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Abstract.
Let T be a bounded linear operator on a complex Hilbert space H. In this paper we

introduce a new class of operators: (n, k)-quasi class Q operators, superclass of (n, k)-quasi
paranormal operators. An operator T is said to be (n, k)-quasi class Q if it satisfies

‖T (T kx)‖2 ≤ 1

n+ 1

(
‖T 1+n(T kx)‖2 + n‖T kx‖2

)
,

for all x ∈ H and for some nonnegative integers n and k. We prove the basic structural
properties of this class of operators. It will be proved that If T has a no non-trivial invariant
subspace, then the nonnegative operator

D = T ∗k
(
T ∗(1+n)T (1+n) − n+ 1

n
T ∗T + I

)
T k

is a strongly stable contraction. In section 4, we give some examples which compare our class
with other known classes of operators and as a consequence we prove that (n, k)-quasi class Q
does not have SVEP property. In the last section we also characterize the (n, k)-quasi class Q
composition operators on Fock spaces.

Keywords: (n, k)-quasi class Q, (n, k)-quasi paranormal operators, SVEP property, Fock
space, composition operators.

MSC 2000 classification: Primary 47B20; Secondary 47A80, 47B37

Introduction

Throughout this paper, let H be a complex Hilbert space with inner product
〈·, ·〉. Let L(H) denote the C∗ algebra of all bounded operators on H. For T ∈
L(H), we denote by ker(T ) the null space and by T (H) the range of T . The
null operator and the identity on H will be denoted by O and I, respectively.
If T is an operator, then T ∗ is its adjoint, and ‖T‖ = ‖T ∗‖.
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We shall denote the set of all complex numbers by C, the set of all positive
integers by N, the set of all nonnegative integers by N0 and the complex con-
jugate of a complex number λ by λ. The closure of a set M will be denoted by
M and we shall henceforth shorten T − λI to T − λ. An operator T ∈ L(H) is
a positive operator, T ≥ O, if 〈Tx, x〉 ≥ 0 for all x ∈ H.

We write σ(T ), σp(T ), σa(T ), and r(T ) for the spectrum, point spectrum,
approximate point spectrum and spectral radius for operator T , respectively. It
is well known that r(T ) ≤ ‖T‖. The operator T is called normaloid if r(T ) =
‖T‖.

An operator T ∈ L(H), is said to be paranormal [8], if

‖Tx‖2 ≤ ‖T 2x‖

for any unit vector x inH.An operator T ∈ L(H), is said to be quasi−paranormal
operator if

‖T 2x‖2 ≤ ‖T 3x‖‖Tx‖,

for all x ∈ H. Mecheri, [11] introduced a new class of operators called k-quasi
paranormal operators. An operator T is called k−quasi paranormal if

‖T k+1x‖2 ≤ ‖T k+2x‖‖T kx‖,

for all x ∈ H, where k ∈ N0.
J. T. Yuan and G. X. Ji [14] introduced a new class of operators called (n, k)-

quasi paranormal operators: An operator T ∈ L(H) is said to be (n, k)-quasi
paranormal operators if

‖T (T kx)‖ ≤ ‖T 1+n(T kx)‖
1

1+n ‖T kx‖
n
n+1 ,

for all x ∈ H.

1 Main results

Now we introduce the class of (n, k)-quasi class Q operators defined as fol-
lows:
Definition 1 An operator T is said to be of the (n, k)-quasi class Q if

‖T (T kx)‖2 ≤ 1

n+ 1

(
‖T 1+n(T kx)‖2 + n‖T kx‖2

)
,

for all x ∈ H and for some nonnegative integers n and k.
A (1, k)-quasi class Q operator is a k-quasi class Q operator:

‖T k+1x‖2 ≤ 1

2

(
‖T k+2x‖2 + ‖T kx‖2

)
;
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(1, 1)-quasi classQ operator is a quasi classQ operator: ‖T 2x‖2 ≤ 1
2

(
‖T 3x‖2 + ‖Tx‖2

)
;

(1, 0)-quasi class Q operator is a class Q operator, Duggal, Kubrusly, Levan [5]:
‖Tx‖2 ≤ 1

2

(
‖T 2x‖2 + ‖x‖2

)
; (n, 0)-quasi class Q operator is a n-class Q oper-

ator

‖Tx‖2 ≤ 1

n+ 1

(
‖T 1+nx‖2 + n‖x‖2

)
.

Yuan and Ji [14, Lemma 2.2] prove that an operator T ∈ L(H) is of the
(n, k)-quasi paranormal if and only if

T ∗k
(
T ∗(1+n)T (1+n) − (n+ 1)λnT ∗T + nλn+1I

)
T k ≥ O, for all λ > 0.

