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Abstract. The Hall graph of a finite group G is a simple graph whose vertex set is 7(G),
the set of all prime divisors of its order, and two distinct primes p and ¢ are joined by an
edge if G has at least one Hall {p, ¢}-subgroup. For all primes p; < -+ < pj of 7(G), we call
the k-tuple Du(G) = (du(p1), - - ., du(pr)), the degree pattern of Hall graph of G, where du(p)
signifies the degree of vertex p. This paper provides some properties of Hall graph. It also gives
a characterization for some finite simple groups via order and degree pattern of Hall graph.
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Introduction

All groups under consideration of this paper are finite. Given a group G, we
denote by 7(G) the set of all prime divisors of |G| and call this set the prime
spectrum of G. There are a lot of ways to study the structure of groups. One
of the most interesting approaches is to associate a graph with a group. In this
way, we get many information about a group via exploring its graph. Studying
the prime graph associated with a group is one of such ways. In recent years,
the prime graph has played an important role to solve many problems in group
theory. This graph is a simple graph and constructs as follows. The vertex set
is 7(G) and two distinct primes p and ¢ form an edge {p, ¢} if G has an element
of order pq. In [2], the definition of prime graph was generalized as follows.

Let P be a group-theoretic property. Given a group G, Sp(G) is the set
of all P-subgroups of G. Let o be a mapping of Sp(G) to the set of natural
numbers. The (o, P)-graph of G is a simple graph whose vertices are all primes
dividing the elements of o(Sp(G)) and two vertices p and ¢ are joined by an
edge if there is a natural number in o(Sp(G)) which can be divided by pg. This
graph is denoted by I';(s,(q))- If we consider the mapping “ord” as o, then we
simply call the (ord, P)-graph of G, the P-graph of G and denote it I'p(G). We
illustrate it with some examples.

(1) Let P stand for “cyclic”. Here Sp(G) is the set of all cyclic subgroups of
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G and the P-graph of G is called the “cyclic graph” of G which is denoted
by T'¢ye(G). In fact, in the cyclic graph of G, the vertices are all primes
dividing the order of G and two distinct vertices p and ¢ are adjacent
when G has a cyclic subgroup whose order is divisible by pgq. It is good to
note that the cyclic graph and the prime graph of a group are exactly one
thing. Moreover, if we take “abelian” or “nilpotent” as P, then P-graph
of G coincides with the cyclic graph.

(2) Let P be “solvable”. In this case, Sp(G) is the set of all solvable subgroups
of G and the (P, 0)-graph of G is called the “solvable graph” of G which
is denoted by I'sy;(G). We observe that the solvable graph of G is a gener-
alization of the cyclic graph of G. In fact, the set of vertices is 7(G), like
in the cyclic graph, but two distinct vertices p and ¢ are adjacent when G
has a solvable subgroup of order divisible by pq.

(3) Let P be a group property such that H is a P-subgroup of G if H is a Hall
m(H)-subgroup of G and |7(H)| = 2. We denote this graph by 'y (G).
In fact, in the Hall graph of G, the vertices are all primes dividing the
order of G and two distinct vertices p and ¢ are adjacent (or we say p
and ¢ are joined) when G has a Hall {p, ¢}-subgroup. According to this
definition, we can see that the solvable graph of G is a generalization of
the Hall graph of G.

Many information about the solvable graph associated with a group were found
in [1, 2, 3]. In this paper, we are going to focus our attention on the Hall graph.
Some results on this graph were obtained in [10].

For a generic group G, it is sometimes convenience to display the graph
T'ra(G) (resp. Iy (G)) in a compact form. The compact form is a graph whose
vertices are the disjoint subsets of 7(G). In more detail, the vertex U represents
the complete subgraph of g, (G) (resp. T'soi(G)) on U. Moreover, an edge
connecting U and W represents the set of edges of I'fjq;1(G) (resp. I'soi(G)) that
connect each vertex in U with each vertex in W. We draw the compact form of
the Hall and solvable graph of the Suzuki groups Sz(g) in the example below.

