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Abstract. We show, for every Hermitian vector bundle 7 : (E, g) — (M, h) over a compact
Kahler Einstein manifold (M, h), if the projection 7 is biharmonic, then it is harmonic. On a
biharmonic Hermitian vector bundle over a compact Riemannian manifold with positive Ricci
curvature, we show a new estimate of the first eigenvalue of the Laplacian.
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Introduction

Research of harmonic maps, which are critical points of the energy func-
tional, is one of the central problems in differential geometry including minimal
submanifolds. The Euler-Lagrange equation is given by the vanishing of the
tension field. In 1983, Eells and Lemaire ([8]) proposed to study biharmonic
maps, which are critical points of the bienergy functional, by definition, half of
the integral of square of the norm of tension field 7(p) for a smooth map ¢ of
a Riemannian manifold (M, g) into another Riemannian manifold (N, h). After
a work by G.Y. Jiang [21], several geometers have studied biharmonic maps
(see [4], [12], [13], [20], [24], [26], [38], [39], etc.). Note that a harmonic maps is
always biharmonic. One of central problems is to ask whether the converse is
true. B.-Y. Chen’s conjecture is to ask whether every biharmonic submanifold of
the Euclidean space R must be harmonic, i.e., minimal ([5]). There are many
works supporting this conjecture ([7], [10], [22], [1]). However, B.-Y. Chen’s
conjecture is still open. R. Caddeo, S. Montaldo, P. Piu ([4]) and C. Oniciuc
([36]) raised the generalized B.-Y. Chen’s conjecture to ask whether each bihar-
monic submanifold in a Riemannian manifold (N, h) of non-positive sectional
curvature must be harmonic (minimal). For the generalized Chen’s conjecture,
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Ou and Tang gave ([37], [38]) a counter example in some Riemannian mani-
fold of negative sectional curvature. But, it is also known (cf. [27], [28], [30])
that every biharmonic map of a complete Riemannian manifold into another
Riemannian manifold of non-positive sectional curvature with finite energy and
finite bienergy must be harmonic. For the target Riemannian manifold (N, k) of
non-negative sectional curvature, theories of biharmonic maps and biharmonic
immersions seems to be quite different from the case (N, h) of non-positive sec-
tional curvature. There exit biharmonic submanifolds which are not harmonic
in the unit sphere. S. Ohno, T. Sakai and myself [33], [34] determined (1) all
the biharmonic hypersurfaces in irreducible symmetric spaces of compact type
which are regular orbits of commutative Hermann actions of cohomogeneity one,
and gave (2) a complete table of all the proper biharmonic singular orbits of
commutative Hermann actions of cohomogeneity two, and (3) a complete list of
all the proper biharmonic regular orbits of (K9 x Kj)-actions of cohomogeneity
one on G for every commutative compact symmetric triad (G, K1, K3). We note
that recently Inoguchi and Sasahara ([19]) investigated biharmonic homoge-
neous hypersurfaces in compact symmetric spaces. Sasahara ([40]) classified all
biharmonic real hypersurfaces in a complex projective space, and Ohno studied
biharmonic orbits of isotropy representations of symmetric spaces in the sphere
(cf. [31], [32]).

In this paper, we treat with an Hermitian vector bundle (E,g) — (M, h)
over a compact Riemannian manifold (M, h). We assume (M, h) is a compact
Kshler Einstein Riemannian manifold, that is, the Ricci transform Ric” of the
Kihler metric h on M satisfies Ric" = ¢ Id, for some constant ¢. Then, we show
the following (cf. Theorems 4 and 5):

Theorem 1. Letw: (E,g) — (M, h) be an Hermitian vector bundle over a
compact Kahler Einstein Riemannian manifold (M, h). If w is biharmonic, then
it 18 harmonic.

Theorem 2. Let w : (E,g9) — (M,h) be a biharmonic Hermitian vector
bundle over a compact Einstein manifold (M, h) with Ricci curvature Ric" = ¢
for some positive constant ¢ > 0. Then, either (i) m is harmonic, (ii) fo =
(t(m),7(m)) is constant, or (iii) the first eigenvalue A1 (M, h) of (M, h) satisfies
the following inequality:
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where

<1, (0.2)

and fo := (1(n),7(m)) € C®°(M) is the pointwise inner product of the tension
field T(m).

