [32]).

In this paper, we treat with an Hermitian vector bundle (E, g) → (M,h)
over a compact Riemannian manifold (M,h). We assume (M,h) is a compact
Kähler Einstein Riemannian manifold, that is, the Ricci transform Rich of the
Kähler metric h on M satisfies Rich = c Id, for some constant c. Then, we show
the following (cf. Theorems 4 and 5):

Theorem 1. Let π : (E, g)→ (M,h) be an Hermitian vector bundle over a
compact Kähler Einstein Riemannian manifold (M,h). If π is biharmonic, then
it is harmonic.

Theorem 2. Let π : (E, g) → (M,h) be a biharmonic Hermitian vector
bundle over a compact Einstein manifold (M,h) with Ricci curvature Rich = c
for some positive constant c > 0. Then, either (i) π is harmonic, (ii) f0 =
〈τ(π), τ(π)〉 is constant, or (iii) the first eigenvalue λ1(M,h) of (M,h) satisfies
the following inequality:

0 <
n

n− 1
c ≤ λ1(M,h) ≤ 2c

1−X
, (0.1)
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where

0 < X :=
1

Vol(M,h)

(∫
M f0 vh

)2∫
M f0

2 vh
< 1, (0.2)

and f0 := 〈τ(π), τ(π)〉 ∈ C∞(M) is the pointwise inner product of the tension
field τ(π).

The inequalities (1) and (2) can be rewritten as follows:

−1 <
2− n
n

= 1− 2
n− 1

n
≤ 1− 2c

λ1(M,h)
≤ 1

Vol(M,h)

(∫
M f0 vh

)2∫
M f0

2 vh
< 1. (0.3)

Theorem 1 shows the sharp contrasts on the biharmonicities between the case
of vector bundles and the one of the principle G-bundles. Indeed, we treated with
the biharmonicity of the projection of the principal G-bundle over a Riemannian
manifold (M,h) with negative definite Ricci tensor field (cf. Theorem 2.3 in [45]).
In Theorem 2, the behavior of the quantity 1− 2c

λ1(M,h) in (3) is very important.

Indeed, 0 ≤ 1 − 2c
λ1(M,h) if and only if 2c ≤ λ1(M,h) which is the theorem of

M. Obata (cf [42] p.181, Theorem (3.23)), and −n−1
n ≤ 1 − 2c

λ1(M,h) < 0 if and

only if n
n−1 c ≤ λ1(M,h) < 2c under the condition Rich ≥ c > 0, which is the

theorem of Lichnerowicz and Obata [42], p.182, Theorem (3.26).

We give an example of the projection of the principal G-bundle over a Rie-
mannian manifold (M,h) which is biharmonic but not harmonic (cf. Example 1
in this paper, and also Theorem 5 in [46]). Finally, it should be mentioned that
Oniciuc ([36]) gave examples of non-harmonic biharmonic projections of the
tangent bundle over a compact Riemannian manifold, which has a sharp con-
trast our case of the Hermitian vector bundles over a compact Kähler-Einstein
manifold.

1 Preliminaries

In this section, we prepare materials for the first variation formula for the
bi-energy functional and bi-harmonic maps. Let us recall the definition of a
harmonic map ϕ : (M, g) → (N,h), of a comoact Riemannian manifold (M, g)
into another Riemannian manifold (N,h), which is an extremal of the energy
functional defined by

E(ϕ) =

∫
M
e(ϕ) vg,
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where e(ϕ) := 1
2 |dϕ|

2 is called the energy density of ϕ. That is, for all variation
{ϕt} of ϕ with ϕ0 = ϕ,

d

dt

∣∣∣∣
t=0

E(ϕt) = −
∫
M
h(τ(ϕ), V )vg = 0, (1.1)

where V ∈ Γ(ϕ−1TN) is a variation vector field along ϕ which is given by
V (x) = d

dt |t=0ϕt(x) ∈ Tϕ(x)N (x ∈ M), and the tension field of ϕ is given by
τ(ϕ) =

∑m
i=1B(ϕ)(ei, ei) ∈ Γ(ϕ−1TN), where {ei}mi=1 is a locally defined frame

field on (M, g). The second fundamental form B(ϕ) of ϕ is defined by

B(ϕ)(X,Y ) = (∇̃dϕ)(X,Y )