Example. We consider the Suzuki simple group defined over the field with
q = 22"+ (m > 1) elements of order ¢?(¢®> +1)(¢—1). To drawing the Hall and
solvable graph of Sz(q), we need to know the structure of maximal subgroups
of Sz(q).

Every maximal subgroup of Sz(q) is isomorphic to one of the following
(Suzuki [13]). It is good to mention that A : B denotes a split extension.

Zqz :Zq—h Zq—l 2 Do, Zfﬁ'\/@“rl 1 Ly, Zq—\/ﬁ-i-l 1 Ly, SZ((]O), q = qg‘,a e 7.
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It is seen that all maximal subgroup of Sz(q) are solvable. Thus we can draw
the solvable graph of Sz(¢) as in Figure 1.

m(qg—1) m(qg—1)
) 2
o [ ]
m(¢—v2q+1) m(q++v2q+1) (¢ —v2q+1) (g ++v2q+1)
Fig. 1. T, (Sz(q)),q = 22m+1 > 22, Fig. 2. Twau(Sz(q)),q = 22m+1 > 22,

Now, we examine the Hall graph of Sz(g). It is easily seen that the subsets
w(qg—1), 7(¢ — vV2q+ 1), 7(q¢ + v2q + 1) and {2} are the disjoint subsets of
7(Sz(q)). Besides, Sz(q) has the cyclic subgroups of order ¢ — 1, ¢ —v/2¢+ 1 and
q++/2q+ 1. So we can easily conclude that the subsets above are the complete
subgraph of I'f7,;;(G) and hence they are exactly the vertices in the compact
form of the Hall graph of Sz(g). Next, consider the subgroup H = Zg : Zg1.
Assume that r € 7(¢—1) and R is a Sylow r-subgroup of H (a Sylow r-subgroup
of Sz(q) too). According to the structure of H, Z, is a normal subgroup of H
and so R C Ng,(q)(Zg2) where Ng,4y(Z,2) is the normalizer of Zg in Sz(q).
Therefore, RZ2 is a Hall subgroup of Sz(q). It follows that the vertices 2 and
r are adjacent in the Hall graph of Sz(q). Moreover, the maximal subgroups
Lig—1 : Lo, Zq+x/%+1 Ly, Zq—\/ﬁﬂ : Z4 do not contain any Hall subgroups of G
with even order because 22"+ > 8. Finally, we can observe that the Hall graph
of Sz(q) is as Figure 2.

More Notation and Terminology. A simple graph T" with vertex set V = V(T)
and edge set F = F(I') is a graph with no loops or multiple edges. A complete
graph with n vertices is denoted by K,,. An empty graph on n vertices consists
of n isolated vertices with no edges and denoted by K,. The union of simple
graphs I'; and I's is the graph 'y UTy with vertex set V(I'1)UV (I'y) and edge set
E('1)UE(Ty). If I'y and I'y are disjoint (we recall that two graphs are disjoint
if they have no vertex in common), we refer to their union as a disjoint union,
and generally denote it by 'y @ I's.

According to [9], we say a group G satisfies E, (or we just say G is an F,-

group) if G contains a Hall w-subgroup.Obviously, in this case when 7 N 7(G),
for the Hall m-subgroup is trivial. Using our definition, two primes p and ¢ are
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adjacent in the Hall graph of G if G satisfies E, ;. If G satisfies E; and every
two Hall m-subgroups are conjugate, then we say that G satisfies Cy (or just
that G is an Cy-group). A prime p € 7(G) is called a complete prime if p is
joined with any other vertices in the Hall graph of G.

The degree di(p) of a vertex p € w(G) is the number of adjacent vertices to
p in I'ga(G). We suppose that

7T(C:) = {p17p27 cee 7pk}7

is the prime spectrum of G, where

p1 <p2 <--- <D,

and define
Du(G) = (ClH(P1)7 du(p2),- .-, dH(pk)>;

as the degree pattern of the Hall graph of G. Of particular interest can be to find
finite groups which are determined by order and degree pattern of Hall graph.
In general, given a finite group G, we are interested in finding the structure of
finite groups H such that |H| = |G| and Dy(H) = Dy (G). One of the purposes
of this paper is to characterize some simple groups by order and degree pattern
of Hall graph. In more detail, we will prove the following theorems.

