Note di Matematica Note Mat. **39** (2019) no. 1, 59–63.

A Bogomolov type property relative to a normalized height on $M_n(\overline{\mathbb{Q}})$

Masao Okazaki

Graduate School of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan m-okazaki@math.kyushu-u.ac.jp

Received: 31.1.2019; accepted: 28.2.2019.

Abstract. In [13], Talamanca introduced a normalized height on $M_n(\overline{\mathbb{Q}})$, which is an analogue of the canonical height on elliptic curves. In this paper, we examine whether $M_n(F)$ has a Bogomolov type property relative to this height if a subfield $F \subset \overline{\mathbb{Q}}$ has the Bogomolov property.

Keywords: normalized height on $M_n(\overline{\mathbb{Q}})$, Bogomolov property

MSC 2000 classification: Primary 11G50, Secondary 11C20

1 Introduction

Let K be an algebraic number field and \mathcal{O}_K be the ring of integers of K. We denote the set of all field homomorphisms from K to \mathbb{C} by \mathcal{M}_K^{∞} , the set of all non-zero prime ideals of \mathcal{O}_K by \mathcal{M}_K^0 , and $\mathcal{M}_K^{\infty} \sqcup \mathcal{M}_K^0$ by \mathcal{M}_K . For $x \in K$, we set an Archimedean absolute value $|x|_{\sigma} := |\sigma(x)|$ for each $\sigma \in \mathcal{M}_K^{\infty}$ and a non-Archimedean absolute value $|x|_{\mathfrak{p}} := \#(\mathcal{O}_K/\mathfrak{p})^{-\operatorname{ord}_{\mathfrak{p}}(x)}$ for each $\mathfrak{p} \in \mathcal{M}_K^0$.

For $\vec{x} = {}^t(x_1, \cdots, x_n) \in K^n$, we set

$$H(\vec{x}) := \left(\prod_{v \in \mathcal{M}_K} \max\{|x_1|_v, \dots, |x_n|_v\}\right)^{1/[K:\mathbb{Q}]}$$

As usual, we set $H(\vec{0}) = 1$. Since the value of $H(\vec{x})$ is independent of the choice of K, we can consider H as a function on $\overline{\mathbb{Q}}^n$. The function H is called the *Weil height* on $\overline{\mathbb{Q}}^n$. To study the height function, the following property is of main interest.

Definition 1 ("Bogomolov property," [4], Section 1). We say that a subfield $F \subset \overline{\mathbb{Q}}$ has the *Bogomolov property* if there exists a positive constant C > 1 such that for any $x \in F$, H(1, x) < C implies that H(1, x) = 1.

http://siba-ese.unisalento.it/ © 2019 Università del Salento

It is known that any algebraic number field has the Bogomolov property and that there are several interesting examples of infinite extensions of \mathbb{Q} which have the Bogomolov property (e.g. [1], [2], [4], [9], [10], [11]).

Now for each $v \in \mathcal{M}_K$, we set a norm N_v on K^n with respect to $|\cdot|_v$:

$$N_{v}(\vec{x}) := \begin{cases} \sqrt{|x_{1}|_{v}^{2} + \dots + |x_{n}|_{v}^{2}} & (v \in \mathcal{M}_{K}^{\infty}), \\ \max\{|x_{1}|_{v}, \dots, |x_{n}|_{v}\} & (v \in \mathcal{M}_{K}^{0}). \end{cases}$$

Let K_v be the completion of K by the absolute value $|\cdot|_v$. We set

$$\mathcal{H}(A) := \left(\prod_{v \in \mathcal{M}_K} \|A\|_v\right)^{1/[K:\mathbb{Q}]}$$

where $A \in M_n(K)$ and $\|\cdot\|_v$ is the operator norm on $\operatorname{End}(K_v^n)$ induced by N_v . Since the value of $\mathcal{H}(A)$ is also independent of the choice of K, we can consider \mathcal{H} as a function on $M_n(\overline{\mathbb{Q}})$. In [13], Talamanca introduced the *normalized height*

$$\mathcal{H}_s(A) := \lim_{k \to \infty} \mathcal{H}(A^k)^{1/k}.$$

As usual, we set $\mathcal{H}_s(A) = 1$ if A is a nilpotent matrix. This limit exists by submultiplicativity and is an analogue of the canonical height on elliptic curves.