= (∇̃Xdϕ)(Y )

= ∇X(dϕ(Y ))− dϕ(∇XY )

= ∇Ndϕ(X)dϕ(Y )− dϕ(∇XY ), (1.2)

for all vector fields X,Y ∈ X(M). Furthermore, ∇, and ∇N , are connections on
TM , TN of (M, g), (N,h), respectively, and ∇, and ∇̃ are the induced one on
ϕ−1TN , and T ∗M ⊗ ϕ−1TN , respectively. By (4), ϕ is harmonic if and only if
τ(ϕ) = 0.

The second variation formula of the energy functional is also well known
which is given as follows. Assume that ϕ is harmonic. Then,

d2

dt2

∣∣∣∣
t=0

E(ϕt) =

∫
M
h(J(V ), V )vg, (1.3)

where J is an elliptic differential operator, called Jacobi operator acting on
Γ(ϕ−1TN) given by

J(V ) = ∆V −R(V ), (1.4)

where ∆V = ∇∗∇V is the rough Laplacian and R is a linear operator on
Γ(ϕ−1TN) given by RV =

∑m
i=1R

N (V, dϕ(ei))dϕ(ei), and RN is the curvature
tensor of (N,h) given by RN (U, V ) = ∇NU∇NV − ∇NV∇NU − ∇N [U,V ] for
U, V ∈ X(N).

J. Eells and L. Lemaire proposed ([8]) polyharmonic (k-harmonic) maps and
Jiang studied ([21]) the first and second variation formulas of bi-harmonic maps.
Let us consider the bi-energy functional defined by

E2(ϕ) =
1

2

∫
M
|τ(ϕ)|2vg, (1.5)

where |V |2 = h(V, V ), V ∈ Γ(ϕ−1TN).
Then, the first variation formula is given as follows.
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Theorem 3. (the first variation formula)

d

dt

∣∣∣∣
t=0

E2(ϕt) = −
∫
M
h(τ2(ϕ), V )vg, (1.6)

where

τ2(ϕ) = J(τ(ϕ)) = ∆τ(ϕ)−R(τ(ϕ)), (1.7)

J is given in (7).

For the second variational formula, see [21] or [12].

Definition 1. A smooth map ϕ of M into N is called to be bi-harmonic if
τ2(ϕ) = 0.

2 The case of compact Kähler manifolds.

To prove Theorem 1, we need the following:

Proposition 1. Let π : (E, g) → (M,h) be an Hermitian vector bundle
over a compact Kähler Einstein manifold (M,h). Assume that π is biharmonic.
Then the following hold:

(1) The tension field τ(π) satisfies that

∇X′τ(π) = 0 (∀ X ′ ∈ X(M)). (2.1)

(2) The pointwise inner product 〈τ(π), τ(π)〉 = | τ(π) |2 is constant on (M, g),
say d ≥ 0.

(3) The energy E2(π) satisfies that

E2(π) :=
1

2

∫
M
|τ(π)|2 vh =

d

2
Vol(M,h). (2.2)

By Proposition 1, Theorem 1 can be proved as follows. Assume that π :
(E, g)→ (M,h) is biharmonic. Due to (11) in Proposition 1, we have

div(τ(π)) :=
n∑
i=1

(∇e′iτ(π))(e′i) = 0, (2.3)
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where {e′i}ni=1 is a locally defined orthonormal frame field on (M,h) and we put
n = dimRM . Then, for every f ∈ C∞(M), it holds that, due to Proposition
(3.29) in [42], p. 60, for example,

0 =

∫
M
f div(τ(π)) vh = −

∫
M
h(∇f, τ(π)) vh. (2.4)

Therefore, we obtain τ(π) ≡ 0. QED

We will prove Proposition 1, later. Here, we give examples of the line bundles
over some compact homogeneous Kähler Einstein manifolds (M,h):

Example 1. A generalized flag manifold G/H admits a unique Kähler Ein-
stein metric h ([3] and [6]). Here, G is a compact semi-simple Lie group, and H
is the centralizer of a torus S in G, i.e., GC is the complexification of G, and B
is its Borel subgroup. Then,

M = G/H = GC/B.