Theorem A. The finite simple group G with |7(G)| = 3 and G # Us(2) is
completely determined by order and degree pattern of Hall graph.

Theorem B. There are at least 15 non-isomorphic groups G with |G| = |U4(2)|
and FH(Z”(G) = FHall(U4(2))-

1 Some Results on Hall Graph

In this section, we present some results on the Hall graphs of finite groups.
We begin with a fundamental lemma which is taken from [9)].

Lemma 1. ([9, Lemma 1]) Let G be a finite group, and suppose that N is
a normal subgroup of G. If H is a Hall w-subgroup of G, then H N N is a Hall
mw-subgroup of N, and HN/N is a Hall w-subgroup of G/N.

In view of Lemma 1, if G satisfies E; where 7 C w(N), then N satisfies Ey,
too. Moreover, if G satisfies E; where 7 C 7(G/N), then the factor group G/N
satisfies F,.

Lemma 2. Let G be a finite group and N a normal subgroup of G. Then
the following statements hold:
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(1) For two primes p,q € w(N), if p and q are joined in Ugqn(G), then p and
q are joined in Ugqn(N). In particular, Uga(G) is a subgraph of T gan(IN)
if 1 (N) = 7(G).

(2) For two primes p,q € n(G/N), if p and q are joined in U'gqy(G), then p
and q are joined in Ugq(G/N). In particular, Tgq(G) is a subgraph of
Cuan(G/N) if 7(G/N) = 7(G).

(3) If N is a nilpotent Hall subgroup of G, then for p € w(N) and q €
m(G)\7(N), p and q are joined in Tgq(QG).

Proof. Parts (1) and (2) follow immediately from Lemma 1. So we only need
to prove part (3). It is seen from Schur-Zassenhaus Theorem that there exists
a subgroup K of G such that G = KN and K N N = 1. On the other hand,
any Sylow p-subgroup P of N is a normal Sylow p-subgroup of G because N is
nilpotent. Now, assume that ) is a Sylow g-subgroup of K. Then it is easy to
see that PQ is a Hall subgroup of G which implies that p and ¢ are joined in
Cran(G). QED

It is clear that for any subgroup H of finite group G, I'gq(H) does not
need to be a subgraph of 'y (G). In the case when H is a Hall subgroup of
G, it is easily seen that I'gqy(H) is a subgraph of ' (G).

The following lemma is known.

Lemma 3. ([12, Lemma 3. 1]) Let G be a finite group, and assume that N
is a nilpotent normal subgroup of G. Then G satisfies E (resp. Cr) if and only
if G/N satisfies E (resp. Cx).

As a result of Lemma 3, we have the following corollary.

Corollary 1. Let G be a finite group, and let N be a nilpotent normal
subgroup of G. Then for two primes p,q € w(G/N), p and q are joined in
Trai(G/N) if and only if p and q are joined in T o (G).

Next, we present some results that are needed in Section 3.

Lemma 4. ([9, Corollary E2. 1]) Let G be a finite group, and suppose that

m is a set of primes. If all composition factors of G satisfy Cr, then G satisfies
Er.

Lemma 5. [7] Suppose the finite group G has a Hall 7w-subgroup where 7 is
a set of primes not containing 2. Then all Hall w-subgroups of G are conjugate.

It is seen from Lemma 5 that in the case when 2 ¢ 7, the group G satisfies
E if and only if G satisfies Cr. The following corollary is a conclusion of Lemma
4 and Lemma 5.
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Corollary 2. A finite group G satisfies E for a set of primes not containing
2, if and only if every composition factor of G satisfies Fr.

We now bring one of the main results of [8] which will be used in Section 3.