When we know a height function \mathfrak{H} on a set X, the following natural question arises: is there an interesting subset $S \subset X$ which has the Bogomolov property relative to \mathfrak{H} ? Here we say that a subset $S \subset X$ has the Bogomolov property relative to \mathfrak{H} if there exists a positive constant C > 1 such that for any $x \in S$, $\mathfrak{H}(x) < C$ implies that $\mathfrak{H}(x) = 1$. Indeed, in [5], Breuillard considered \mathcal{H}_s as a function on $\operatorname{GL}_n(\overline{\mathbb{Q}})$ and found subsets with group-theoretic conditions which have the Bogomolov property relative to \mathcal{H}_s ; see Theorem 1.2 in [5]. Whereas Breuillard group-theoretically studied \mathcal{H}_s in [5], our interest in this paper is different: if a subfield $F \subset \overline{\mathbb{Q}}$ has the Bogomolov property, does $M_n(F)$ have the Bogomolov property relative to \mathcal{H}_s ?

Theorem 1. Let \mathbb{Q}^{tr} be the field of all totally real numbers. Then there exists $A_k \in M_n(\mathbb{Q}^{tr})$ such that $\mathcal{H}_s(A_k) > 1$ for any $k \in \mathbb{N}$ and $\lim_{k \to \infty} \mathcal{H}_s(A_k) = 1$.

Note that \mathbb{Q}^{tr} has the Bogomolov property; see [10]. Therefore this theorem especially states that there exists a subfield $F \subset \overline{\mathbb{Q}}$ which has the Bogomolov property but $M_n(F)$ does not have the Bogomolov property relative to \mathcal{H}_s .

2 Proof of Theorem 1

To prove Theorem 1, we should refer to the work of Talamanca in [13].

Bogomolov property relative to normalized height on $M_n(\overline{\mathbb{Q}})$

Fact 1 ([13], Theorem 4.2). Let $A \in M_n(\overline{\mathbb{Q}})$. Then

$$\mathcal{H}_s(A) = H(\lambda_1, \ldots, \lambda_n),$$

where ${}^{t}(\lambda_1, \ldots, \lambda_n)$ is the n-tuple formed by the eigenvalues of A.

Owing to this fact, we can explicitly compute the value of $\mathcal{H}_s(A)$.

Proof of Theorem 1. Note that $\mathbb{Q}^{tr}(\sqrt{-1})$ does not have the Bogomolov property. Explicitly, $\alpha_k := \left((2-\sqrt{-1})/(2+\sqrt{-1})\right)^{1/k} \in \mathbb{Q}^{tr}(\sqrt{-1})$ enjoys $H(1,\alpha_k) > 1$ and $\lim_{k\to\infty} H(1,\alpha_k) = 1$; see Theorem 5.3 in [1]. Let $a_k + b_k\sqrt{-1} := \alpha_k$, where $a_k, b_k \in \mathbb{Q}^{tr}$. We set

$$A_k := \begin{pmatrix} a_k & -b_k & 0 & \cdots & 0 \\ b_k & a_k & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \in M_n(\mathbb{Q}^{tr}).$$

Then the eigenvalues of A_k are α_k , $\overline{\alpha_k}$ and 0. Therefore, by Fact 1, we have

$$\mathcal{H}_s(A_k) = H(\alpha_k, \overline{\alpha_k}) = H(1, \overline{\alpha_k}/\alpha_k) = H(1, \overline{\alpha_1}/\alpha_1)^{1/k}.$$

Thus we have $\lim_{k\to\infty} H(1,\overline{\alpha_1}/\alpha_1)^{1/k} = 1$. On the other hand, $H(1,\overline{\alpha_1}/\alpha_1)^{1/k} > 1$ since $\overline{\alpha_1}/\alpha_1$ is not a root of unity; see Theorem 1.5.9 in [3]. So A_k is what we want.

