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Abstract. In this paper, we give two new proofs of the reciprocity theorem of Ramanujan
found in his lost notebook. We derive the well-known quintuple product identity using the
reciprocity theorem. Further we obtain two interesting partition theoretic identities from the
reciprocity theorem.
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1 Introduction

On page 40 of his lost notebook [7] [3, entry(6.3.3)], Ramanujan has given
the following beautiful reciprocity theorem of two variables.

Theorem 1. If a, b are complex numbers other than 0 and −q−n, then

ρ(a, b)− ρ(b, a) =

(
1

b
− 1

a

)
(aq/b, bq/a, q)∞

(−aq,−bq)∞
, (1.1)

where

ρ(a, b) :=

(
1 +

1

b

) ∞∑
n=0

(−1)nqn(n+1)/2anb−n

(−aq)n
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:= 1 +
∞∑
n=0

(−1)nqn(n+1)/2anb−n−1

(−aq)n+1
. (1.2)

Throughout this paper, we assume |q| < 1 and employ the customary nota-
tions

(a)∞ := (a; q)∞ :=
∞∏
n=0

(1− aqn),

(a)n := (a; q)n :=
(a)∞

(aqn)∞
, n, an integer.

We use the notation

(a1, a2, a3, ..., am)n = (a1)n(a2)n(a3)n...(am)n, n, an integer or ∞,

and the q−shifted factorial identity [6, equation (I.2), p.351]

(a)−n =
1

(aq−n)n
=

(−q/a)n

(q/a)n
qn(n−1)/2. (3)

Jacobi’s triple product identity [6, equation (II.28), p.357] is given by

∞∑
n=−∞

qn
2
zn = (q2,−qz,−q/z; q2)∞, z 6= 0 (4)

and Heine’s transformation [6, equation (III.2), p.359] is given by

∞∑
n=0

(A,B)n
(q, C)n

Zn =
(C/B,BZ)∞

(C,Z)∞

∞∑
n=0

(ABZ/C,B)n
(q,BZ)n

(
C

B

)n
. (5)

The q-binomial theorem [6, equation (II.3), p.354]

∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

. (6)

The Roger’s Fine identity [8, equation (12), p.576] is given by

∞∑
n=0

(a; q)n
(b; q)n

zn =
∞∑
n=0

(a)n(azq/b)nb
nznqn

2−n(1− azq2n)

(b)n(z)n+1
. (7)

The transformation lemma [1]: Subject to suitable convergence conditions, if
∞∑
m=0

am+nbm = cn, then

∞∑
m=0

bm

∞∑
n=−∞

an =

∞∑
n=−∞

cn. (8)
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For,

∞∑
m=0

bm

∞∑
n=−∞

an =
∞∑
m=0

bm

∞∑
n=−∞

an+m =
∞∑

n=−∞

∞∑
m=0

bman+m =
∞∑

n=−∞
cn.

Tannery’s theorem [4]: If fk(n)→ Lk for each k, as n→∞ and if |fk(n)| ≤

Mk with

∞∑
k=0

Mk convergent, then lim
n→∞

p∑
k=1

fk(n) =

∞∑
k=1

Lk, provided that

p→∞ as n→∞.

Andrews [2] was the first to establish (1.1) by employing his four-free variable
identity and the well-known Jacobi’s triple product identity which is a special
case of (1.1). Somashekara and Fathima [9] used Ramanujan’s 1ψ1 summation
formula and Heine’s transformation formula to establish an equivalent version of
(1.1). Since then many authors have contributed to the proof and applications
of (1.1). For more details one may refer the book by Andrews and Berndt [3] or
a recent paper [10] by Somashekara, Narasimha Murthy and Shalini.

The main objective of this paper is to give two proofs of (1.1) and derive
therefrom the well-known quintuple product identity and to prove two interest-
ing partition theoretic identities. One may refer the paper [5] by S. Cooper for
more details about the quintuple product identity. In fact, we give two proofs
of (1.1) in Section 2. In Section 3, we derive the quintuple product identity and
prove two partition theoretic identities.

2 Proofs of the reciprocity theorem of Ramanujan

In this Section we give two proofs of (1.1).

