Note di Matematica Note Mat. **39** (2019) no. 1, 25–31.

A Conditional Expectation on the Tensor Product of Exel-Laca algebras

M. Imanfar

Department of Mathematics, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran. m.imanfar@aut.ac.ir

A. Pourabbas

Department of Mathematics, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran. arpabbas@aut.ac.ir

Received: 19.2.2018; accepted: 7.2.2019.

Abstract. We show that the ultragraph C^* -algebra $C^*(\mathcal{G}_1 \times \mathcal{G}_2)$ can be embedded in $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$ as a *-subalgebra. We then use this fact to investigate the existence of a conditional expectation on the tensor product of Exel-Laca algebras onto a certain subalgebra.

Keywords: ultragraph C^* -algebra, Exel-Laca algebras, conditional expectation

MSC 2000 classification: primary 46L05, secondary 46L55

Introduction

The Cuntz-Krieger algebras were introduced and studied in [3] for binaryvalued matrices with finite index. A direct extension of these algebras is the Exel-Laca algebras of infinite matrices with $\{0, 1\}$ -entries [4]. Another generalization of the Cuntz-Krieger algebras is the C^* -algebras of directed graphs [6, 1, 5]. It is shown in [5] that for directed graph G with no sinks and sources, the C^* -algebra $C^*(G)$ is canonically isomorphic to the Exel-Laca algebra \mathcal{O}_{A_G} , where A_G is the edge matrix of G.

The motivation of the definition of ultragraphs C^* -algebras is to unify the theory of graph C^* -algebras and Exel-Laca algebras [9]. In ultragraphs, the range of each edge is allowed to be a nonempty set of vertices. Any C^* -algebra of a directed graph can be considered as an ultragraph C^* -algebra and the C^* algebras of ultragraphs with no singular vertices are precisely the Exel-Laca algebras. Furthermore, the class of ultragraph C^* -algebras are strictly larger than this class of directed graphs as well as the class of Exel-Laca algebras.

This paper is motivated by a natural question, which is the existence of a conditional expectation from $\mathcal{O}_{d_1} \otimes \mathcal{O}_{d_2}$ onto a subalgebra of $\mathcal{O}_{d_1} \otimes \mathcal{O}_{d_2}$ isomorphic

http://siba-ese.unisalento.it/ © 2019 Università del Salento

to $\mathcal{O}_{d_1d_2}$ [2]. We extend this question to Exel-Laca algebras. For ultragraphs \mathcal{G}_1 and \mathcal{G}_2 , we show that $C^*(\mathcal{G}_1 \times \mathcal{G}_2)$ is isomorphic to a certain subalgebra of $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$. By setting some conditions on \mathcal{G}_1 and \mathcal{G}_2 , we see that $C^*(\mathcal{G}_1 \times \mathcal{G}_2)$ is isomorphic to the fixed point algebra $(C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2))^{\beta}$, where β is an action from the unit circle. Finally, we show that there is a conditional expectation from the tensor product $\mathcal{O}_A \otimes \mathcal{O}_B$ onto \mathcal{O}_{AB} .

1 Preliminaries

In this section, we briefly review the basic definitions and properties of ultragraph C^* -algebras which will be used in the next section. For more details about the ultragraph C^* -algebras, we refer the reader to [9, 7].

An ultragraph $\mathcal{G} = (G^0, \mathcal{G}^1, r, s)$ consists of countable sets G^0 of vertices and \mathcal{G}^1 of edges, the source map $s : \mathcal{G}^1 \to G^0$ and the range map $r : \mathcal{G}^1 \to \mathcal{P}(G^0) \setminus \{\emptyset\}$, where $\mathcal{P}(G^0)$ is the collection of all subsets of G^0 . A vertex $v \in G^0$ is called a sink if $|s^{-1}(v)| = 0$ and an infinite emitter if $|s^{-1}(v)| = \infty$. A singular vertex is a vertex that is either a sink or an infinite emitter. The ultragraph is row-finite if each vertex emits at most finitely many edges.