Theorem 1. An operator T ∈ L(H) is of the (n, k)-quasi class Q, if and
only if

T ∗k
(
T ∗(1+n)T (1+n) − (n+ 1)T ∗T + nI

)
T k ≥ O,

where k and n are nonnegative integer numbers.

Proof. Since T is of the (n, k)-quasi class Q, then an application of the quadratic
inequality implies

(n+ 1)‖T (T kx)‖2 ≤
(
‖T 1+n(T kx)‖2 + n‖T kx‖2

)
,

for all x ∈ H, where k, n ∈ N0. Then,〈
T ∗k

(
T ∗(1+n)T (1+n) − (n+ 1)T ∗T + nI

)
T kx, x

〉
≥ 0

for all x ∈ H. The last relation is equivalent to

T ∗k
(
T ∗(1+n)T (1+n) − (n+ 1)T ∗T + nI

)
T k ≥ O.

QED

Lemma 1([4], page 17) For positive real numbers a > 0 and b > 0,

λa+ µb ≥ aλbµ

holds for λ > 0 and µ > 0 such that λ+ µ = 1.

Lemma 2 If T is an (n, k)−quasi paranormal operator, then T is an (n, k)-
quasi class Q, operator.
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Proof. Let T be an operator of (n, k)−quasi paranormal operator. Then, we
have

‖T (T kx)‖2

≤ ‖T 1+n(T kx)‖
2

1+n ‖T kx‖
2n
n+1

≤ 1

1 + n
‖T 1+n(T kx)‖2 +

n

n+ 1
‖T kx‖2

so, T is an (n, k)-quasi class Q operator. QED

An operator T ∈ L(H), is said to belong to k−quasi class An operator if

T ∗k
(
|Tn+1|

2
n+1 − |T |2

)
T k ≥ O

for some nonnegative integer numbers n and k, [15].
From [15, Theorem 2.2] if T is a k−quasi class An operator, then T is an

(n, k)−quasi paranormal operator, from the above theorem T is an (n, k)-quasi
class Q operator.

If T is an (n, k)-quasi class Q operator, then T is an (n, k+ 1)-quasi class Q
operator. The converse is not true, as it can be seen below.

Example 1 Consider the unilateral weighted shift operators as an infinite
dimensional Hilbert space operator. Recall that given a bounded sequence of a
positive numbers α : α1, α2, α3, α4, ... (called weights) the unilateral weighted
shift Wα associated with weight α is the operator on H = l2 defined by Wαem =
αmem+1 for all m ≥ 1, where {em}∞m=1 is the canonical orthonormal basis on l2.

Wα =



0 0 0 0 0 . . .
α1 0 0 0 0 . . .
0 α2 0 0 0 . . .
0 0 α3 0 0 . . .
0 0 0 α4 0 . . .
...

...
...

...
...

. . .


Let diag({αm}∞m=1) = diag(α1, α2, α3, ...) denote an infinite diagonal matrix

on l2. Then,

W ∗kα

(
W ∗(n+1)
α W (n+1)

α − (n+ 1)W ∗αWα + n
)
W k
α

=diag({α2
mα

2
m+1 · ... · α2

m+k−2α
2
m+k−1α

2
m+kα

2
m+k+1 · ... · α2

m+k+n−1α
2
m+k+n}∞m=1)

−(n+ 1)diag({α2
mα

2
m+1 · ... · α2

m+k−2α
2
m+k−1α

2
m+k}∞m=1)

+ndiag({α2
mα

2
m+1 · ... · α2

m+k−1}∞m=1)
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Then,

α2
mα

2
m+1·...·α2

m+k−1

(
α2
m+kα

2
m+k+1 · ... · α2

m+k+n−1α
2
m+k+n − (n+ 1)α2

m+k + n
)
≥ 0

Thus, Wα is an (n, k)-quasi class Q operator, if and only if,

α2
m+kα

2
m+k+1 · ... · α2

m+k+n−1α
2
m+k+n − (n+ 1)α2

m+k + n ≥ 0,

for m ≥ 1.
If α2 = 2 and αm = 1 for m ≥ 3, then Wα is a (2, 2)-quasi class Q operator

but it is not a (2, 1)-quasi class Q operator.
Since (n, k)−quasi paranormal is not a normaloid operator [14, Example

2.3], then (n, k)-quasi class Q is not a normaloid operator.

Theorem 2. Let T ∈ L(H). If λ−
1
2T is an operator of the (n, k)-quasi class

Q, then T is of the (n, k)-quasi paranormal for all λ > 0.

