# Normal subgroups of finite non-abelian metacyclic $p$-groups of class two of odd order 

Pradeep Kumar<br>Department of Mathematics, Central University of South Bihar, India<br>14p.shaoran@gmail.com

Received: 23.2.2019; accepted: 8.10.2019.


#### Abstract

In this paper, we determine the normal subgroups of a finite non-abelian metacyclic $p$-group of class two for odd prime $p$.


Keywords: Metacyclic $p$-groups, Subgroups, Normal subgroups
MSC 2000 classification: primary 20D15, secondary 20D60

## Introduction

Determining the subgroups of finite groups is one of the important problems in finite group theory. In last century, the problem was completely solved for finite abelian groups (see [2, 5]). In [3], Calhoun determined the subgroups of ZM-groups (finite group with all Sylow subgroups are cyclic). Motivated by the paper of Calhoun [3], M. Tărnăuceanu determined the normal subgroups of ZM-groups [9]. In [9], Tărnăuceanu also proposed the following problem:
"Describe the normal subgroups of an arbitrary metacyclic group".
In this paper, we partially answer the above problem by determining the normal subgroups of finite non-abelian metacyclic $p$-groups of class two ( $p$ odd). A group $G$ is said to be metacyclic if it contains a normal cyclic subgroup $C$ with cyclic quotient group $G / C$. Throughout the paper groups will always be finite and $\mathbb{N}$ denotes the set of positive integers.

## 1 Basic Results

In this section, we give some results that will be needed later. First, we state a theorem that gives a presentation for a non-abelian metacyclic p-group of class two, $p$ odd.

[^0]Theorem 1 ([1, Theorem 1.1]). Let $M$ be a non-abelian metacyclic p-group of class two, $p>2$. Then $M$ is isomorphic to the following group:

$$
M \cong\left\langle x, y \mid x^{p^{r}}=y^{p^{s}}=1,[x, y]=x^{p^{r-\delta}}\right\rangle
$$

where $r, s, \delta \in \mathbb{N}=\{1,2, \ldots\}, r \geq 2 \delta, s \geq \delta \geq 1$.
Lemma 1 ([8]). Let $G$ be a p-group of class two, and let $x, y, z \in G$. Then
(i) $[x y, z]=[x, z][y, z]$,
(ii) $\left[x^{m}, y\right]=\left[x, y^{m}\right]=[x, y]^{m}$, for any integer $m$.

Now, we state the Goursat's Lemma related to the subgroups of the direct product of two groups.

Proposition 1 ([4, Goursat's Lemma]). Let $X$ and $Y$ be arbitrary groups. Then there is a bijection between the set of all subgroups of $X \times Y$ and the set $T$ of all 5-tuples $\left(A, A^{\prime}, B, B^{\prime}, \phi\right)$, where $A^{\prime} \unlhd A \leq X, B^{\prime} \unlhd B \leq Y$ and $\phi$ : $A / A^{\prime} \longrightarrow B / B^{\prime}$ is an isomorphism. More precisely, the subgroup corresponding to $\left(A, A^{\prime}, B, B^{\prime}, \phi\right)$ is

$$
\begin{equation*}
H=\left\{(x, y) \in A \times B \mid \phi\left(x A^{\prime}\right)=y B^{\prime}\right\} \tag{1.1}
\end{equation*}
$$

### 1.1 Subgroups of $\mathbb{Z}_{p^{r}} \times \mathbb{Z}_{p^{s}}$

In this subsection, we give a representation of subgroups of $\mathbb{Z}_{p^{r}} \times \mathbb{Z}_{p^{s}}$ given in [10]. With out loss of generality, let $r \geq s \geq 1$. With the notations used in Proposition 1, let $X=\mathbb{Z}_{p^{r}}=\langle x\rangle$ and $Y=\mathbb{Z}_{p^{s}}=\langle y\rangle$. Let $|A|=p^{u},\left|A^{\prime}\right|=$ $p^{v},|B|=p^{q},\left|B^{\prime}\right|=p^{t}$.

Further, let $A \leq X, A=\left\langle x^{p^{r-u}}\right\rangle$, where $0 \leq u \leq r, A^{\prime} \leq A$, and $A^{\prime}=$ $\left\langle x^{p^{r-v}}\right\rangle$, where $0 \leq v \leq u$. Then $A / A^{\prime}=\left\langle x^{p^{r-u}} A^{\prime}\right\rangle$. Similarly, let $B \leq Y, B=$ $\left\langle y^{p^{s-q}}\right\rangle$, where $0 \leq q \leq s, B^{\prime} \leq B$, and $B^{\prime}=\left\langle y^{p^{s-t}}\right\rangle$, where $0 \leq t \leq q$. Then $B / B^{\prime}=\left\langle y^{p^{s-q}} B^{\prime}\right\rangle$.