For a set X, a subcollection of $\mathcal{P}(X)$ is called an *algebra* if it is closed under the set operations \cup and \cap . If \mathcal{G} is an ultragraph, we write \mathcal{G}^0 for the smallest algebra in $\mathcal{P}(G^0)$ containing $\{v, r(e) : v \in G^0 \text{ and } e \in \mathcal{G}^1\}$.

Definition 1. Let \mathcal{G} be an ultragraph. A *Cuntz-Krieger* \mathcal{G} -family consists of projections $\{p_A : A \in \mathcal{G}^0\}$ and partial isometries $\{s_e : e \in \mathcal{G}^1\}$ with mutually orthogonal ranges such that

- (1) $p_{\emptyset} = 0$, $p_A p_B = p_{A \cap B}$ and $p_{A \cup B} = p_A + p_B p_{A \cap B}$ for all $A, B \in \mathcal{G}^0$;
- (2) $s_e^* s_e = p_{r(e)}$ for $e \in \mathcal{G}^1$;
- (3) $s_e s_e^* \leq p_{s(e)}$ for $e \in \mathcal{G}^1$;
- (4) $p_v = \sum_{s(e)=v} s_e s_e^*$ whenever $0 < |s^{-1}(v)| < \infty$.

The C^* -algebra $C^*(\mathcal{G})$ is the universal C^* -algebra generated by a Cuntz-Krieger \mathcal{G} -family.

A path in ultragraph \mathcal{G} is a sequence $\alpha = e_1 e_2 \cdots e_n$ of edges with $s(e_{i+1}) \in r(e_i)$ for $1 \leq i \leq n-1$. We say that the path α has length $|\alpha| := n$ and we write \mathcal{G}^* for the set of finite paths. The maps r, s extend to \mathcal{G}^* in an obvious way.

By [9, Remark 2.13], we have

$$C^*(\mathcal{G}) = \overline{\operatorname{span}} \left\{ s_\alpha p_A s_\beta^* : \alpha, \beta \in \mathcal{G}^*, A \in \mathcal{G}^0, \text{ and } r(\alpha) \cap r(\beta) \cap A \neq \emptyset \right\},\$$

where $s_{\alpha} := s_{e_1} s_{e_2} \cdots s_{e_n}$ if $\alpha = e_1 e_2 \cdots e_n$ and $s_{\alpha} := p_A$ if $\alpha = A$.

The universal property of $C^*(\mathcal{G})$ gives an action $\gamma : \mathbb{T} \to \operatorname{Aut} C^*(\mathcal{G})$, which is characterized on generators by $\gamma_z(p_A) = p_A$ and $\gamma_z(s_e) = zs_e$ for $A \in \mathcal{G}^0$, $e \in \mathcal{G}^1$ and $z \in \mathbb{T}$. It is called the *gauge action* for $C^*(\mathcal{G})$. The *-subalgebra $\{a \in C^*(\mathcal{G}) : \int_{\mathbb{T}} \gamma_z(a) dz = a\}$, denoted $C^*(\mathcal{G})^{\gamma}$, is called the *fixed-point algebra* of $C^*(\mathcal{G})$.

2 Tensor Product

A C^* -algebra \mathcal{A} is called *nuclear* if both the injective and projective C^* -cross norms on $\mathcal{A} \otimes \mathcal{B}$ are equal for every C^* -algebra \mathcal{B} . In [8, Theorem 30] it is shown that all ultragraph C^* -algebras are nuclear. Let \mathcal{G}_1 and \mathcal{G}_2 be two ultragraphs. If $C^*(\mathcal{G}_1) = C^*(s, p)$ and $C^*(\mathcal{G}_2) = C^*(t, q)$, then one can show that

$$C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2) = \overline{\operatorname{span}} \{ s_\alpha p_A s_\beta^* \otimes t_\mu q_B t_\nu^* \},\$$

where $\alpha, \beta \in \mathcal{G}_1^*, A \in \mathcal{G}_1^0, \mu, \nu \in \mathcal{G}_2^*$ and $B \in \mathcal{G}_2^0$.