Proof. Let λ−
1
2T be an operator of (n, k)-quasi class Q, then

(λ−
1
2T )∗k

(
(λ−

1
2T )∗(n+1)(λ−

1
2T )(n+1) − (n+ 1)(λ−

1
2T )∗(λ−

1
2T ) + nI

)
(λ−

1
2T )k ≥ O

λ−
k
2T ∗k

(
λ−(n+1)T ∗(n+1)T (n+1) − (n+ 1)λ−1T ∗T + nI

)
λ−

k
2T k ≥ O,

1

λk+n+1
T ∗k

(
T ∗(n+1)T (n+1) − (n+ 1)λnT ∗T + nλ(n+1)

)
T k ≥ O,

T ∗k
(
T ∗(n+1)T (n+1) − (n+ 1)λnT ∗T + nλ(n+1)

)
T k ≥ O

for all λ > 0.
By this it is proved that the operator T is an (n, k)−quasiparanormal oper-

ator. QED

Theorem 3. Let T be a Hilbert space operator. If ‖T‖ ≤
√

n
n+1 ,(so T is

contraction) then T is an (n, k)-quasi class Q operator.

Proof. From ‖T‖ ≤
√

n
n+1 , we have ‖T‖2 ≤ n

n+1 . Then,

O ≤ nI − (n+ 1)T ∗T ≤ T ∗(1+n)T (n+1) − (n+ 1)T ∗T + nI,

therefore
O ≤ T ∗k

(
T ∗(1+n)T (n+1) − (n+ 1)T ∗T + nI

)
T k

so T is of the (n, k)-quasi class Q operator. QED
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Corollary 1 Let T be a Hilbert space operator. If Tn+1 = O then T is

(n, 0)-quasi class Q operator if and only if ‖T‖ ≤
√

n
n+1 .

Theorem 4. The following statements are equivalent:
(1) T is an (n, k)-quasi class Q, operator
(2)

T =

(
A B
O C

)
on H = T k(H)⊕ ker(T ∗k),

where A∗(1+n)A(1+n)−(n+1)A∗A+nI ≥ O, and Ck = O. Furthermore, σ(T ) =
σ(A) ∪ {0}.

Proof. The equivalence being evident in the case in which T has a dense range,
we consider the case in which T does not have a dense range.
(1) ⇒ (2) Consider the matrix representation of T with respect to the decom-

position H = T k(H)⊕ ker(T ∗k):

T =

(
A B
O C

)
.

Let P be the projection onto T k(H). Since T is an (n, k)-quasi class Q, operator,
we have

P
(
T ∗(1+n)T (1+n) − (n+ 1)T ∗T + nI

)
P ≥ O.

Therefore
A∗(1+n)A(1+n) − (n+ 1)A∗A+ nI ≥ O.

Let x =

(
x1

x2

)
∈ H = T k(H)⊕ ker(T ∗k). Then,

〈Ckx2, x2〉 =
〈
T k(I − P )x, (I − P )x

〉
=
〈

(I − P )x, T ∗k(I − P )x
〉

= 0,

thus Ck = O.
By [10, Corollary 7], σ(A) ∪ σ(C) = σ(T ) ∪ ϑ, where ϑ is the union of the

holes in σ(T ), which happen to be a subset of σ(A) ∩ σ(C).
The operator C being nilpotent, σ(A)∪σ(C) has no interior points, and this

by [7, Corollary (state corollary number)] implies σ(T ) = σ(A) ∪ {0}.

(2)⇒ (1) Suppose T =

(
A B
O C

)
on H = T k(H)⊕ ker(T ∗k), where

A∗(1+n)A(1+n) − (n+ 1)A∗A+ nI ≥ O and Ck = O.
Since

T k =

(
Ak

∑k−1
j=0 A

jBCk−1−j

O O

)
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we have

T ∗k
(
T ∗(1+n)T (1+n) − (n+ 1)T ∗T + nI

)
T k

=

(
A∗k O

(
∑k−1

j=0 A
jBCk−1−j)∗ O

)(
D E
E∗ F

)(
Ak

∑k−1
j=0 A

jBCk−1−j

O O

)
=

(
A∗kDAk A∗kD

∑k−1
j=0 A

jBCk−1−j

(
∑k−1

j=0 A
jBCk−1−j)∗DAk (

∑k−1
j=0 A

jBCk−1−j)∗D
∑k−1

j=0 A
jBCk−1−j

)

where

D = A∗(1+n)A(1+n) − (n+ 1)A∗A+ n

C = A∗(1+n)
n∑
j=0

AjBCn−j − (n+ 1)A∗B

F = (

n∑
j=0

AjBCn−j)∗(

n∑
j=0

AjBCn−j)+C∗(1+n)C(1+n)− (n+1)(B∗B+CC∗)+n

Let v = x⊕ y be a vector in H = T k(H)⊕ ker(T ∗k), where x ∈ T k(H) and
y ∈ ker(T ∗k). Then〈