Again, for $\left|A / A^{\prime}\right|=\left|B / B^{\prime}\right|$ that is, $u-v=q-t$, the isomorphisms $\phi_{l}$ : $A / A^{\prime} \rightarrow B / B^{\prime}$ are given by

$$
\phi_{l}\left(x^{i p^{r-u}} A^{\prime}\right)=y^{i l p^{s-q}} B^{\prime}
$$

where $1 \leq l \leq p^{u-v}$ with $\operatorname{gcd}(l, p)=1$.
Using Proposition 1 , one can deduce that the subgroups $H$ of $\mathbb{Z}_{p^{r}} \times \mathbb{Z}_{p^{s}}$ are of the form $H=\left\{x^{i p^{r-u}} y^{j p^{s-q}} \in A \times B \mid(i l-j) p^{s-q} \equiv 0 \bmod p^{s-t}\right\}$ (for details see [7]).

Now, let

$$
\begin{aligned}
S_{p^{r}, p^{s}}:= & \{(u, v, q, t, l) \mid 0 \leq u \leq r, 0 \leq v \leq u, 0 \leq q \leq s, 0 \leq t \leq q, \\
& \left.u-v=q-t, 1 \leq l \leq p^{u-v}, \text { and } \operatorname{gcd}(l, p)=1\right\} .
\end{aligned}
$$

For $(u, v, q, t, l) \in S_{p^{r}, p^{s}}$, define

$$
\begin{align*}
H_{u, v, q, t, l}= & \left\{x^{i p^{r-u}} y^{j p^{s-q}} \mid(i l-j) p^{s-q} \equiv 0 \quad \bmod p^{s-t}, 1 \leq i \leq p^{u},\right. \text { and } \\
& \left.1 \leq j \leq p^{q}\right\} . \tag{1.2}
\end{align*}
$$

Theorem 2 ([10, Theorem 3.1]). The $\operatorname{map}(u, v, q, t, l) \mapsto H_{u, v, q, t, l}$ is a bijection between the set $S_{p^{r}, p^{s}}$ and the set of subgroups of $\mathbb{Z}_{p^{r}} \times \mathbb{Z}_{p^{s}}$, where $r, s \in \mathbb{N}$.

## 2 Representation of Normal Subgroups of Finite NonAbelian Metacyclic $p$-Groups

In this section, first we determine the subgroups of non-abelian metacyclic $p$-groups $M$ of class two ( $p$ odd). For this, we use Baer's trick to construct an abelian group $M_{w}$ corresponding to $M$. Then we show that there is a one-one correspondence between subgroups of $M$ and $M_{w}$.

Let $G$ be a group. If we can define a binary operation $\circ$ on $G$ by

$$
x \circ y=w(x, y)
$$

where $w$ is some fixed word in $x, y \in G$ such that the set $G$ forms a group with operation $\circ$, then we say $w$ to be a group-word for $G$, and we write the corresponding group by $G_{w}$, that is, as a set $G_{w}=G$ and operation of $G_{w}$ is ०.

Now if $G$ is a $p$-group of class two, $p$ odd, then we can define a groupword $w$ for $G$ as follows; for $x, y \in G, w(x, y)=x \circ y:=x y[x, y]^{\frac{m-1}{2}}$ (where $[x, y]=x^{-1} y^{-1} x y$ and $m$ is the exponent of $\gamma_{2}(G)$, the commutator subgroup of group $G$ ). Moreover, $x \circ y=x y[x, y]^{\frac{m-1}{2}}=y x[x, y]^{\frac{m+1}{2}}=y x[y, x]^{\frac{m-1}{2}}=y \circ x$. Thus the corresponding group $G_{w}$ is abelian (for more details see [6, p. 142] and [7]). Now onward by $w$, we mean the group word defined as above, $M$ denotes a non-abelian metacyclic $p$-group of class two ( $p$ odd), $n=\frac{m-1}{2}$ where $m$ is the exponent of $\gamma_{2}(M)$, and $M_{w}$ is the corresponding abelian group of $M$ defined as above.