Definition 2. The Cartesian product of ultragraphs \mathcal{G}_1 and \mathcal{G}_2 , denoted by $\mathcal{G} := \mathcal{G}_1 \times \mathcal{G}_2$, is the ultragraph $\mathcal{G} = (G^0, \mathcal{G}^1, r, s)$, where $G^0 := G_1^0 \times G_2^0$, $\mathcal{G}^1 := \mathcal{G}_1^1 \times \mathcal{G}_2^1$ and $s : \mathcal{G}^1 \to G^0$ and $r : \mathcal{G}^1 \to \mathcal{P}(G_1^0 \times G_2^0)$ are the maps defined by $s(e, f) := (s_1(e), s_2(f))$ and $r(e, f) := r_1(e) \times r_2(f)$, respectively.

Remark 1. Let \mathcal{G}_1 and \mathcal{G}_2 be two ultragraphs. If $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$, then by [9, Lemma 2.12], we have

$$\mathcal{G}^{0} = \left\{ \bigcup_{j=1}^{k} \bigcap_{i_{j}=1}^{n_{j}} A_{i_{j}} : A_{i_{j}} \in \left\{ (v, w), r(e, f) : (v, w) \in G^{0}, (e, f) \in \mathcal{G}^{1} \right\} \right\}.$$

We see in the next theorem that there exist a Cuntz-Krieger \mathcal{G} -family $\{S, P\}$ in the tensor product $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$ such that $C^*(S, P) = C^*(\mathcal{G})$.

Theorem 1. Let \mathcal{G}_1 and \mathcal{G}_2 be ultragraphs and let $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$. Then $C^*(\mathcal{G})$ can be embedded in $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$ as a *-subalgebra.

Proof. Let $C^*(\mathcal{G}_1) = C^*(s, p)$ and $C^*(\mathcal{G}_2) = C^*(\tilde{s}, \tilde{p})$. We begin by construct a Cuntz-Krieger \mathcal{G} -family $\{S, P\}$ in $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$. Define $P_{(v,w)} = p_v \otimes \tilde{p}_w$ and $P_{r(e,f)} = p_{r_1(e)} \otimes \tilde{p}_{r_2(f)}$ for every $(v, w) \in G^0$ and $(e, f) \in \mathcal{G}^1$. By Remark 1, we generate the projections $\{P_A : A \in \mathcal{G}^0\}$ by defining

$$P_{A\cap B} := P_A P_B$$
 and $P_{A\cup B} := P_A + P_B - P_A P_B$,

for every $A, B \in \{(v, w), r(e, f) : (v, w) \in G^0, (e, f) \in \mathcal{G}^1\}$. Also, we naturally define $S_{(e, f)} := s_e \otimes \tilde{s}_f$ for every $(e, f) \in \mathcal{G}^1$.

We show that $\{S, P\}$ is a Cuntz-Krieger \mathcal{G} -family in $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$. By Remark 1, $\{P_A : A \in \mathcal{G}^0\}$ is a set of projections satisfies Condition (1) of Definition 1.

To verify Condition (2) suppose that $(e, f) \in \mathcal{G}^1$. Then

$$S_{(e,f)}^*S_{(e,f)} = (s_e \otimes \tilde{s}_f)^*(s_e \otimes \tilde{s}_f) = s_e^*s_e \otimes \tilde{s}_f^*\tilde{s}_f$$
$$= p_{r_1(e)} \otimes \tilde{p}_{r_2(f)} = P_{r_1(e) \times r_2(f)} = P_{r(e,f)}$$