The Borel subgroup B is written as B = TN , where T is a maximal torus of B
and N is a nilpotent Lie subgroup of B. Every character ξλ of a Borel subgroup
B is given as a homomorphism ξλ : B → C∗ = C− {0} which is written as

ξλ(tn) = ξλ(t) (t ∈ T, n ∈ N). (2.5)

Here ξλ : T → U(1) is a character of T which is written as

ξλ(exp(θ1H1 + · · ·+ θ`H`)) = e2π
√
−1(k1θ1+···+k`θ`), (θ1, . . . , θ` ∈ R),

(2.6)
where k1, . . . , k` are non-negative integers, and ` = dimT .

Note that every character ξλ of a nilpotent Lie group N must be ξλ(n) = 1
because ξλ(n) = ξλ(expX) = eξλ′ (X) where n = expX (X ∈ n), and λ′ : t→ C
is a homomorphism, i.e., ξλ′(X+Y ) = ξλ′(X) + ξλ′(Y ), (X, Y ∈ t). Then, there
exists k ∈ N which satisfies that exp(kX) = nk = e. Then, ek ξλ′ (X) = ξλ(nk) =
ξλ(e) = 1. Thus, for every a ∈ R,

ea k ξλ′ (X) = (ek ξλ′ (X))a = 1.

This implies that k ξλ′(X) = 0. Thus, ξλ′(X) = 0 for all X ∈ n, i.e., ξλ′ ≡ 0.
Therefore, we have that ξλ(n) = e (n ∈ N). We have (15).

For every ξλ given by (15) and (16), we obtain the associated holomorphic
vector bundle Eξλ over GC/B as Eξλ := {[x, v]|(x, v) ∈ GC × C}, where the
equivalence relation (x, v) ∼ (x′, v′) is (x, v) = (x′, v′) if and only if there exists
b ∈ B such that (x′, v′) = (xb−1, ξλ(b)v), denoted by [x, v], the equivalence class
including (x, v) ∈ GC × C (for example, [2], [41]).
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3 Proof of Proposition 1.

For an Hermitian vector bundle π : (E, g) → (M, g) with dimRE = m,
and dimRM = n, let us recall the definitions of the tension field τ(π) and the
bitension field τ2(π):

τ(π) =

m∑
j=1

{
∇hejπ∗ej − π∗

(
∇gejej

)}
,

τ2(π) = ∆τ(π)−
m∑
j=1

Rh(τ(π), π∗ej)π∗ej .

(3.1)

Then, we have

τ2(π) := ∆τ(π)−
m∑
j=1

Rh(τ(π), π∗ej)π∗ej

= ∆τ(π)−
n∑
j=1

Rh(τ(π), e′j)e
′
j (3.2)

= ∆τ(π)− Rich(τ(π)). (3.3)

Here, recall that π : (E, g)→ (M,h) is the Riemannian submersion and {ei}mi=1

and {e′j}nj=1 are locally defined orthonormal frame fields on (E, g) and (M,h),
respectively, satisfying that π∗ej = e′j (j = 1, · · · , n) and π∗(ej) = 0 (j =
n + 1, · · · ,m). Therefore, we have (18) and (19) by means of the definition of
the Ricci tensor field Rich of (M,h).