Lemma 6. ([8]) Let G be the classical simple group Ly, (q) or San(q). Assume
that G has a Hall m-subgroup with 3 ¢ w. Then all Hall mw-subgroups of G are
conjugate in G.

It is found from Lemma 6 that for a set of primes not containing 3, the
classical groups L, (q) and Sa2,(q) satisfy E, if and only if they satisfy C;.

It was shown in [10] that there is no vertex in Hall graph of a finite simple
group which is joined with every vertex except for one case. In fact, the following
lemma was proved.

Lemma 7. [10] Let G be a finite non-abelian simple group with p € 7(G)
which is joined directly with any prime belonging to w(G) in U'gan(G). Then the
only case is G = La(7) with p = 3.

We get the following corollary from Lemma 7.

Corollary 3. Let G be a finite simple group and G # Lo(7). Then the Hall
graph of G has no complete prime.

Among non-simple groups, there are some groups whose Hall graphs have
complete primes. In the sequel, we consider some case when the non-simple
group G has a complete prime.

We first need to recall that a finite group G is p-solvable if each of its
composition factors is either a p’-group or is a solvable p-group. Note that a
finite group is solvable if and only if it is p-solvable for every prime p.

Du proved the following lemma in [6].

Lemma 8. ([6, Corollary 2]) Let G be a finite group and p € n(G). Then
G is a p-solvable group if and only if

(1) G satisfies Ey ;
(2) G satisfies Ep 4 for all ¢ € w(G).

The following corollary is a straightforward result of Lemma 8.

Corollary 4. Let G be a p-solvable group for a prime p. Then p is a complete
prime.

Remark 1. Let G be a finite group and p € 7(G). If G has a normal Sylow
p-subgroup, then it is obvious that G is a p-solvable group and so p is a complete
prime. But, the converse is not always true. In fact, any solvable group has Hall
subgroups for any set of primes. The symmetric group Ss ,with p = 2, is already
a counterexample.



Hall Graph of a Finite Group 31

There are a lot of ways to study solvable groups. In fact, there are several
theorems stating equivalent conditions for solvability. P. Hall proved that G is
solvable if and only if G satisfies F, for all 7 C 7(G). More precisely, Hall
verified a stronger statement which asserts that G is solvable, if and only if G
satisfies E,y for all p € m(G). He also conjectured that G is solvable, if and only
if G satisfies E, 4 for all p, ¢ € 7(G) (see [9]). In the case when G is not a simple
group, this conjecture is easy to show. So it is worth to investigate that, when
(G is a non-abelian simple group. In fact, Hall proved that if G is an alternating
group A, (n > 5), the conjecture still holds. Finally, Arad and Ward in [4],
using the classification of finite simple groups, proved Hall’s conjecture.

In our approach, we can express the assertion above in the following.

Lemma 9. The group G is solvable if and only if Tgan(G) is complete.

Proof. Tt is enough to consider the sufficiency. Suppose that G is a counterex-
ample of minimal order to this statement. Assume first that G is not a simple
group. Then there exists a nontrivial normal subgroup N of G. Since I'q;(G)
is complete, we conclude from Lemma 2 that T'gyqu (V) and T'ge(G/N) are
complete. Now by the hypothesis, N and G/N are solvable. It follows that G
is solvable which contradicts our assumption. Consequently, G must be a non-
abelian simple group. In this case, we can get a contradiction from Lemma 7.
Therefore, G is a solvable group. QED

2 The Hall Graphs of Some Finite Groups

In this section, we examine the Hall graphs of some groups. We first deter-
mine the Hall graph of a Frobenius group. To this aim, it is good to mention
that a finite group G is called a Frobenius group with kernel N and complement
K, if G = NK where N is a normal subgroup and K a subgroup of G, and for
alll1# g€ N, Cq(g) CN.