The Condition (3) of Definition 1 may be verified as Condition (2). Suppose that $0 < |s^{-1}(v,w)| < \infty$. Since $s^{-1}(v,w) = s_1^{-1}(v) \times s_2^{-1}(w)$, we have $0 < |s_1^{-1}(v)|, |s_2^{-1}(w)| < \infty$. Hence

$$\sum_{(e,f)\in s^{-1}(v,w)} S_{(e,f)} S_{(e,f)}^* = \sum_{(e,f)\in s^{-1}(v,w)} (s_e \otimes \tilde{s}_f)(s_e \otimes \tilde{s}_f)^*$$
$$= \sum_{(e,f)\in s_1^{-1}(v)\times s_2^{-1}(w)} s_e s_e^* \otimes \tilde{s}_f \tilde{s}_f^*$$
$$= \sum_{f\in s^{-1}(w)} \sum_{e\in s^{-1}(v)} s_e s_e^* \otimes \tilde{s}_f \tilde{s}_f^* = p_v \otimes \tilde{p}_w = P_{(v,w)}.$$

Thus $\{S, P\}$ is a Cuntz-Krieger \mathcal{G} -family in $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$. Now we show that $C^*(\mathcal{G}) \cong C^*(S, P)$. Let γ_1 be the gauge action on $C^*(\mathcal{G}_1)$. Define the action $\gamma_2 : \mathbb{T} \to C^*(\mathcal{G}_2)$ by $\gamma_2(z) = Id$ for every $z \in \mathbb{T}$. Also, let $\beta := \gamma_1 \otimes \gamma_2$ be the action of compact group \mathbb{T} on $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$ defined by $\beta(z) = \gamma_1(z) \otimes \gamma_2(z)$. We have $\beta_z(P_A) = P_A$ and $\beta_z(S_{(e,f)}) = (\gamma_1)_z(s_e) \otimes (\gamma_2)_z \tilde{s}_f = zs_e \otimes \tilde{s}_f = zS_{(e,f)}$ for every $A \in \mathcal{G}^0$ and $(e, f) \in \mathcal{G}^1$. If $\{T, Q\}$ is the universal Cuntz-Krieger \mathcal{G} -family, then there is a homomorphism $\phi : C^*(\mathcal{G}) \to C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$ such that $\phi(Q_A) = P_A$ and $\phi(T_{(e,f)}) = S_{(e,f)}$ for every $A \in \mathcal{G}^0$ and $(e, f) \in \mathcal{G}^1$. Since $\beta_z \circ \phi = \phi \circ \gamma_z$, it follows from the gauge-invariant Uniqueness Theorem [9, Theorem 6.8] that ϕ is injective and $C^*(S, P) \cong C^*(\mathcal{G})$.

2.1 Conditional Expectation

By setting some conditions on ultragraphs \mathcal{G}_1 and \mathcal{G}_2 , we show that there exists a conditional expectation from $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$ onto $C^*(\mathcal{G}_1 \times \mathcal{G}_2)$. In the following we recall the definition of conditional expectation.

Let \mathcal{A} be a C^* -algebra and let \mathcal{B} be a C^* -subalgebra of \mathcal{A} . A linear map $E : \mathcal{A} \to \mathcal{B}$ is called a *projection* if E(b) = b for every $b \in \mathcal{B}$. A *conditional* expectation from \mathcal{A} onto \mathcal{B} is a projection $E : \mathcal{A} \to \mathcal{B}$ such that $||E(a)|| \leq ||a||$ for all $a \in \mathcal{A}$.

A Conditional Expectation

Lemma 1. Let \mathcal{G}_1 and \mathcal{G}_2 be range-finite ultragraphs with no singular vertex and let $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$. If $C^*(\mathcal{G}_1) = C^*(s, p)$ and $C^*(\mathcal{G}_2) = C^*(\tilde{s}, \tilde{p})$, then $C^*(\mathcal{G})$ is isomorphic to the subalgebra

$$\mathcal{A} := \overline{\operatorname{span}} \{ s_{\alpha} p_A s_{\beta}^* \otimes \tilde{s}_{\mu} \tilde{p}_B \tilde{s}_{\nu}^* : |\alpha| - |\beta| = |\mu| - |\nu| \}.$$