Assume that (M,h) is a real n-dimensional compact Kähler Einstein man-
ifold with Rich = c Id, where n is even. Then, due to (19), we have that
π : (E, g)→ (M,h) is biharmonic if and only if

∆τ(π) = c τ(π). (3.4)

Since 〈τ(π), τ(π)〉 is a C∞ function on a Riemannian manifold (M,h), we have,
for each j = 1, · · · , n,

e′j〈τ(π), τ(π)〉 = 〈∇e′jτ(π), τ(π)〉+ 〈τ(π),∇e′jτ(π)〉

= 2〈∇e′jτ(π), τ(π)〉, (3.5)

e′j
2〈τ(π), τ(π)〉 = 2e′j〈∇e′jτ(π), τ(π)〉

= 2〈∇e′j (∇e′jτ(π)), τ(π)〉+ 2〈∇e′jτ(π),∇e′jτ(π)〉, (3.6)

∇e′je
′
j〈τ(π), τ(π)〉 = 2〈∇∇e′

j
e′j
τ(π), τ(π)〉. (3.7)
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Therefore, the Laplacian ∆h = −
∑n

j=1(e′j
2−∇

e′
j
e′j) acting on C∞(M), so that

∆h 〈τ(π), τ(π)〉 = (3.8)

= 2

n∑
j=1

{
−〈∇e′j (∇e′jτ(π)), τ(π)〉 − 〈∇e′jτ(π),∇e′jτ(π)〉+ 〈∇∇e′

j
τ(π), τ(π)〉

}

= 2
〈
−

n∑
j=1

{
∇e′j∇e′j −∇∇e′

j
e′j

}
τ(π), τ(π)

〉
− 2

n∑
j=1

〈
∇e′jτ(π),∇e′jτ(π)

〉
= 2
〈
∆τ(π), τ(π)

〉
− 2

n∑
j=1

〈∇e′jτ(π),∇e′jτ(π)〉 (3.9)

≤ 2
〈
∆τ(π), τ(π)

〉
, (3.10)

because of 〈∇e′jτ(π),∇e′jτ(π)〉 ≥ 0, (j = 1, · · · , n).

If π : (E, g)→ (M,h) is biharmonic, due to (20), ∆τ(π) = c τ(π), the right
hand side of (25) coincides with

(25) = 2c 〈τ(π), τ(π)〉 − 2
n∑
j=1

〈∇e′jτ(π),∇e′jτ(π)〉 (3.11)

≤ 2c 〈τ(π), τ(π)〉. (3.12)

Remember that due to M. Obata’s theorem, (see Proposition 2 below),

λ1(M,h) ≥ 2c, (3.13)

since Rich = c Id, And the equation in (28) holds, i.e., λ1(M,h) = 2c and

∆h 〈τ(π), τ(π)〉 = 2c 〈τ(π), τ(π)〉 (3.14)

holds. Then, (29) implies that the equality in the inequality (28) holds. We have
that

n∑
j=1

〈∇e′jτ(π),∇e′jτ(π)〉 = 0, (3.15)

which is equivalent to that

∇X′τ(π) = 0 (∀X ′ ∈ X(M)). (3.16)

Due to (32), for every X ′ ∈ X(M),

X ′ 〈τ(π), τ(π)〉 = 2 〈∇X′τ(π), τ(π)〉 = 0. (3.17)
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Therefore, the function 〈τ(π), τ(π)〉 on M is a constant function on M . Thus,
it implies that the right hand side of (29) must vanish. Thus, c = 0 or τ(π) ≡ 0.
If we assume that τ(π) 6≡ 0, then by (29), it must hold that 2c = 0. Then,
∆τ(π) = c τ(π) = 0, so that τ(π) ≡ 0 due to (20).

Let λ1(M, g) be the first eigenvalue of the Laplacian ∆ of a compact Rie-
mannian manifold (M, g). Recall the theorem of M. Obata:

Proposition 2. (cf. [42], pp. 180, 181 ) Assume that (M,h) is a compact
Kähler manifold, and the Ricci transform ρ of (M,h) satisfies that

h(ρ(u), u) ≥ αh(u, u), (∀u ∈ TxM), (3.18)

for some positive constant α > 0. Then, it holds that

λ1(M,h) ≥ 2α. (3.19)

If the equality holds, then M admits a non-zero holomorphic vector field.