T ∗k
(
T ∗(1+n)T (1+n) − (n+ 1)T ∗T + nI

)
T kv, v

〉
=
〈
A∗kDAkx, x

〉
+

〈
A∗kD

k−1∑
j=0

AjBCk−1−jy, x

〉
+

〈
(
k−1∑
j=0

AjBCk−1−j)∗DAkx, y

〉

+

〈
(

k−1∑
j=0

AjBCk−1−j)∗D

k−1∑
j=0

AjBCk−1−jy, y

〉

=

〈
D(Akx+

k−1∑
j=0

AjBCk−1−jy), (Akx+
k−1∑
j=0

AjBCk−1−jy)

〉

Since D = A∗(1+n)A(1+n) − (n+ 1)A∗A+ n ≥ O we have〈
T ∗k

(
T ∗(1+n)T (1+n) − (n+ 1)T ∗T + nI

)
T kv, v

〉
≥ 0,

hence

T ∗k
(
T ∗(1+n)T (1+n) − (n+ 1)T ∗T + nI

)
T k ≥ O.

Thus, T is an (n, k)-quasi class Q, operator.
QED
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Corollary 2 If T is an (n, k)-quasi class Q, operator and T k(H) is not dense
range, then

T =

(
A B
O C

)
on H = T k(H)⊕ ker(T ∗k),

where A is an n-class Q operator on T k(H), and Ck = O.

Theorem 5. If T is an (n, k)-quasi class Q operator and M is an invariant
subspace for T , then the restriction T |M is also an (n, k)-quasi class Q operator.

Proof. Let P be the projection onto M . Then TP = PTP , so that T |M = PTP .
Hence, for x ∈M we have

‖(T |M )((T |M )kx)‖2

= ‖(PTP )(PTP )kx‖2 = ‖P (TT kx)‖2 ≤ ‖T (T kx)‖2

≤ 1

n+ 1

(
‖Tn+1(T kx)‖2 + n‖T kx‖2

)
=

1

n+ 1

(
‖(T |M )n+1((T |M )kx)‖2 + n‖(T |M )kx‖2

)
.

QED

Theorem 6. If T is an invertible (n, k)-quasi class Q, operator, then the
point approximate spectrum lies in the disc:

σa(T ) ⊆
{
λ ∈ C :

√
1 + n

‖T−k−1‖
√
‖Tn+k‖2 + n‖T k−1‖2

≤ |λ| ≤ ‖T‖
}

Proof. Suppose T is an invertible (n, k)-quasi class Q, operator. Then we have

‖x‖2

= ‖T−k−1T k+1x‖2 ≤ ‖T−k−1‖2‖T k+1x‖2

≤ ‖T−k−1‖2‖ 1

n+ 1

(
‖Tn+1(T kx)‖2 + n‖T kx‖2

)
≤ ‖T−k−1‖2‖ 1

n+ 1

(
‖Tn+k‖2‖Tx‖2 + n‖T k−1‖2‖Tx‖2

)
Hence,

‖Tx‖2 ≥ (1 + n)‖x‖2

‖T−k−1‖2 (‖Tn+k‖2 + n‖T k−1‖2)
.
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Suppose that λ ∈ σa(T ). Then, there exists a sequence {xm} such that
‖(T − λ)xm‖ −→ 0 when m→∞. We have

‖Txm − λxm‖
≥ ‖Txm‖ − ‖λxm‖ ≥ ‖T‖ − |λ|

≥ (1 + n)
1
2

‖T−k−1‖ (‖Tn+k‖2 + n‖T k−1‖2)
1
2

− |λ|

So, when m→∞,

|λ| ≥
√

1 + n

‖T−k−1‖
√
‖Tn+k‖2 + n‖T k−1‖2

.

QED

2 (n, k)-Quasi Class Q Operators Which are Contrac-
tions

A contraction is an operator T such that ‖Tx‖ ≤ ‖x‖ for all x ∈ H. A proper
contraction is an operator T such that ‖Tx‖ < ‖x‖ for every nonzero x ∈ H.

A strict contraction is an operator such that ‖T‖ < 1 (i.e., supx 6=0
‖Tx‖
‖x‖ < 1).