Proposition 2. The corresponding abelian group of $M$ is given by

$$
M_{w} \cong\left\langle x, y \mid x^{p^{r}}=y^{p^{s}}=1, x y=y x\right\rangle
$$

Proof. Let $K=\left\langle x, y \mid x^{p^{r}}=y^{p^{s}}=1, x y=y x\right\rangle$. As a set $M_{w}=M$. Now, take an element $g=x^{i} y^{j} \in M$. So $g=x^{i} \circ y^{j} \circ\left[x^{i}, y^{j}\right]^{-n}=x^{i-p^{r-\delta} i j n} \circ y^{j}$. Therefore, $M_{w}=\langle x, y\rangle$. Since powers of each element in $M$ and $M_{w}$ are same, so $x^{p^{r}}=y^{p^{s}}=1$. Also, $x \circ y=y \circ x$. Thus, the generators of $M_{w}$ satisfy the relations of $K$, so by Von Dyck's Theorem [8, p. 51], there is a surjective homomorphism $\phi: K \longrightarrow M_{w}$ with $x \rightarrow x$ and $y \rightarrow y$. Moreover, $\left|M_{w}\right|=|M|=p^{r+s}$. So, $\left|M_{w}\right|=|K|$. Thus, $M_{w} \cong K$. This completes the proof.

Note that to avoid ambiguity of operations, we write

$$
M_{w}=\left\langle x, y \mid x^{p^{r}}=y^{p^{s}}=1, x \circ y=y \circ x\right\rangle
$$

It is clear that $M_{w} \cong \mathbb{Z}_{p^{r}} \times \mathbb{Z}_{p^{s}}$.
Lemma 2. A subset of $M$ is a subgroup of $M$ if and only if it is a subgroup of $M_{w}$.

Proof. It is not hard to see that subgroups of $M$ are subgroups of $M_{w}$. For converse, consider an arbitrary subgroup $H$ of $M_{w}$. Using equation (1.2), the subgroup $H$ is of the form

$$
H=\left\{x^{i p^{r-u}} \circ y^{j p^{s-q}} \mid i l \equiv j \quad \bmod p^{q-t}, 1 \leq i \leq p^{u}, \text { and } 1 \leq j \leq p^{q}\right\}
$$

where $q>t$ and for $q=t$,

$$
H=\left\{x^{i p^{r-u}} \circ y^{j p^{s-q}} \mid 1 \leq i \leq p^{u} \text { and } 1 \leq j \leq p^{q}\right\}
$$

Now, take $g_{1}, g_{2} \in H$, where $g_{1}=x^{i p^{r-u}} \circ y^{j p^{s-q}}$, and $g_{2}=x^{i^{\prime} p^{r-u}} \circ y^{j^{\prime} p^{s-q}}$. To show that $H$ is also a subgroup of $M$, it is sufficient to show that $H$ is closed with the operation of $M$, that is, $g_{1} g_{2} \in H$.

We have $g_{1} g_{2}=g_{1} \circ g_{2} \circ\left[g_{1}, g_{2}\right]^{-n}$, where $n=\frac{m-1}{2}, m$ is the exponent of $\gamma_{2}(M)$. Further, $\left[g_{1}, g_{2}\right]=\left[x^{i p^{r-u}} \circ y^{j p^{s-q}}, x^{i^{\prime} p^{r-u}} \circ y^{j^{\prime} p^{s-q}}\right]$, that is, in turn, equivalent to

$$
\left[g_{1}, g_{2}\right]=[x, y]^{\left(i j^{\prime}-j i^{\prime}\right) p^{r+s-u-q}} \quad(\text { Lemma } 1)
$$

Now,

$$
\begin{aligned}
g_{1} g_{2} & =x^{i p^{r-u}} \circ y^{j p^{s-q}} \circ x^{i^{\prime} p^{r-u}} \circ y^{j^{\prime} p^{s-q}} \circ[x, y]^{-n\left(i j^{\prime}-j i^{\prime}\right) p^{r+s-u-q}} \\
& =x^{\left\{i+i^{\prime}-n\left(i j^{\prime}-j i^{\prime}\right) p^{r-\delta+s-q}\right\} p^{r-u}} \circ y^{\left\{j+j^{\prime}\right\} p^{s-q}} \quad\left([x, y]=x^{p^{r-\delta}}\right) .
\end{aligned}
$$

For $q=t$, it is evident that $g_{1} g_{2} \in H$. Now, assume that $q>t$. Since $g_{1}, g_{2} \in H$, the following equations hold

$$
\begin{equation*}
i l \equiv j \quad \bmod p^{q-t} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
i^{\prime} l \equiv j^{\prime} \quad \bmod p^{q-t} \tag{2.2}
\end{equation*}
$$