Thus, we obtain Proposition 1, and the following theorem (cf. Theorem 1):

Theorem 4. Let π : (E, g) → (M,h) be an Hermitian vector over a com-
pact Kähler Einstein manifold (M,h). If π is biharmonic, then it is harmonic.

4 Einstein manifolds and proof of Theorem 5.

Let π : (Em, g) → (Mn, h) be an Hermitian vector bundle over a compact
Riemannian manifold (M,h), and again let us recall the tension field and the
bitension field

τ(π) =
m∑
j=1

{
∇hejπ∗ej − π∗

(
∇gejej

)}
, (4.1)

τ2(π) = ∆τ(π)−
m∑
j=1

Rh(τ(π), π∗ej)π∗ej , (4.2)

respectively. Then, we have

τ2(π) =
m∑
j=1

{
∇hejπ∗ej − π∗

(
∇gejej

)}
, (4.3)

τ2(π) = ∆τ(π)−
m∑
j=1

Rh(τ(π), π∗ej)π∗ej
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= ∆τ(π)−
n∑
j=1

Rh(τ(π), e′j)e
′
j

= ∆τ(π)− Rich(τ(π))

= ∆τ(π)− c τ(π) (4.4)

since it holds that Rich = c h because of (M,h) is Einstein. Therefore, that
π : (E, g)→ (M,h) is biharmonic if and only if

∆τ(π) = c τ(π). (4.5)

Since the Laplacian ∆h of a Riemannian manifold (M,h) is expressed as

∆h = −
n∑
j=1

(e′j
2 −∇he′je

′
j), (4.6)

and

e′j〈τ(π), τ(π)〉 = 2 〈∇e′jτ(π), τ(π)〉,

e′j
2〈τ(π), τ(π)〉 = 2e′j 〈∇e′jτ(π), τ(π)〉,

= 2 〈∇e′j (∇e′jτ(π)), τ(π)〉+ 2〈∇e′jτ(π),∇e′jτ(π)〉

∇e′je
′
j 〈τ(π), τ(π)〉 = 2〈∇∇e′

j
e′j
τ(π), τ(π)〉,

we have

∆h〈τ(π), τ(π)〉 = −
n∑
j=1

(e′j
2 −∇he′je

′
j) 〈τ(π), τ(π)〉

= 2〈∆τ(π), τ(π)〉 − 2
n∑
j=1

〈∇e′jτ(π),∇e′jτ(π)〉

≤ 2〈∆τ(π), τ(π)〉. (4.7)

Assume that π : (E, g)→ (M,h) is biharmonic. Then, we have

∆τ(π) = cτ(π). (4.8)

Therefore, we have

∆h〈τ(π), τ(π)〉 ≤ 2c〈τ(π), τ(π)〉. (4.9)

Then, we show the following theorem (cf. Theorem 2):
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Theorem 5. Let π : (E, g) → (M,h) be an Hermitian vector bundle over
a compact Einstein manifold (M,h) with Ricci curvature Rich = c for some
positive constant c > 0. Assume that π : (E, g)→ (M,h) is biharmonic. Then,
either (i) π is harmonic, or (ii) the first eigenvalue λ1(M,h) of (M,h) satisfies
the following inequality:

0 <
n

n− 1
c ≤ λ1(M,h) ≤ 2c

1−X
(4.10)

where

0 < X :=
1

Vol(M,h)

(∫
M f0 vh

)2∫
M f0

2 vh
< 1, (4.11)

and f0 := 〈τ(π), τ(π)〉 ∈ C∞(M) is the pointwise inner product of the tension
field τ(π).

The inequalities (1) and (2) can be rewritten as follows:

−1 <
2− n
n

= 1−2
n− 1

n
≤ 1− 2c

λ1(M,h)
≤ 1

Vol(M,h)

(∫
M f0 vh

)2∫
M f0

2 vh
< 1. (4.12)

First, let us recall the theorem of Lichinerowicz and Obata:

Theorem 6. Assume that the Ricci curvature Ric of (M,h) is bounded
below by a positive constant c > 0. Then, the first eigenvalue satisfies that

λ1(h) ≥ n

n− 1
c, (4.13)

and the equality in (45) holds if and only if (M,h) is isometric to the n-
dimensional standard unit sphere (Sn, h0).