Obviously, every strict contraction is a proper contraction and every proper
contraction is a contraction. An operator T is said to be completely non-unitary
(c.n.u) if T restricted to every reducing subspace of H has no unitary part.

An operator T on H is uniformly stable, if the power sequence {Tm}∞m=1

converges uniformly to the null operator (i.e., ‖Tm‖ → O). An operator T on
H is strongly stable, if the power sequence {Tm}∞m=1 converges strongly to the
null operator (i.e., ‖Tmx‖ → 0, for every x ∈ H).

A contraction T is of class C0· if T is strongly stable (i.e., ‖Tmx‖ → 0
and ‖Tx‖ ≤ ‖x‖ for every x ∈ H). If T ∗ is a strongly stable contraction, then
T is of class C·0. T is said to be of class C1· if limm→∞ ‖Tmx‖ > 0 (equiva-
lently, if Tmx 6→ 0 for every nonzero x in H). T is said to be of class C·1 if
limm→∞ ‖T ∗mx‖ > 0 (equivalently, if T ∗mx 6→ 0 for every nonzero x in H). We
define the class Cαβ for α, β = 0, 1 by Cαβ = Cα·∩C·β. These are the Nagy-Foiaş
classes of contractions [13, p.72]. All combinations are possible leading to classes
C00, C01, C10 and C11. In particular, T and T ∗ are both strongly stable contrac-
tions if and only if T is a C00 contraction. Uniformly stable contractions are of
class C00. In the proof of the Theorems 3.1 and 3.2 are used similar techniques
as in the proof of Theorems given in paper [6].
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Theorem 7. If T is a contraction of the (n, k)-quasi class Q operator, then
the nonnegative operator

D = T ∗k
(
T ∗(1+n)T (1+n) − n+ 1

n
T ∗T + I

)
T k

is a contraction whose power sequence {Dm}∞m=1 converges strongly to a projec-
tion P and T k+1P = O.

Proof. Suppose that T is a contraction of (n, k)-quasi class Q operator. Then

D = T ∗k
(
T ∗(1+n)T (1+n) − n+ 1

n
T ∗T + I

)
T k ≥ O

Let R = D
1
2 be the unique nonnegative square root of D, then for every x in H

and any nonnegative integer m, we have

〈Dm+1x, x〉
= ‖Rm+1x‖2

= 〈DRmx,Rmx〉

=
〈
T ∗(1+n+k)T (1+n+k)Rmx,Rmx

〉
− n+ 1

n

〈
T ∗kT ∗TT kRmx,Rmx

〉
+
〈
T ∗kT kRmx,Rmx

〉
=

∥∥∥T 1+nT kRmx
∥∥∥2
− n+ 1

n

∥∥∥TT kRmx∥∥∥2
+
∥∥∥T kRmx∥∥∥2

≤ − 1

n

∥∥∥TT kRmx∥∥∥2
+ ‖Rmx‖2

≤ ‖Rmx‖2

= 〈Dmx, x〉.

ThusR (and soD) is a contraction (setm = 0), and {Dm}∞m=1 is a decreasing
sequence of nonnegative contractions. Then {Dm}∞m=1 converges strongly to a
projection P . Moreover

1

n

l∑
m=0

‖T k+1Rmx‖2

≤
l∑

m=0

(
‖Rmx‖2 − ‖Rm+1x‖2

)
= ‖x‖2 − ‖Rl+1x‖2 ≤ ‖x‖2,
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for all nonnegative integers l and for every x ∈ H. Therefore ‖T k+1Rmx‖ → 0
as m→∞. Then we have

T k+1Px = T k+1 lim
m→∞

Dmx = lim
m→∞

T k+1R2mx = 0,

for every x ∈ H. So that T k+1P = O. QED

A subspace M of space H is said to be non-trivial invariant(alternatively,
T−invariant) under T if {0} 6= M 6= H and T (M) ⊆ M . A closed subspace
M ⊆ H is said to be a non-trivial hyperinvariant subspace for T if {0} 6= M 6= H
and is invariant under every operator S ∈ L(H), which fulfills TS = ST.

Theorem 8. Let T be a contraction of the (n, k)-quasi class Q operator. If
T has a no non-trivial invariant subspace, then the nonnegative operator

D = T ∗k
(
T ∗(1+n)T (1+n) − n+ 1

n
T ∗T + I

)
T k

is a strongly stable contraction.