Lemma 10. Let G be a Frobenius group. Then, one of the following state-
ments holds:

(1) G is solvable and T'gan(G) = Kir)|-

(2) G is non-solvable and I'pqy(G) is obtained from the complete graph on
m(G) by deleting the edges {3,5},{2,5} and {2,3} or {3,5} and {2,5}.

Proof. (1) This is a result obtained by P. Hall in [9]. (2) Suppose that G = NK
is a Frobenius group with kernel N and complement K. It is clear that w (V)
and 7(K') have no common vertex.
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First let p, g € w(N). According to the structure of Frobenius groups, N is a
nilpotent group. Thus there exists a Hall {p, ¢}-subgroup H of N. On the other
hand, N is a Hall subgroup of G. It implies that H is a Hall {p, ¢}-subgroup of
G. Hence, p and q are joined in I' g4 (G).

Assume next that p € 7(N) and ¢ € w(K). In this case, we can see from
Lemma 2 (3) that p and ¢ are joined in I'gq;(G).

Finally, suppose that p,q € w(K). Note that K is non-solvable as G is non-
solvable. Thus, by the structure of non-solvable complement, K has a normal
subgroup Ky with |K : Ky| < 2 such that Ky = SL(2,5) x Z, where every Sylow
subgroup of Z is cyclic and m(Z) N 7w(30) = 0 (see Theorem 18.6 in [11]). If
p,q ¢ {2,3,5}, then p and ¢ are joined in I'g4y(Ko) because obviously every
Hall {p, ¢}-subgroup of Z is a Hall {p, q}-subgroup of G. We also easily observe
from Lemma 2 (3) that if p € 7(Z), then p is joined with 2, 3 and 5. Moreover,
2 and 3 are adjacent if K = Kj. This completes the proof. QED

In the sequel, we verify the Hall graphs of the symmetric and alternating
groups. All Hall subgroups of symmetric groups have completely found. In more
detail, P. Hall determined all solvable Hall subgroups of the symmetric groups
in [9, Theorem A4] and G. Thompson found the non-solvable case in [14]. We
state them in two following lemmas.

Lemma 11. [9] Let S,, be the symmetric group on n letters, and assume
that p and ¢ are two primes where p < ¢ < n. Then §,, satisfies E), ; only when
p=2,g=3,andn=3,4,5, 7, and 8.

Lemma 12. [14] Suppose that H is a non-solvable Hall subgroup of the
symmetric group S,. Then either H =S,, or H = S,,_1 and n is a prime.

According to Lemma 11, we can find the structure of Hall graphs of sym-
metric groups in the following corollary.

Corollary 5. The Hall graph of symmetric group S,, is as follows:

(1) The disjoint union of graphs K 3y and the empty graph with =(G)\{2, 3}
as verter set if 3 < n < 8;

(2) The empty graph with 7(G) as vertex set if n > 8.

Besides, the following lemma was proved about alternating groups in [12].

Lemma 13. Let S, and A,, be the symmetric and alternating groups on n
letters, respectively. Then the following statements are equivalent:

(1) Sy, satisfies Er;

(2) Sy, satisfies Cr;

(3) A, satisfies Er;

(4) A, satisfies Cr.
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It is found form Lemma 13 that the Hall graph of the alternating group A,
coincides with the Hall graph of symmetric group S,,.

Finally, we discuss about the Hall graphs of sporadic groups. It is worthwhile
to mention that all Hall subgroups of sporadic groups were found in [5]. So the
Hall graphs of these groups are completely determined. In fact, the Hall graphs
of groups HS, M°L, Suz, Fis, He, Jo, J3, HN, Th are empty graphs. For
other sporadic simple groups S, we tabulate |S| and Dy (S) in Table 1.