Proof. Let $\{S, P\}$ be the Cuntz-Krieger \mathcal{G} -family as defined in Theorem 1 and let $C^*(\mathcal{G}) = C^*(S, P)$. We note that $\alpha := (e_1, f_1)(e_2, f_2) \cdots (e_n, f_n)$ is a path in \mathcal{G} if and only if $\alpha := e_1 e_2 \cdots e_n$ and $\mu := f_1 f_2 \cdots f_n$ are paths in \mathcal{G}_1 and \mathcal{G}_2 , respectively. Thus $C^*(\mathcal{G}) \subseteq \mathcal{A}$.

Conversely, suppose that $s_{\alpha}p_{A}s_{\beta}^{*} \otimes \tilde{s}_{\mu}\tilde{p}_{B}\tilde{s}_{\nu}^{*} \in \mathcal{A}$. Since \mathcal{G}_{1} and \mathcal{G}_{2} are rangefinite $p_{A_{1}} \otimes \tilde{p}_{A_{2}} \in C^{*}(\mathcal{G})$ for every $A_{1} \in \mathcal{G}_{1}^{0}$ and $A_{2} \in \mathcal{G}_{2}^{0}$. Suppose that $|\mu| > |\alpha|$. Decompose $\mu = \mu'\mu''$ and $\nu = \nu'\nu''$, where $|\mu'| = |\alpha|$ and $|\nu'| = |\beta|$. Due to the fact that $|\alpha| - |\beta| = |\mu| - |\nu|$ we have $|\mu''| = |\nu''|$. Since \mathcal{G}_{1} is a row-finite ultragraph without sinks, for every $\nu \in \mathcal{G}_{1}^{0}$ we have

$$p_{v} \otimes \tilde{s}_{\mu''} \tilde{p}_{B} \tilde{s}_{\nu''}^{*} = \sum_{\{\eta \in \mathcal{G}_{1}^{*}: |\eta| = |\mu''|, \ s_{1}(\eta) = v\}} s_{\eta} p_{r(\eta)} s_{\eta}^{*} \otimes \tilde{s}_{\mu''} \tilde{p}_{B} \tilde{s}_{\nu''}^{*} \in C^{*}(\mathcal{G}).$$

Due to the fact that \mathcal{G}_1 is range-finite $p_A \otimes \tilde{s}_{\mu''} \tilde{p}_B \tilde{s}^*_{\nu''} \in C^*(\mathcal{G})$. Hence

$$(s_{\alpha} \otimes \tilde{s}_{\mu'})(p_A \otimes \tilde{s}_{\mu''}\tilde{p}_B \tilde{s}_{\nu''}^*)(s_{\beta}^* \otimes \tilde{s}_{\nu'}^*) = s_{\alpha} p_A s_{\beta}^* \otimes \tilde{s}_{\mu} \tilde{p}_B \tilde{s}_{\nu}^* \in C^*(\mathcal{G}).$$

Suppose that $|\mu| < |\alpha|$. Then a similar argument as before and the assumption that \mathcal{G}_2 is range-finite ultragraph with no singular vertices imply that $s_{\alpha}p_A s^*_{\beta} \otimes \tilde{s}_{\mu} \tilde{p}_B \tilde{s}^*_{\nu} \in C^*(\mathcal{G})$. Thus $\mathcal{A} \subseteq C^*(\mathcal{G})$, as desired.

By using the above lemma, we construct a conditional expectation from $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$ onto $C^*(\mathcal{G}_1 \times \mathcal{G}_2)$.

Proposition 1. Let \mathcal{G}_1 and \mathcal{G}_2 be range-finite ultragraphs with no singular vertex and let $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$. Then there exists a conditional expectation from $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$ onto $C^*(\mathcal{G})$. In particular,

$$C^*(\mathcal{G}) = \left(C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)\right)^{\beta},$$

where β is an action from the unit circle \mathbb{T} on $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$.