Proof. We may assume that T is a non zero operator. Let T be a contraction
of the (n, k)-quasi class Q operator. By the above theorem, we see that D is a
contraction, {Dm}∞m=1 converges strongly to a projection P , and T k+1P = O.
So, PT ∗(k+1) = O. Suppose T has no non-trivial invariant subspaces. Since kerP
is a nonzero invariant subspace for T whenever PT ∗(k+1) = O and T 6= O, it
follows that kerP = H. Hence P = O, and we see that {Dm}∞m=1 converges
strongly to the null operator O, so D is a strongly stable contraction. Since D
is self-adjoint, D ∈ C00. QED

Corollary 3 Let T be a contraction of the (n, k)-quasi class Q operator.
If T has no non-trivial invariant subspace, then both T and the nonnegative
operators

D = T ∗k
(
T ∗(1+n)T (1+n) − n+ 1

n
T ∗T + I

)
T k

are proper contractions.

Proof. A self-adjoint operator T is a proper contraction if and only if T is a C00

contraction. QED

Definition 2 If the contraction T is a direct sum of the unitary and C·0
(c.n.u) contractions, then we say that T has a Wold-type decomposition.

Definition 3 [7] An operator T ∈ L(H) is said to have the Putnam-Fuglede
commutativity property (PF property for short) if T ∗X = XJ for any X ∈
L(K,H) and any isometry J ∈ L(K) such that TX = XJ∗.
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Lemma 3[6, 12] Let T be a contraction. The following conditions are equiv-
alent:

(1) For any bounded sequence {xm}m∈N∪{0} ⊂ H such that Txm+1 = xm the
sequence {‖xm‖}m∈N∪{0} is constant,

(2) T has a Wold-type decomposition,

(3) T has the PF property.

Theorem 9. Let T be a contraction and the (n, k)-quasi class Q operator.
Then T has a Wold-type decomposition.

Proof. In proof of the theorem we use similar techniques as in Theorems given in
paper [12]. Since T is a contraction operator, the decreasing sequence {T lT ∗l}∞l=1

converges strongly to a nonnegative contraction. We denote by

S =

(
lim
l→∞

T lT ∗l
) 1

2

.

The operators T and S are related by T ∗S2T = S2, O ≤ S ≤ I and S is
self-adjoint operator. By [9] there exists an isometry V : S(H) → S(H) such
that V S = ST ∗, and thus SV ∗ = TS, and ‖SV lx‖ → ‖x‖ for every x ∈ S(H).
The isometry V can be extended to an isometry on H, which we still denote by
V .

For an x ∈ S(H), we can define xm = SV mx for m ∈ N ∪ {0}. Then for all
nonnegative integers l we have

T lxm+l = T lSV l+mx = SV ∗lV l+mx = SV mx = xm,

and for all l ≤ m we have
T lxm = xm−l.

Since T is an (n, k)-quasi class Q operator and the nontrivial x ∈ S(H) we
have

‖xm‖2 = ‖T k+1xm+k+1‖2

≤ 1

n+ 1

(
‖Tm+k+1xm+k+1‖2 + n‖T kxm+k+1‖2

)
=

1

n+ 1

(
‖x0‖2 + n‖xm+1‖2

)
so

‖xm‖2 ≤
1

n+ 1

(
‖x0‖2 + n‖xm+1‖2

)
.
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Then

(‖xm‖2 − ‖xm−1‖2) + (‖xm−1‖2 − ‖xm−2‖2) + ...+ (‖x1‖2 − ‖x0‖2)

≤ n(‖xm+1‖2 − ‖xm‖2)

Put
bm = ‖xm‖2 − ‖xm−1‖2,

and we have
nbm+1 ≥ bm + bm−1 + ...+ b1 (2.1)

Since xm = Txm+1, we have

‖xm‖ = ‖Txm+1‖ ≤ ‖xm+1‖ for every m ∈ N,

then the sequence {‖xm‖}m∈N∪{0} is increasing. From

SV m = SV ∗V m+1 = TSV m+1

we have
‖xm‖ = ‖SV mx‖ = ‖TSV m+1x‖ ≤ ‖SV m+1x‖ ≤ ‖x‖,

for every x ∈ S(H) and m ∈ N ∪ {0}. Then {‖xm‖}m∈N∪{0} is bounded. From
this we have bm ≥ 0 and bm → 0 as m→∞.

It remains to check that all bm equal zero. Suppose that there exists an
integer i ≥ 1 such that bi > 0. Using inequality (2.1) we get bi+1 ≥ bi

n > 0, and

it follows from an induction argument that bm ≥ bi
n > 0 for all m > i. This is

contradictory with that bm → 0 as m → ∞. So bm = 0 for all m ∈ N and thus
‖xm−1‖ = ‖xm‖ for all m ≥ 1. Thus the sequence {‖xm‖}m∈N∪{0} is constant.