Table 1. The order and degree pattern of Hall graph of a sporadic simple
group.

s ISl Dg(S)

My | 24-32.5-11 (1,1,1,1)
M | 26.3%.5.11 (0,0,1,1)
My | 27-3%.5-7-11 (0,0,1,0,1)
Ji 23.3.5.7-11-19 (2,4,2,2,1,1)
Mys | 27-32.5.7-11-23 (1,1,1,0,2,1)
My, | 210.33.5.7.11-23 (0,0,1,0,2,1)
Cog | 210.37.5%.7.11-23 (0,0,0,0,1,1)
Cop | 218.36.53.7.11.23 (0,0,0,0,1,1)
Figz | 218.313.52.7.11-13-17-23 (0,0,0,0,1,,0,0,1)
Cop | 2%1-39.5%.72.11-13-23 (0,0,0,0,1,0,1)
Ru | 21.3%.5%.7.13.29 (0,0,0,1,0,1)
Fil, | 221.36.52.73.11-13-17-23-29 (0,0,0,0,1,0,0,1,0)
O'N|2.3*.5.7.11-19-31 (0,1,3,0,1,0,1)

Ju 221.33.5.7.11%3.23-29-31-37-43 (0,0,3,3,1,0,1,1,0,1)
B 241 .313.56.72.11.13-17-19-23 - 31 - 47 (0,0,0,0,1,0,0,0,2,0,1)
Ly |2%-37-56.7.11-31-37-67 (0,0,0,0,1,0,0,1)

M | 2%6.320.59.76.112.13%.17-19-23-29-31- | (0,0,0,0,0,0,0,0,1,1,0,
41-47-59-71 0,1,1,0)

3 Characterization of Some Simple Groups by Order
and Degree Pattern of Hall Graph

In this section, we are going to examine the characterization of simple group
S with |7(S)| = 3 by order and degree pattern of Hall graph. In fact, by the
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classification of finite non-abelian simple groups, all simple groups whose orders
have three primes are found. We can see the list of these groups in [15]. All Hall
subgroups of these groups were found in [5]. For convenience, in Table 2, we
tabulate |S| and Dg(S) for simple groups S with |7(S)| = 3. In the following
theorem, we show that any simple group S with |7(S)| = 3 and S # Uy(2) is
completely determined by its order and degree Pattern of Hall Graph.

Theorem 1. Let G be a finite group and S a simple group with |7 (S)| =3
and S # Uy(2). Then G is isomorphic to S if and only if |G| = |S| and Du(G) =
Dy(S).

Proof. We need only prove the sufficiency. Let G be a finite group satisfying the
conditions |G| = |S| and Dy(G) = Dy (S), where S is one of the groups in Table
2 except for Uy(2). First, it is necessary to mention that G is a non-solvable
group since otherwise I'gq;(G) is a complete graph which is false. It follows
that G has a non-abelian composition factor H/L where L < H < G. We can
observe that H/L is one of the simple groups in Table 2 such that |H/L| < |S].
It will be convenient to consider two cases separately:

Case 1. Let S be one the following simple groups: As, La(7), L3(3), L2(17).
Then according to Table 2, the only possibility for H/L is S. On the other hand,
|G| = |S| which implies that G is isomorphic to S.

Case 2. Let S be one the following simple groups: Ag, L2(8), Us(3). We
verify these groups case by case.

e S = Ag. It is seen from [5] that Ag has no Hall {p,q}-subgroup where
p,q € {2,3,5}. It yields that Dy (Ag) = (0,0,0) (as we see in Table 2).
We have by assumption that Dy (G) = Du(Ag). Considering the order of
G, we use from Table 2 and conclude that two possibilities for H/L exist:
Ajs or Ag. Suppose that H/L = Aj. In this case, it is easy to see that
other composition factors of G are abelian simple groups. On the other
hand, A4 is a Hall {2,3}-subgroup of A5 which means that As satisfies
FE> 3. Now, it follows from Lemma 13 that As satisfies Co 3. Then we have
from Lemma 4 that G satisfies Fa 3 which implies that the vertices 2 and
3 are adjacent in I'gq(G), but it is false. Therefore, H/L = Ag which
yields that G = Ag.