The inequality (44) means that a C∞ function f0 on M defined by f0 =
〈τ(π), τ(π)〉 ∈ C∞(M) satisfies that

∆hf0 ≤ 2c f0. (4.14)

(The first step) We assume that f0 6≡ 0 and not a constant. Then
∫
M f0

2 vh >
0, and we have by (45),

2c ≥
∫
M f0(∆hf0) vh∫

M f0
2 vh

=

∫
M |∇f0|2 vh∫
M f0

2 vh
. (4.15)



106 H. Urakawa

(The second step) If we define f1 := f0 −
∫
M f0 vh

Vol(M,h) ∈ C
∞(M), we have∫

M
f1 vh = 0, (4.16)

∇f1 =∇f0, |∇f1|2 = |∇f0|2, (4.17)∫
M
f1

2 vh =

∫
M
f0

2 vh −
(∫
M f0 vh

)2
Vol(M,h)

. (4.18)

(The third step) Let us recall the well-known Schwarz inequality (M. Fu-
jiwara, Differentiations and Integrations, Vol. I, page 434, 1934, 2015, ISBN978-
4-7536-0163-9):

Lemma 1. (Schwarz inequality) For every two continuous functions f and
g on a compact Riemannian manifold (M,h), then it holds that(∫

M
f(x) g(x) vh(x)

)2

≤
(∫

M
f(x)2 vh(x)

) (∫
M
g(x)2 vh(x)

)
. (4.19)

The equality holds if and only if there exist two real numbers λ and µ such that

λ f(x) + µ g(x) ≡ 0 (everywhere on M). (4.20)

Then, we have (∫
M
f0 vh

)2

≤ Vol(M,h)

∫
M
f0

2 vh. (4.21)

Furthermore, we have ∫
M
f0

2 vh −
(∫
M f0 vh

)2
Vol(M,h)

> 0. (4.22)

Because, if (57) does not occur, the equality holds for f = f0 and g ≡ 1 in
(54). Due to Lemma 1, there exist two real numbers λ and µ satisfying that

λ f0(x) + µ · 1 ≡ 0 (on M) (4.23)

which means that f0 must be a constant on M and ∇ f0 ≡ 0 which contradicts
our assumption in Step 1. We have the inequality (57).
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(The fourth step) The first eigenvalue λ1(M,h) of (M,h) satisfies that

λ1(M,h) ≤
∫
M |∇f1|2 vh∫
M f1

2 vh

=

∫
M |∇f0|2 vh∫

M f0
2 vh −

(
∫
M f02 vh)

2

Vol(M,h)

≤ 2c

∫
M f0

2 vh∫
M f0

2 vh −
(
∫
M f0 vh)

2

Vol(M,h)

= 2c
1

1−X
, (4.24)

where we put X := 1
Vol(M,h)

(
∫
M f0 vh)

2∫
M f02 vh

, (0 < X < 1). Indeed, X < 1 if and

only if (∫
M
f0 vh

)2

< Vol(M,h)

∫
M
f0

2 vh, (4.25)

and

0 < X ⇐⇒ 0 <

∫
M
f0 vh ⇐⇒ 0 6≡ f0. (4.26)

Furthermore, since λ1(M,h) ≤ 2c 1
1−X if and only if

1− 2c

λ1(M,h)
≤ X, (4.27)

together with the inequality of Lichnerowicz-Obata, we have also the following
inequalities:

−1 <
2− n
n

= 1−2
n− 1

n
≤ 1− 2c

λ1(M,h)
≤ 1

Vol(M,h)

(∫
M f0 vh

)2∫
M f0

2 vh
< 1. (4.28)

We obtain Theorem 5. QED
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