Using (2.1) \& (2.2), we deduce that $i l+i^{\prime} l \equiv j+j^{\prime} \bmod p^{q-t}$ and $\left(i j^{\prime}-j i^{\prime}\right) l \equiv 0$ $\bmod p^{q-t}$. Since $\operatorname{gcd}(l, p)=1$, we get $\left(i j^{\prime}-j i^{\prime}\right) \equiv 0 \bmod p^{q-t}$. Thus, we conclude that

$$
\left\{i+i^{\prime}-n\left(i j^{\prime}-j i^{\prime}\right) p^{r-\delta+s-q}\right\} l \equiv j+j^{\prime} \quad \bmod p^{q-t}
$$

Thus, $g_{1} g_{2} \in H$. This completes the proof.
QED
Now, we determine the normal subgroups of non-abelian metacyclic group $M$ of class two ( $p$ odd).

By Theorem 1, we have

$$
\begin{equation*}
M \cong\left\langle x, y \mid x^{p^{r}}=y^{p^{s}}=1,[x, y]=x^{p^{r-\delta}}\right\rangle \tag{*}
\end{equation*}
$$

where $r, s, \delta \in \mathbb{N}, r \geq 2 \delta, s \geq \delta \geq 1$. By subsection 1.1 and Lemma 2, the subgroups of $M$ are of the form

$$
\begin{aligned}
H_{u, v, q, t, l} \cong & \left\{x^{i p^{r-u}} \circ y^{j p^{s-q}} \mid(i l-j) p^{s-q} \equiv 0 \quad \bmod p^{s-t}, 1 \leq i \leq p^{u},\right. \text { and } \\
& \left.1 \leq j \leq p^{q}\right\}
\end{aligned}
$$

where, $(u, v, q, t, l) \in S_{p^{r}, p^{s}}$.
Lemma 3. For $(u, v, q, t, l) \in S_{p^{r}, p^{s}}$, the subgroup $H_{u, v, q, t, l}$ of $M$ is a normal subgroup if and only if $u-\delta+s-q \geq q-t$ and $r-\delta \geq q-t$.

Proof. The subgroup $H_{u, v, q, t, l}$ is a normal subgroup if and only if $g^{-1} h g \in$ $H_{u, v, q, t, l}$ for every $g \in M$ and $h \in H_{u, v, q, t, l}$. Take an element $g=x^{a} y^{b} \in M$ and $h=x^{i p^{r-u}} \circ y^{j p^{s-q}} \in H_{u, v, q, t, l}$. Now, we have $g^{-1} h g=h[h, g]=h \circ[h, g]$. Thus

$$
\begin{array}{rll}
g^{-1} h g & =h \circ[h, g] \\
& =x^{i p^{r-u}} \circ y^{j p^{s-q}} \circ\left[x^{i p^{r-u}} \circ y^{j p^{s-q}}, x^{a} y^{b}\right] \\
& =x^{i p^{r-u}} \circ y^{j p^{s-q}} \circ[x, y]^{i b p^{r-u}-a j p^{s-q}} & (\text { Lemma 1) } \\
& =x^{i p^{r-u}+p^{r-\delta}\left(i b p^{r-u}-a j p^{s-q}\right)} \circ y^{j p^{s-q}} \quad\left([x, y]=x^{p^{r-\delta}}\right) .
\end{array}
$$

Let $H_{u, v, q, t, l}$ be a normal subgroup of $M$. Now, if $g^{-1} h g \in H_{u, v, q, t, l}$, then

$$
i p^{r-u}+p^{r-\delta}\left(i b p^{r-u}-a j p^{s-q}\right) \equiv 0 \quad \bmod p^{r-u}
$$