e S = Ly(8). According to [5], the maximal subgroups of Ly(8) are as fol-
lows: Dig, D14 and 23 : 7. Thus, there is no Hall 7-subgroup of G where
7w =1{2,3} or = {3,7}. Moreover, 23 : 7 is a Hall subgroup of G. So we
observe that Dy (L2(8)) = (1,0,1) (see Table 2). We have by the hypothe-
sis that Dy (G) = Du(L2(8)) which implies that I'ga;(G) = Tian(L2(8)).
Obviously, 3,7 € m(H/L) and we can see from Corollary 2 that 3 is not
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adjacent to 7 in I'gqy(H/L). Using Table 2, the possibilities for H/L are
L(7) and Lo(8). Assume that H/L = Lo(7). Since L2(7) has a Hall {3, 7}-
subgroup, therefore the vertices 3 and 7 are joined in T'gqy(L2(7)) that is
not true. Consequently, H/L = Ly(8) which follows that G = Ly(8).

e S = Us3(3). We observe from [5] that Dg(Us(3)) = (0,0,0). By assuming
that Du(G) = Du(Us(3)), G has no Hall {p, ¢}-subgroup where p,q €
{2,3,7}. On the other hand, it is seen from Table 2 that the possibilities
for H/L are Ly(7), L2(8) and Us(3). Let first H/L = Ly(7). Since Lo(7)
satisfies F37, we can conclude from Corollary 2 that G satisfies Fs 7.
Therefore, 3 and 7 are adjacent in I'pqy;(G) which is a contradiction.
Assume next that H/L = L(8). We notice that L2(8) has a Hall {2,7}-
subgroup. So we have from Lemma 6 that Ly(8) satisfies Ca7. Now, it
follows from Lemma 4 that G satisfies Ey 7 that is false. Therefore, H/L =
Us(3) which implies that G = Us(3).

Consequently, the proof is complete. QED

In the following theorem, we show that the projective special unitary group
U4(2) does not characterize by order and degree pattern of Hall graph. More
precisely, there exist some groups G not isomorphic to Us(2) with |G| = |U4(2)|
and I'pan(G) = I'ran(Us(2)).

Theorem 2. There are at least 15 non-isomorphic groups G with |G| =
’U4(2)‘ cmd FHall(G) = FHa”(U4(2)).

Proof. Let G be a finite group satisfying the conditions |G| = |U4(2)| and
Trai(G) = Thpai(Us(2)). By a similar way to Theorem 1, we can see that
G has a non-abelian composition factor H/L where L <<H < G. We can observe
from Table 2 that the possibility for H/L is one of the simple groups As, Ag
and Uy (2).

o If H/L = Ajs, then other composition factors of G are abelian simple
groups. On the other hand, Aj satisfies C 3. Now we use Lemma 4 and
conclude that G satisfies E 3 which follows that the vertices 2 and 3 are
adjacent in 'y, (G) that is impossible.

e Suppose that H/L = Ag. Let G be any group containing the symmetric
group Sg as a normal subgroup with index 36. For example, we can take
S¢ x K where K is any group of order 36. Then [S¢ x K| = |U4(2)].
Note that S¢ has no Hall subgroup for any two of the primes 2, 3 and
5. It follows from Lemma 1 that the same is true for Sg x K. Therefore,
THa(Se X K) = T'gau(Us(2)). On the other hand, there exists 4 abelian
groups of order 36 and 10 non-abelian solvable groups of order 36.
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This completes the proof.

B. Akbari

o If H/L = Uy(2), then G = Uy(2).

QED

Table 2. The order and degree pattern of simple groups G with |7(G)| = 3.

S 5] Dnu(S)
As = Lo(4) =2 Ly(5) [ 22-3-5 | (1,1,0)
Ag = L(9) 23.32.5 | (0,0,0)
S4(3) 2 Uy(2) 26.3%.5 1(0,0,0)
Ly(7) = L3(2) 23.3-7 | (1,2,1)
Ly(8) 23.32.7 | (1,0,1)
Us(3) 25.3%.7 | (0,0,0)
L3(3) 24.33.13 | (0,0,0)
Ly(17) 24.3%2.17 | (0,0,0)
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