The inequalities (1) and (2) can be rewritten as follows:

2
2—71:1_271—1<1 2¢ 1 (foovh)

—-1< — <
n n AL(M,h) = Vol(M,h) [y, fo? vn

< 1. (0.3)

Theorem 1 shows the sharp contrasts on the biharmonicities between the case
of vector bundles and the one of the principle G-bundles. Indeed, we treated with
the biharmonicity of the projection of the principal G-bundle over a Riemannian
manifold (M, h) with negative definite Ricci tensor ﬁeld (cf. Theorem 2.3 in [45]).
In Theorem 2, the behavior of the quantity 1 — ( Vi o) in (3) is very important.

Indeed, 0 < 1 — (1\(/:[ py if and only if 2¢ < )\1(M h) which is the theorem of
M. Obata (cf [42] p.181, Theorem (3.23)), and —*= < 1 — 5 ( 7y < 0if and

only if 5 ¢ < A(M,h) < 2c under the Condltlon Ric" > ¢ > 0, which is the
theorem of Lichnerowicz and Obata [42], p.182, Theorem (3.26).

We give an example of the projection of the principal G-bundle over a Rie-
mannian manifold (M, h) which is biharmonic but not harmonic (cf. Example 1
in this paper, and also Theorem 5 in [46]). Finally, it should be mentioned that
Oniciuc ([36]) gave examples of non-harmonic biharmonic projections of the
tangent bundle over a compact Riemannian manifold, which has a sharp con-
trast our case of the Hermitian vector bundles over a compact Kéhler-Einstein
manifold.

1 Preliminaries

In this section, we prepare materials for the first variation formula for the
bi-energy functional and bi-harmonic maps. Let us recall the definition of a
harmonic map ¢ : (M, g) — (N, h), of a comoact Riemannian manifold (M, g)
into another Riemannian manifold (N, h), which is an extremal of the energy
functional defined by

E(p) = /M e(¢) v,
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where e(y) := 3|dip|? is called the energy density of ¢. That is, for all variation
{pe} of ¢ with o = ¢,

4
dt

E(pr) = — / h(r (), Vg = 0, (1.1)
t=0 M

where V € TI'(¢~'TN) is a variation vector field along ¢ which is given by
V(z) = %]tzogot(a:) € Ty)N (v € M), and the tension field of ¢ is given by
7(p) =S B(p)(eie;) € (o I TN), where {e;}; is a locally defined frame
field on (M, g). The second fundamental form B(y) of ¢ is defined by

B(¢)(X,Y) = (Vdg)(X,Y)

= (Vxdp)(Y)
= Vx(dp(Y)) — dp(VxY)
= Vi de(Y) — dp(VxY), (1.2)

for all vector fields X,Y € X(M). Furthermore, V, and V¥, are connections on
TM, TN of (M,g), (N,h), respectively, and V, and V are the induced one on
@ YN, and T*M ® ¢~ 'TN, respectively. By (4), ¢ is harmonic if and only if
() =0.

The second variation formula of the energy functional is also well known
which is given as follows. Assume that ¢ is harmonic. Then,

d2
dat?

E(pr) = / W (V), V), (1.3)
t=0 M

where J is an elliptic differential operator, called Jacobi operator acting on
(¢~ !TN) given by
J(V)=AV —R(V), (1.4)

where AV = V'VV is the rough Laplacian and R is a linear operator on
(e I1TN) given by RV = Y"1 | RN(V,dy(e;))dp(e;), and RV is the curvature
tensor of (N, h) given by RN(U, V) = VNV — VNV, VY, — VN[U,V} for
U,V eX(N).

J. Eells and L. Lemaire proposed ([8]) polyharmonic (k-harmonic) maps and
Jiang studied ([21]) the first and second variation formulas of bi-harmonic maps.
Let us consider the bi-energy functional defined by

Bae) =5 [ o), (15)

where |V|? = h(V,V), V € T(p"!TN).
Then, the first variation formula is given as follows.
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Theorem 3.  (the first variation formula)
i, Blen == [ hirm(e). vu, (1.6
where
n2(p) = J(1(p)) = AT(p) = R(7(¢)), (L.7)

J is given in (7).
For the second variational formula, see [21] or [12].

Definition 1. A smooth map ¢ of M into N is called to be bi-harmonic if
T2(p) = 0.