and that is equivalent to $a j p^{r-\delta+s-q} \equiv 0 \bmod p^{r-u}$. The latter equation must hold for every possible $a, j$. Thus $p^{r-u} \mid p^{r-\delta+s-q}$. So, $r-\delta+s-q \geq r-u$. This implies $u-\delta+s-q \geq 0$. Now, assume that $u-\delta+s-q \geq 0$, then $g^{-1} h g=x^{\left(i+i b p^{r-\delta}-a j p^{u-\delta+s-q}\right) p^{r-u}} \circ y^{j p^{s-q}}$. Now, if $g^{-1} h g \in H$, then $\left[\left(i+i b p^{r-\delta}-\right.\right.$
ajp $\left.\left.p^{u-\delta+s-q}\right) l-j\right] p^{s-q} \equiv 0 \bmod p^{s-t}$. For $q=t$, the latter equation always holds. Now, suppose $q>t$, then $\left(i+i b p^{r-\delta}-a j p^{u-\delta+s-q}\right) l \equiv j \bmod p^{q-t}$. Since $h \in H$, so $i l \equiv j \bmod p^{q-t}$. Thus we have that $\left(i b p^{r-\delta}-a j p^{u-\delta+s-q}\right) l \equiv 0$ $\bmod p^{q-t}$. Since $\operatorname{gcd}(l, p)=1,\left(i b p^{r-\delta}-a j p^{u-\delta+s-q}\right) \equiv 0 \bmod p^{q-t}$. The latter equation must hold for every $a, b$ and $i, j$ such that $h \in H, g \in M$. This implies $p^{u-\delta+s-q} \equiv 0 \bmod p^{q-t}$ and $p^{r-\delta} \equiv 0 \bmod p^{q-t}$. Thus $u-\delta+s-q \geq q-t$ and $r-\delta \geq q-t$. It is not hard to see that converse part holds. This completes the proof.

Now, for every $r, s, \delta \in \mathbb{N}$ such that $r \geq 2 \delta, s \geq \delta \geq 1$, let

$$
\begin{aligned}
J_{p^{r}, p^{s}}^{\prime}:= & \{(u, v, q, t, l) \mid 0 \leq u \leq r, 0 \leq v \leq u, 0 \leq q \leq s, 0 \leq t \leq q, u-v=q-t \\
& \left.1 \leq l \leq p^{u-v}, \operatorname{gcd}(l, p)=1, u-\delta+s-q \geq q-t, \text { and } r-\delta \geq q-t\right\}
\end{aligned}
$$

For $(u, v, q, t, l) \in J_{p^{r}, p^{s}}^{\prime}$, define

$$
\begin{aligned}
N_{u, v, q, t, l}:= & \left\{x^{i p^{r-u}} y^{j p^{s-q}}[x, y]^{n i j p^{r-u+s-q}} \mid(i l-j) p^{s-q} \equiv 0 \quad \bmod p^{s-t}\right. \\
& \left.1 \leq i \leq p^{u}, \text { and } 1 \leq j \leq p^{q}\right\}
\end{aligned}
$$

Theorem 3. The map $(u, v, q, t, l) \mapsto N_{u, v, q, t, l}$ is a bijection between the set $J_{p^{r}, p^{s}}^{\prime}$ and the set of normal subgroups of non-abelian metacyclic p-group $M$ of class two ( $p$ odd) as in (*).

Proof. This follows from Lemmas 2, 3 and Theorem 2.

Acknowledgements. The author would like to thank the referee for his very valuable comments and suggestions.

## References

[1] J. R. Beuerle: An elementary classification of finite metacyclic p-groups of class at least three, Algebr. Colloq. 12 (2005), 553-562.
[2] G. Bhowmik: Evaluation of divisor functions of matrices, Acta Arith. 74 (1996), 155-154.
[3] W. C. Calhoun: Counting the subgroups of some finite groups, Amer. Math. Monthly 94 (1987), 54-59.
[4] R. R. Crawford, K. D. Wallace: On the number of subgroups of index two-an application of Goursat's theorem for groups, Math. Mag. 48 (1975), 172-174.
[5] S. Delsarte: Fonctions de möbius sur les groupes abeliens finis, Ann. of Math. 49 (1948), 600-609.
[6] I. M. Isaacs: Finite Group Theory, Graduate Studies in Mathematics, Vol. 92, Amer. Math. Soc. Providence, 2008.
[7] P. Kumar, V. K. Jain: On the number of subgroups of non-metacyclic minimal nonabelian p-groups, Asian-Eur. J. Math, doi: 10.1142/S1793557120500941.
[8] D. J. S. Robinson: A Course in the Theory of Groups, 2nd Edition, Springer, New York, 1996.
[9] M. TĂrnăuceanu, The normal subgroup structure of ZM-groups, Ann. Mat. Pura Appl. 193 (2014), 1085-1088.
[10] L. Tóтн, Subgroups of finite abelian groups having rank two via Goursat's lemma, Tatra Mt. Math. Publ. 59 (2014), 93-103.


[^0]:    http://siba-ese.unisalento.it/ © 2019 Università del Salento