From Lemma 2, T has a Wold-type decomposition.
QED

3 Examples

In this section we will compare our class of operators with other known
classes of operators. We will start from
Example 2 Let us consider the weighted shift operator T : l2(N+) → l2(N+),
defined as follows:

T (x1, x2, · · · ) = (0, α1x1, α2x2, · · · ),

where αn = 1
2n , for every n ≥ 1. This operator is (n, k)-quasi class Q, quasi-

nilpotent but not quasi-hyponormal.
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Proof. From the weighted shift operator definition we have that:

T (x) = (0, α1x1, α2x2, · · · ),

and

T ∗(x1, x2, x3, · · · ) = (α1x2, α2x3, · · · ).

Respectively, after some calculations we get that

Tn(x) = (0, 0, · · · , 0︸ ︷︷ ︸
n-times

, α1α2 · · ·αnx1, α2α3 · · ·αn+1x2, · · · ),

and
T ∗n(x) = (α1α2 · · ·αnxn+1, α2α3 · · ·αn+1xn+2, · · · ).

Now we obtain

(T ∗(n+k+1)T (n+k+1) − (n+ 1)T ∗(k+1)T (k+1) + nT ∗kT k)(x) =

([α2
1α

2
2 · · ·α2

(n+k+1) − (n+ 1)α2
1α

2
2 · · ·α2

(k+1) + nα2
1α

2
2 · · ·α2

k]x1,

[α2
2α

2
3 · · ·α2

(n+k+2) − (n+ 1)α2
2α

2
3 · · ·α2

(k+2) + nα2
2α

2
3 · · ·α2

(k+1)]x2, · · · ).

On the other hand

〈(T ∗(n+k+1)T (n+k+1) − (n+ 1)T ∗(k+1)T (k+1) + nT ∗kT k)x, x〉 =

[α2
1α

2
2 · · ·α2

(n+k+1) − (n+ 1)α2
1α

2
2 · · ·α2

(k+1) + nα2
1α

2
2 · · ·α2

k]||x1||2+

[α2
2α

2
3 · · ·α2

(n+k+2) − (n+ 1)α2
2α

2
3 · · ·α2

(k+2) + nα2
2α

2
3 · · ·α2

(k+1)]||x2||2 + · · · =

α2
1α

2
2 · · ·α2

k[α
2
(k+1) · · ·α

2
(n+k+1) − (n+ 1)α2

(k+1) + n]||x1||2+

α2
2α

2
3 · · ·α2

(k+1)[α
2
(k+2) · · ·α

2
(n+k+2) − (n+ 1)α2

(k+2) + n]||x1||2 + · · · ≥ 0.

Because, from the definition of the weighted shift operator, we have

α2
(k+1) · · ·α

2
(n+k+1) − (n+ 1)α2

(k+1) + n = n− n+ 1

22k+2
+

1

22k+2+2nk+n(n+3)
≥ 0,

for every k, n ∈ N+.
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Hence, it is proved that T is (n, k)-quasi class Q. After some calculations we
get that

r(T ) = 0,

from which it follows that T− is quasi nilpotent. And finally it is not quasi-
hyponormal, and this fact follows from the relation:

αn � αn+1

and Proposition 3.4 in [2]. QED

Example 3 The (n, k)-quasi class Q, is significantly larger than the class of
paranormal operators and does not have SVEP.

Proof. To prove the above assertion, we will take into consideration the operator

T defined in the Example 1, with sequence weight (αn) =
(

0,
√

1− 1
3 ,
√

1− 1
4 , · · ·

)
.

The operator T is (n, k)-quasi class Q, if and only if(Example 1)

α2
m+kα

2
m+k+1 · ... · α2

m+k+n−1α
2
m+k+n − (n+ 1)α2

m+k + n ≥ 0,

for m ≥ 1. If we substitute the weighted sequence (αn), in the last relation we
obtain:(

1− 1

m+ k + 1

)
·
(

1− 1

m+ k + 2

)
· · ·
(

1− 1

m+ k + n+ 1

)
−n−1+

n+ 1

m+ k + 1
+n =

=
n(n+ 1)

(m+ k + 1)(m+ k + n+ 1)
≥ 0.