Proof 1. Employing (1.2), the left hand side of (1.1) can be written as

ρ(a, b)− ρ(b, a) =

∞∑
n=0

(−1)nqn(n+1)/2anb−n−1

(−aq)n+1
−
∞∑
n=0

(−1)nqn(n+1)/2bna−n−1

(−bq)n+1
.

(9)
Changing n→ −n− 1 in the first term on the right side of (9) and then using
(3) we obtain

∞∑
n=0

(−1)nqn(n+1)/2anb−n−1

(−aq)n+1
=
−1

a

−∞∑
n=−1

(−1/a)n(−bq)n. (10)

Next setting A = −1/a, B = q, Z = −bq in (5) then letting c → 0 and
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multiplying the resulting identity throughout by 1/a, we obtain
∞∑
n=0

(−1)nqn(n+1)/2bna−n−1

(−bq)n+1
=

1

a

∞∑
n=0

(−1/a)n(−bq)n. (11)

Using (10) and (11) in (9) we obtain

ρ(a, b)− ρ(b, a) =
−1

a

∞∑
n=−∞

(−1/a)n(−bq)n. (12)

Now define

F (a, b) :=
∞∑

n=−∞
(−1/a)n(−bq)n.

Then we have,
(1 + aq)(1 + bq)F (a, b) = F (aq, bq)

or equivalently

F (a, b) =
F (aq, bq)

(1 + aq)(1 + bq)
.

Iterate this relation m ≥ 0 times to obtain

F (a, b) =
F (aqm, bqm)

(−aq,−bq)m
. (13)

We have

lim
m→∞

F (aqm, bqm) =
∞∑

n=−∞
(−1)nbna−nqn(n+1)/2 = (bq/a, a/b, q; q)∞, (14)

on using Tannery’s theorem [4] and (4) with q changed to q1/2 and then z
changed to −bq1/2/a. Letting m→∞ in (13) and using (14) we obtain

F (a, b) =
(bq/a, a/b, q; q)∞
(−aq,−bq; q)∞

or equivalently
∞∑

n=−∞
(−1/a)n(−bq)n =

(bq/a, a/b, q; q)∞
(−aq,−bq; q)∞

. (15)

Substituting this in (12) we obtain (1.1) on some simplifications.
Proof 2. In the transformation lemma (8), take

an = (−1/a)n(−bq)n, bn =
(a/b)n

(q; q)n
, cn =

(q; q)∞
(−aq; q)∞

(−1/a)n(−bq)n

(q; q)n
.

Then cn =
∑∞

m=0 am+nbm is a restatement of the q-binomial theorem(6). Hence
by the transformation lemma we obtain (15). Substituting (15) in (12) we obtain
(1.1), on some simplifications.
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3 Applications of (1.1)

Theorem 2 (Quintuple product identity).

∞∑
n=−∞

(−1)nqn(3n+1)/2(a3n+1 + a−3n) =
(a2, q/a2, q)∞

(a, q/a)∞
. (16)

Proof . Using (1.2) on the right side of (1.1) and after some simplifications,
we obtain

∞∑
n=0

(−1)nqn(n+1)/2anb−n−1

(−aq)n+1
−
∞∑
n=0

(−1)nqn(n+1)/2bna−n−1

(−bq)n+1

=

(
1

b
− 1

a

)
(aq/b, bq/a, q)∞

(−aq,−bq)∞
. (17)

Changing a to −a/q and b to −1/a, we obtain, after some simplifications

∞∑
n=0

(−1)nqn(n−1)/2a2n

(a)n+1
− q

a2

∞∑
n=0

(−1)nqn(n+3)/2a−2n

(q/a)n+1
=

(a2, q/a2, q)∞
(a, q/a)∞

. (18)

Changing B to q and then C → 0 in (5), we obtain

∞∑
n=0

(A; q)nZ
n =

∞∑
n=0

(−1)nqn(n−1)/2(AZ)n

(Z; q)n
. (19)

Changing A to a and Z to a in (19), we obtain

∞∑
n=0

(−1)nqn(n−1)/2a2n

(a)n+1
=
∞∑
n=0

(a; q)na
n. (20)

Changing A to q/a and Z to q/a in (19), we obtain

∞∑
n=0

(−1)nqn(n+3)/2a−2n

(q/a)n+1
=

∞∑
n=0

(q/a; q)n(q/a)n. (21)