Proof. Let $C^*(\mathcal{G}_1) = C^*(s, p)$ and $C^*(\mathcal{G}_2) = C^*(\tilde{s}, \tilde{p})$. Also, let γ_1 and γ_2 be the gauge actions of $C^*(\mathcal{G}_1)$ and $C^*(\mathcal{G}_2)$, respectively. Define the action β of \mathbb{T} on $C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$ by $\beta(z) = \gamma_1(z) \otimes \gamma_2(\overline{z})$ for all $z \in \mathbb{T}$. For every $s_{\alpha} p_A s^*_{\beta} \otimes$

 $\tilde{s}_{\mu}\tilde{p}_B\tilde{s}_{\nu}^* \in C^*(\mathcal{G}_1)\otimes C^*(\mathcal{G}_2)$ we have

$$\int_{\mathbb{T}} \beta_z (s_\alpha p_A s^*_\beta \otimes \tilde{s}_\mu \tilde{p}_B \tilde{s}^*_\nu) dz = \int_{\mathbb{T}} (\gamma_1)_z (s_\alpha p_A s^*_\beta) \otimes (\gamma_2)_z (\tilde{s}_\mu \tilde{p}_B \tilde{s}^*_\nu) dz$$
$$= \int_{\mathbb{T}} z^{|\alpha| - |\beta|} s_\alpha p_A s^*_\beta \otimes z^{-(|\mu| - |\nu|)} \tilde{s}_\mu \tilde{p}_B \tilde{s}^*_\nu dz$$
$$= \int_{\mathbb{T}} z^{|\alpha| - |\beta| - (|\mu| - |\nu|)} (s_\alpha p_A s^*_\beta \otimes \tilde{s}_\mu \tilde{p}_B \tilde{s}^*_\nu) dz$$
$$= \int_0^1 e^{2\pi i t \left(|\alpha| - |\beta| - (|\mu| - |\nu|) \right)} (s_\alpha p_A s^*_\beta \otimes \tilde{s}_\mu \tilde{p}_B \tilde{s}^*_\nu) dz.$$

So if we define $E: C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2) \to C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2)$ by $E(x) = \int_{\mathbb{T}} \beta_z(x) dz$, then

$$E(s_{\alpha}p_{A}s_{\beta}^{*}\otimes\tilde{s}_{\mu}\tilde{p}_{B}\tilde{s}_{\nu}^{*}) = \begin{cases} s_{\alpha}p_{A}s_{\beta}^{*}\otimes\tilde{s}_{\mu}\tilde{p}_{B}\tilde{s}_{\nu}^{*} & \text{if } |\alpha|-|\beta|=|\mu|-|\nu|,\\ 0 & \text{otherwise.} \end{cases}$$

Thus, by Lemma 1, E is onto $C^*(\mathcal{G})$ and consequently $E: C^*(\mathcal{G}_1) \otimes C^*(\mathcal{G}_2) \rightarrow C^*(\mathcal{G})$ is a conditional expectation.

2.2 Exel-Laca algebras

The Exel-Laca algebras, denoted by \mathcal{O}_A , are generated by a set of partial isometries whose relations are determined by a countable binary-valued matrix A with no identically zero rows [4, Definition 8.1]. The C^* -algebras of ultragraphs with no singular vertices are precisely the Exel-Laca algebras. More precisely, for matrix A the ultragraph $\mathcal{G}_A := (G^0_A, \mathcal{G}^1_A, r, s)$ is defined by $G^0_A := \{v_i : i \in I\}, \ \mathcal{G}^1_A := I, \ s(i) := v_i \ \text{and} \ r(i) := \{v_j : A(i, j) = 1\}$ for every $i \in I$. By [9, Theorem 4.5], the Exel-Laca algebra \mathcal{O}_A is canonically isomorphic to ultragraph C^* -algebra $C^*(\mathcal{G}_A)$.

For some square matrices A and B, we show that there is a conditional expectation from $\mathcal{O}_A \otimes \mathcal{O}_B$ onto \mathcal{O}_{AB} . To do this we recall the following definition.