T has its adjoint T ∗ which is a Fredholm operator. T has the SVEP at 0 if
and only if

K(T ∗) = {x ∈ H/there exists a sequence (yn) ⊂ H and δ > 0,

for which x = y0, T
∗(yn+1) = yn, ||yn|| ≤ δn||x||, n ∈ N},

is finite codimensional, (from Theorem 2.10 in [1]). But K(T ∗) does not contain
any en. Hence, T does not have SVEP. On the other hand, we know that an
(n, k)−quasi paranormal operator has SVEP, [14, Theorem 4.1]. Consequently,
we have proved that T which is (n, k)-quasi class Q, is not an (n, k)−quasi
paranormal operator. QED
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4 On (n, k)-quasi class Q composition on Fock-spaces

Let z = (z1, z2, ..., zm) and w = (w1, w2, ..., wm) be point in Cm, 〈z, w〉 =∑m
k=1 zkwk and |z| =

√
〈z, z〉. The Fock space F2

m is the Hilbert space of all
holomorphic functions on Cm (entire functions) with inner product

〈f, g〉 =
1

(2π)m

∫
Cm

f(z)g(z)e−
1
2
|z|2dA(z),

here dA(z) denotes Lebesgue measure on Cm, and 1
(2π)m e

− 1
2
|z|2dA(z) is called

Gaussian measure on Cm. The sequence {em =
√

1
m!z

m}m∈N forms an orthonor-

mal basis for F2
m.

Since each point evaluation is a bounded linear functional on F2
n, for each

w ∈ Cm there exists a unique function uw ∈ F2
m such that 〈f, uw〉 = f(w) for

all f ∈ F2
m. The reproducing kernel functions for the Fock space are given by

uw(z) = e
〈z,w〉

2 and ‖uw‖ = e
|w|2
4 .

For a given holomorphic mapping φ : Cm 7→ Cm, the composition operator
Cφ : F2

m 7→ F2
m is given by Cφ(f) = f ◦ φ, f ∈ F2

m, so (Cφf)(z) = f(φ(z). The
multiplication operator Mu induced by an entire function u on F2

m is defined as
Muf(z) = u(z)f(z) for an entire function f .

Lemma 4[3, Lemma 2]If f(z) = Az+B, where A is an m×m matrix with
‖A‖ ≤ 1 and B is an m× 1 vector and if 〈Aξ,B〉 = 0 whenever |Aξ| = |ξ| then
C∗φ = MubCτ , where τ(z) = A∗z and Mub is the multiplication by the kernel
function ub.

Theorem 10. A composition operator Cφ is an (n, k)-quasi class Q operator
on F2

m if and only if

Mub◦τk ...Mub◦τn+kCφn+k+1◦τn+k+1 − (n+ 1)Mub◦τkCφk+1◦τk+1 + nCφk◦τk ≥ 0

Proof. A composition operator Cφ is an (n, k)-quasi class Q operator on F2
m if

and only if

C
∗(1+n+k)
φ C

(1+n+k)
φ − (n+ 1)C

∗(k+1)
φ Ck+1

φ + nC∗kφ C
k
φ ≥ O. (4.1)

By Lemma 4 we have

C
∗(n+k)
φ (C∗φCφ)C

(n+k)
φ = C

∗(n+k)
φ ((MubCτ )Cφ)C

(n+k)
φ .

Since CφCτ = Cτ◦φ we have

C
∗(n+k)
φ (C∗φCφ)C

(n+k)
φ = C

∗(n+k)
φ (MubCφ◦τ )C

(n+k)
φ = C

∗(n+k)
φ (MubCφn+k+1◦τ ).
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Again by using Lemma 4, therefore

C
∗(n+k)
φ (C∗φCφ)C

(n+k)
φ = C

∗(n+k−1)
φ MubCτ (MubCφn+k+1◦τ ).

Since
CτMub = Mub◦τCτ

then

C
∗(n+k)
φ (C∗φCφ)C

(n+k)
φ = C

∗(n+k−1)
φ MubMub◦τCφn+k+1◦τ2 .

Continuing this way we obtain

C
∗(n+k+1)
φ C

(n+k+1)
φ = MubMub◦τ ...Mub◦τn+kCφn+k+1◦τn+k+1 . (4.2)

From relations (4.1) and (4.2) we have: Cφ is an (n, k)-quasi class Q operator
on F2

m if and only if

MubMub◦τ ...Mub◦τn+kCφn+k+1◦τn+k+1−

(n+ 1)MubMub◦τ ...Mub◦τkCφk+1◦τk+1 + nMubMub◦τ ...Mub◦τk−1Cφk◦τk ≥ 0,

hence

Mub◦τk ...Mub◦τn+kCφn+k+1◦τn+k+1 − (n+ 1)Mub◦τkCφk+1◦τk+1 + nCφk◦τk ≥ 0

QED
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