2 The case of compact Kahler manifolds.

To prove Theorem 1, we need the following:

Proposition 1. Let m : (E,g) — (M,h) be an Hermitian vector bundle
over a compact Kdhler Einstein manifold (M, h). Assume that 7 is biharmonic.
Then the following hold:

(1) The tension field T(m) satisfies that

VX/T(TF):O (V XIEX(M)). (2.1)

(2) The pointwise inner product (7(r), 7(m)) = | 7(r) |? is constant on (M, g),
say d > 0.
(3) The energy Eo(m) satisfies that

By(r) = /M () 2o = §V01(M, h). (2.2)

By Proposition 1, Theorem 1 can be proved as follows. Assume that 7 :
(E,g) = (M, h) is biharmonic. Due to (11) in Proposition 1, we have

n

div(r(m)) =Y _(Ver(m))(ef) =0, (2.3)

i
=1
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where {€;}"_; is a locally defined orthonormal frame field on (M, h) and we put
n = dimg M. Then, for every f € C*°(M), it holds that, due to Proposition
(3.29) in [42], p. 60, for example,

0= /Mfdiv(r(w)) on = — /M WV f,7(r)) on. (2.4)

Therefore, we obtain 7(7w) = 0. QED

We will prove Proposition 1, later. Here, we give examples of the line bundles
over some compact homogeneous Kéhler Einstein manifolds (M, h):

Example 1. A generalized flag manifold G/H admits a unique Kéhler Ein-
stein metric h ([3] and [6]). Here, G is a compact semi-simple Lie group, and H
is the centralizer of a torus S in G, i.e., G is the complexification of G, and B
is its Borel subgroup. Then,

M =G/H =G"/B.

The Borel subgroup B is written as B = T'N, where T is a maximal torus of B
and N is a nilpotent Lie subgroup of B. Every character &) of a Borel subgroup
B is given as a homomorphism £y : B — C* = C — {0} which is written as

Etn) =&(t)  ((€T, neN). (2.5)
Here &\ : T — U(1) is a character of T which is written as

Ex(exp(01Hy + -« + OpHy)) = 2™/ 1ROtk g, g, € R),
(2.6)
where k1, ..., k¢ are non-negative integers, and ¢ = dim 7.

Note that every character &, of a nilpotent Lie group N must be &(n) =1
because &y (n) = &x(exp X) = eV X) where n =expX (X €n), and N : t = C
is a homomorphism, i.e., & (X +Y) = Ev(X) +Ev(Y), (X, Y € t). Then, there
exists k € N which satisfies that exp(k X) = n* = e. Then, v (X) = &, (nF) =
&x(e) = 1. Thus, for every a € R,

pakén(X) _ (ekfy(X))a - 1.

This implies that £&y/(X) = 0. Thus, {x(X) = 0 for all X € n, ie., i = 0.
Therefore, we have that £\(n) = e (n € N). We have (15).

For every &, given by (15) and (16), we obtain the associated holomorphic
vector bundle F¢, over G¢/B as Eg, = {[z,v]|(z,v) € G x C}, where the
equivalence relation (z,v) ~ (2/,v) is (z,v) = (2/,v’) if and only if there exists
b € B such that (2/,v') = (zb~1,&,(b)v), denoted by [z, v], the equivalence class
including (x,v) € G® x C (for example, [2], [41]).
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3 Proof of Proposition 1.

For an Hermitian vector bundle = : (E,g) — (M,g) with dimg £ = m,
and dimg M = n, let us recall the definitions of the tension field 7(7) and the
bitension field 7o(m):

- (3.1)
() = AT(T) — ; RM(7(m), meej)mae;
Then, we have
To(m) := Ar(r) — f:th(T(w), Tae;) e
= Ar(m) — zn; R"(7(m), ¢})¢} (32)
= Ar(n) — ia_ich(T(w)). (3-3)

Here, recall that 7 : (E, g) — (M, h) is the Riemannian submersion and {e; }I";
and {e}}}_; are locally defined orthonormal frame fields on (£, g) and (M, h),
respectively, satisfying that m.e; = e} (j = 1,---,n) and m(e;) =0 (j =
n+1,---,m). Therefore, we have (18) and (19) by means of the definition of
the Ricci tensor field Ric” of (M, h).