3 A supplemental remark on Theorem 1

By Theorem 1, we know that even though a subfield $F \subset \overline{\mathbb{Q}}$ has the Bogomolov property, $M_n(F)$ does not always have the Bogomolov property relative to \mathcal{H}_s . Then it is a natural problem to find a subfield $F \subset \overline{\mathbb{Q}}$ such that $M_n(F)$ has the Bogomolov property relative to \mathcal{H}_s .

Definition 2 ("Northcott property," [4], Section 1). We say that a subfield $F \subset \overline{\mathbb{Q}}$ has the *Northcott property* if $\{x \in F \mid H(1, x) < C\}$ is a finite set for any positive constant C > 1.

We know that any subfield $F \subset \overline{\mathbb{Q}}$ which has the Northcott property also has the Bogomolov property. It is known that any algebraic number field has the Northcott property and that there are some infinite extensions of \mathbb{Q} which have the Northcott property (e.g. [4], [6], [7], [14]). **Proposition 1.** Let F be a subfield of $\overline{\mathbb{Q}}$ with the Northcott property. Then $M_n(F)$ has the Bogomolov property relative to \mathcal{H}_s .

Proof. It is known that if a subfield $F \subset \overline{\mathbb{Q}}$ has the Northcott property, then $\{x \in \overline{\mathbb{Q}} \mid H(1,x) < C \text{ and } [F(x) : F] \leq d\}$ is a finite set for any positive constant C > 1 and $d \in \mathbb{N}$; see Theorem 2.1 in [7]. Therefore we have the proposition since the degree of each of eigenvalues of $A \in M_n(F)$ over F is at most n.

Acknowledgements. I am deeply grateful to my master's advisor Yuichiro Takeda for his invaluable support.

It is a great pleasure to express my gratitude to Valerio Talamanca, who was kind enough to send me a personal lecture note.

I would like to thank Shun-ichi Yokoyama. I got to know the height function during a personal seminar with him. I also thank Momonari Kudo, Akinori Morizono, Toshiki Matsusaka and Seiji Kuga for participating in the seminar.

Hyogo Shibahara improved my English sentences. I should thank him.

Finally, I thank the anonymous referee for reading my manuscript carefully and giving me many valuable comments.

References

- F. AMOROSO, S. DAVID, U. ZANNIER: On fields with property (B), Proc. Amer. Math. Soc. 142 (2014), no. 6, 1893–1910.
- [2] F. AMOROSO, R. DVORNICICH: A lower bound for the height in abelian extensions, J. Number Theory 80 (2000), no. 2, 260–272.
- [3] E. BOMBIERI, W. GUBLER: Heights in Diophantine Geometry, New Mathematical Monographs, 4. Cambridge University Press, Cambridge, 2006.
- [4] E. BOMBIERI, U. ZANNIER: A note on heights in certain infinite extensions of Q, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 5–14.
- [5] E. BREUILLARD: A height gap theorem for finite subsets of $GL_d(\overline{\mathbb{Q}})$ and nonamenable subgroups, Ann. of Math. (2) **174** (2011), no. 2, 1057–1110.
- [6] S. CHECCOLI, M. WIDMER: On the Northcott property and other properties related to polynomial mappings, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 1, 1–12.
- [7] R. DVORNICICH, U. ZANNIER: On the properties of Northcott and Narkiewicz for fields of algebraic numbers, Funct. Approx. Comment. Math. 39 (2008), part 1, 163–173.
- [8] P. HABEGGER: Small height and infinite nonabelian extensions, Duke Math. J. 162 (2013), no. 11, 2027–2076.
- [9] L. POTTMEYER: Fields with the Bogomolov property, Ph.D. thesis, Regensburg University, 2013.

- [10] L. POTTMEYER: A note on extensions of Q^{tr}, J. Théor. Nombres Bordeaux 28 (2016), no. 3, 735–742.
- [11] A. SCHINZEL: On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385–399.
- [12] V. TALAMANCA: Height preserving linear transformations on linear spaces, Ph.D. thesis, Brandeis University, 1995.
- [13] V. TALAMANCA: A Gelfand-Beurling type formula for heights on endomorphism rings, J. Number Theory 83 (2000), no. 1, 91–105.
- [14] M. WIDMER: On certain infinite extensions of the rationals with Northcott property, Monatsh. Math. 162 (2011), no. 3, 341–353.