Definition 3 ([9]). Let \mathcal{G} be an ultragraph. The edge matrix of an ultragraph \mathcal{G} is the $\mathcal{G}^1 \times \mathcal{G}^1$ matrix $A_{\mathcal{G}}$ given by

$$A_{\mathcal{G}}(e, f) := \begin{cases} 1 & \text{if } s(f) \in r(e), \\ 0 & \text{otherwise.} \end{cases}$$

Definition 4. Let A_1 and A_2 be infinite matrices with entries in $\{0, 1\}$ and having no identically zero rows. We define $A_1A_2 := A_{\mathcal{G}_{A_1} \times \mathcal{G}_{A_2}}$. If $A = [1]_{n \times n}$, then we have the Cuntz algebra \mathcal{O}_n . For $B = [1]_{m \times m}$ we have $AB = [1]_{nm \times nm}$.

A Conditional Expectation

Now we give the main result of this paper.

Theorem 2. Let A and B be infinite matrices with entries in $\{0, 1\}$ and having no identically zero rows. Then \mathcal{O}_{AB} can be embedded in $\mathcal{O}_A \otimes \mathcal{O}_B$ as a \ast subalgebra. If any row in A and B has at most finitely many non-zero elements, then there is a conditional expectation from $\mathcal{O}_A \otimes \mathcal{O}_B$ onto \mathcal{O}_{AB} . In particular, there is a conditional expectation from $\mathcal{O}_m \otimes \mathcal{O}_n$ onto \mathcal{O}_{mn} .

Proof. By [9, Theorem 4.5] $C^*(\mathcal{G}_A) \cong \mathcal{O}_A$ and $C^*(\mathcal{G}_B) \cong \mathcal{O}_B$. Also, we have $\mathcal{O}_{AB} = \mathcal{O}_{A_{\mathcal{G}_{A_1} \times \mathcal{G}_{A_2}}} \cong C^*(\mathcal{G}_A \otimes \mathcal{G}_B)$. So the first assertion follows from Theorem 1. Now suppose that any row in A and B has at most finitely many non-zero elements. Then one can see that \mathcal{G}_A and \mathcal{G}_B are range-finite ultragraphs with no singular vertex. By Proposition 1 there is a conditional expectation from $\mathcal{O}_A \otimes \mathcal{O}_B$ onto \mathcal{O}_{AB} .

References

- T. BATES, D. PASK, I. RAEBURN AND W. SZYMAńSKI: The C^{*}-algebras of row-finite graphs, New York J. Math., 6 (2000), 307-324.
- [2] A. CHAMBERS: Certain subalgebras of the tensor product of graph algebras, J. Operator Theory, 63 (2010), 389-402.
- [3] J. CUNTZ AND W. KRIEGER: A class of C^{*}-algebras and topological Markov chains, Invent. Math., 56 (1980), 251-268.
- [4] R. EXEL AND M. LACA: Cuntz-Krieger algebras for infinite matrices, J. Reine Angew. Math., 512 (1999), 119-172.
- [5] N. FOWLER, M. LACA AND I. RAEBURN: The C^{*}-algebras of infinite graphs, Proc. Amer. Math. Soc., 128 (2000), 2319-2327.
- [6] A. KUMJIAN, D. PASK AND I. RAEBURN: Cuntz-Krieger algebras of directed graphs, Pacific J. Math., 184 (1998), 161-174.
- [7] H. LARKI: Primitive ideals and pure infiniteness of ultragraph C^{*}-algebras, J. Korean Math. Soc., 56 (2019), 1 - 23.
- [8] A. MARRERO AND P. S. MUHLY: Groupoid and inverse semigroup presentations of ultragraph C^{*}-algebras, Semigroup Forum, 77 (2008), 399-422.
- M. TOMFORDE: A unified approach to Exel-Laca algebras and C*-algebras associated to graphs, J. Operator Theory, 50 (2003), 345-368.