Letting b→ 0 in (7), we obtain

∞∑
n=0

(a; q)nz
n =

∞∑
n=0

(a)n(−1)nanz2nqn(3n−1)/2(1− azq2n)

(z)n+1
. (22)

Changing z to a in (22), we obtain

∞∑
n=0

(a; q)na
n =

∞∑
n=0

(a)n(−1)na3nqn(3n−1)/2(1− a2q2n)

(a)n+1
. (23)
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Changing a to q/a and z to q/a in (22), we obtain

∞∑
n=0

(q/a; q)n(q/a)n =

∞∑
n=0

(q/a)n(−1)n(q/a)3nqn(3n−1)/2(1− q2n+2/a2)

(q/a)n+1
. (24)

Using (20), (21), (23) and (24), the left side of (18) can be written as

∞∑
n=0

(−1)na3nqn(3n−1)/2(1 + aqn)−
∞∑
n=0

(−1)na−3n−2q(n+1)(3n+2)/2(1 + qn+1/a)

=
∞∑
n=0

(−1)na3nqn(3n−1)/2(1 + aqn) +
∞∑
n=0

(−1)na−3n+1qn(3n−1)/2(1 + qn/a)

=
∞∑

n=−∞
(−1)nqn(3n+1)/2(a3n+1 + a−3n) (25)

Using (25) in (18), we obtain (16).

Definition 1. Given a partition π, let e(π) denote the number of parts in
π. Define Pm(n) to be the set of partitions of n in which all parts are less than
or equal to m. Let qm(n) be the number of partitions of n in which all parts are
less than or equal to m. Define

pm(n) =
∑

π∈Pm(n)

(−1)e(π) (26)

so that
1

(−q; q)m
=
∞∑
n=0

pm(n)qn (27)

and
1

(q; q)m
=
∞∑
n=0

qm(n)qn. (28)

Definition 2. Given a partition π, let e(π) denote the number of parts in
π. Define Po,m(n) to be the set of partitions of n into odd parts and all parts
are less than or equal to 2m. Let qe,m(n) be the number of partitions of n into
even parts in which all parts are less than or equal to 2m. Define

po,m(n) =
∑

π∈Po,m(n)

(−1)e(π) (29)

so that
1

(−q; q2)m
=
∞∑
n=0

po,m(n)qn (30)
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and
1

(q2; q2)m
=

∞∑
n=0

qe,m(n)qn. (31)

Theorem 3. If pd(n) denotes the number of partitions of n into distinct
parts and if pm(n) and qm(n) are as defined above, then

pd(n) =
1

2

∑
1≤m≤ 1+

√
8n+1
2

{pm [n−m(m− 1)/2] + qm [n−m(m− 1)/2]} . (32)

Proof. Changing a to 1 and b to 1 and n to m− 1 in (17), we obtain after
some simplifications

1

2

{ ∞∑
m=1

qm(m−1)/2

(−q; q)m
+

∞∑
m=1

qm(m−1)/2

(q; q)m

}
= (−q; q)∞. (33)

Using the definition (1) in (33), we obtain

1

2

∞∑
n=0


∑

1≤m≤ 1+
√
8n+1
2

[pm(n−m(m− 1)/2) + qm(n−m(m− 1)/2)] qn


=
∞∑
n=0

pd(n)qn. (34)

By comparing the coefficients of qn , we obtain (32).

Theorem 4. If po,d(n) denotes the number of partitions of n into distinct
odd parts and if po,m(n) and qe,m(n) are as defined above, then

po,d(n) =
∞∑
m=1

{
po,m[n− (m− 1)2] + qe,m(n−m2)

}
. (35)

Proof. Changing q to q2 in (17) and then changing a to 1/q and b to −1
and n to m− 1 in the resulting identity, we obtain after some simplifications

1

2

{ ∞∑
m=1

qm
2

(q2; q2)m
+

∞∑
m=1

q(m−1)2

(−q; q2)m

}
= (−q; q2)∞. (36)

Using the definition (2) in (36), we obtain

∞∑
n=0

∞∑
m=1

{
qe,m(n−m2) + po,m[n− (m− 1)2]

}
qn =

∞∑
n=0

po,d(n)qn. (37)
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By comparing the coefficients of qn, we obtain (35).
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