Assume that (M, h) is a real n-dimensional compact Kahler Einstein man-
ifold with Ric" = cId, where n is even. Then, due to (19), we have that
7m: (E,g) — (M, h) is biharmonic if and only if

Ar(m) = e1(m). (3.4)

Since (7(7), 7 (7)) is a C*° function on a Riemannian manifold (M, k), we have,
foreach j =1,--- ,n,

= 2(Ve7(m), 7(m)), (3.5)
e (r(m), 7(m)) = 2€} (Vo 7(m), ()

= 2(Ve, (Ve 7(m)), 7(7)) + 2(Ver 7(7), Vs (), (3.6

Ve &j(r(m),7(m)) = 2(Vy o 7(r), 7(m)) (3.7)
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Therefore, the Laplacian Ay, = — 2?21(632 —V_, €}) acting on C>°(M), so that
i

Ap (7(m), 7(7)) = (3.8)

j=1
= 2(Ar(n),7(n)) —2) (Ver(m),Ver(n)) (3.9)
j=1
< 2(Ar(m), 7(m)), (3.10)

because of <V637(7r),V6;_T(7r)) >0,(j=1,---,n).
If m: (E,g) — (M, h) is biharmonic, due to (20), A7(7) = ¢7(), the right

hand side of (25) coincides with
(25) = 2¢(r(m), 7(7)) — 22(?637'(77),v697(77)> (3.11)
=1
< 2c(r(m), 7(m)). J (3.12)
Remember that due to M. Obata’s theorem, (see Proposition 2 below),
AL(M, h) > 2, (3.13)
since Ricy, = cId, And the equation in (28) holds, i.e., A\; (M, h) = 2¢ and
Ap (1(m),7(m)) = 2¢(T(m), T(7)) (3.14)

holds. Then, (29) implies that the equality in the inequality (28) holds. We have
that

<ﬁe;.7-(77)7§e;7-(7r)> =0, (315)
1

n
j=
which is equivalent to that

Vxir(r) =0 (VX' € X(M)). (3.16)
Due to (32), for every X' € X(M),

X' (1(n),7(m)) = 2(Vxi7(7), 7(7)) = 0. (3.17)
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Therefore, the function (7(7),7(m)) on M is a constant function on M. Thus,
it implies that the right hand side of (29) must vanish. Thus, ¢ = 0 or 7(7) = 0.
If we assume that 7(7) # 0, then by (29), it must hold that 2¢ = 0. Then,
Ar(m) = c1(m) =0, so that 7(m) = 0 due to (20).

Let A1(M,g) be the first eigenvalue of the Laplacian A of a compact Rie-
mannian manifold (M, g). Recall the theorem of M. Obata:

Proposition 2. (c¢f. [42], pp. 180, 181 ) Assume that (M, h) is a compact
Kahler manifold, and the Ricci transform p of (M, h) satisfies that

h(p(u),u) > ah(u,u), (Vu € T, M), (3.18)
for some positive constant o > 0. Then, it holds that
AM(M,h) > 2a. (3.19)

If the equality holds, then M admits a non-zero holomorphic vector field.
Thus, we obtain Proposition 1, and the following theorem (cf. Theorem 1):

Theorem 4. Let w: (E,g) — (M, h) be an Hermitian vector over a com-
pact Kdihler Einstein manifold (M, h). If 7 is biharmonic, then it is harmonic.

4 Einstein manifolds and proof of Theorem 5.

Let w: (E™,g) — (M™, h) be an Hermitian vector bundle over a compact
Riemannian manifold (M, h), and again let us recall the tension field and the
bitension field

T(m) = i {ﬁﬁjmej — T (ngej)} , (4.1)
(1) = AT(m) — zm: R (), Tx€j )55, (4.2)

respectively. Then, we have
To(m) = Z {ﬁgjﬂ'*ej — T (Vg]_ ej)} , (4.3)

J]=

mo(m) = Ar(m) — Z R"(r(n), T4€j)Tx€j
j=1

—_



104 H. Urakawa

Il
>

T(m) =Y RMr(m),€))e]
j=1

7(7) — Ric"(r(7))
= A7(m) —c7(m) (4.4)

I
| P

since it holds that Ric" = ch because of (M,h) is Einstein. Therefore, that
m: (E,g) — (M,h) is biharmonic if and only if

A7(m) = c1(nm). (4.5)

Since the Laplacian Ay of a Riemannian manifold (M, h) is expressed as

Ay = — i(e} 2 VZ;e;-), (4.6)
j=1

and

& (7(m),7(m)) = 2 (T 7(m), 7(m)),

¢;*(r(m), 7(m)) = 2€; (Verr(m), 7(m)),

=2(Ve (Ve 7(m)), 7(m)) + 2(Ver 7(), Ver 7(1))
Vo) (r(m), () = 2T, (), (),

we have

7j=1
— 2(Br(m), 7)) — 2 (Vo r(m), T ()
j=1
< 2<ZT(7T),T(7T)>. (4.7)

Assume that 7 : (E, g) — (M, h) is biharmonic. Then, we have
A7(m) = cr(m). (4.8)
Therefore, we have

Ap(r(m), 7(m)) < 2¢{7(7), 7()). (4.9)

Then, we show the following theorem (cf. Theorem 2):
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Theorem 5. Let w: (E,g) — (M,h) be an Hermitian vector bundle over
a compact Einstein manifold (M,h) with Ricci curvature Ric" = ¢ for some
positive constant ¢ > 0. Assume that 7 : (E,g) — (M, h) is biharmonic. Then,
either (i) m is harmonic, or (ii) the first eigenvalue A\ (M, h) of (M, h) satisfies
the following inequality:

n 2c

< M <
C_)\l( ,h)_l_X

0< (4.10)

n—1

where

1 (fM Jo Uh)2

0<X =
Vth foo Up,

<1, (4.11)

and fo := (17(m),7(m)) € C®(M) is the pointwise inner product of the tension
field (7).

The inequalities (1) and (2) can be rewritten as follows:

2
2—n n—1<1_ 2c < 1 (foovh)

1
R n = MM Vol(M,h) [y, fo2un

1. (4.12)

First, let us recall the theorem of Lichinerowicz and Obata:

Theorem 6. Assume that the Ricci curvature Ric of (M,h) is bounded
below by a positive constant ¢ > 0. Then, the first eigenvalue satisfies that

n

A1(h) > c, (4.13)

n—1
and the equality in (45) holds if and only if (M,h) is isometric to the n-

dimensional standard unit sphere (S™, hy).

The inequality (44) means that a C*° function fy on M defined by fy =
(1(m), 7(m)) € C°(M) satisfies that

Ath < 2c fg. (414)

(The first step)  We assume that fo # 0 and not a constant. Then [, fo? vy >
0, and we have by (45),

Jar Fo(Anfo)vn — [3, IV fol? Vb

2c > =
‘= Jas fo?vn Jas fo? on

(4.15)



106 H. Urakawa

(The second step) If we define f; := fo — S Jovn o C*(M), we have

VoI(M,h)
/ Jion =0, (4.16)
M
Vi =Vio VA=Vl (4.17)
2, _ 2 (Jar fo vh)2
/M Ji7on = /M fo“ v — m. (4.18)

(The third step) Let us recall the well-known Schwarz inequality (M. Fu-
jiwara, Differentiations and Integrations, Vol. I, page 434, 1934, 2015, ISBN978-
4-7536-0163-9):

Lemma 1. (Schwarz inequality) For every two continuous functions f and
g on a compact Riemannian manifold (M, h), then it holds that

(/M f(x) g(x) vh(x)>2 < </M fz)? vh(x)) </M g(:c)zvh(z)) . (4.19)

The equality holds if and only if there exist two real numbers A\ and p such that

Af(x)+pglx) =0 (everywhere on M). (4.20)

Then, we have

2
</ Jo Uh) < Vol(M, h) / fo? v (4.21)
M M
Furthermore, we have
2 (Jar fo Uh)2
/M fo®vn — W > 0. (4.22)

Because, if (57) does not occur, the equality holds for f = fp and g = 1 in
(54). Due to Lemma 1, there exist two real numbers A and p satisfying that

Afo(x)+p-1=0 (on M) (4.23)

which means that fy must be a constant on M and V fy = 0 which contradicts
our assumption in Step 1. We have the inequality (57).
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(The fourth step) The first eigenvalue A\i (M, h) of (M, h) satisfies that

\V4 2
a0, ny < VAo
fol Up,
_ Jar IV fol? on
Jag fo2vn)?
Jor fo? vn = (\/Af)l(iMh))
< 2¢ fM f02 Yh
o Jas foon :
Jor foP v = (\;\gl(M,h;
1
=2, (4.24)
where we put X = o1 )’ (0 ¥ 1) Tndeed, X < 1 if and
pu = IR oy R (0 < X <1). Indeed, X < 1if an
only if
2
</ f() Uh) < VO](M, h) / f02 Up, (4.25)
M M
and
0<X <= 0</f0vh — 0= fo. (4.26)
M
Furthermore, since A\ (M, h) < 2¢ 25 if and only if
2c
l———— <X 4.2
)\1(M, h) - ( 7)

together with the inequality of Lichnerowicz-Obata, we have also the following
inequalities:

2
2—n:1_2n—1§1_ 2c < 1 (fys foon)
AL(M, h) = Nol(M h) - [y fo? vn

—-1<

< 1. (4.28)

We obtain Theorem 5. QED
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