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Abstract. We deal with increasing sequences of sets: by considering sequences of sets in a
given class, we study when the closure of the union belongs to the same class. We consider
here several classes of bounded, closed convex sets.
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1 Introduction

From several decades, nested (decreasing) sequences of sets in some classes
have received a lot of attention. For example, the nonemptiness of such inter-
sections characterize interesting properties of the space or leads to define new
ones. Increasing and decreasing will always be used here in the ”weak” sense
(not strictly).

Increasing sequences have received less attention: probably they are consid-
ered, in general, less interesting.

Unbounded sequences of balls are used to define the well known ”Vlasov” prop-
erty (see for example [6]).

Here instead we deal with bounded increasing sequences. We consider several
properties, leading to some well known classes of sets; we study which of them
are preserved when the union of sets in these classes is done.

A step in this direction has been done recently in [11].
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Let X be a Banach space with origin Θ and A 6= ∅ be a bounded subset of X.
We denote by cl(A), and δ(A) the closure, and the diameter of A, respectively.

For x ∈ X, we set

r(A, x) = sup{‖x− a‖ | a ∈ A}.
Also, for x ∈ X and ρ ≥ 0, we denote by

B(x, ρ) = {y ∈ X | ‖x− y‖ ≤ ρ}

the (closed) ball centered at x having radius ρ.

We shall consider sequences (An)n∈N which are increasing: An ⊆ An+1 for
n ∈ N .

We say that a given class C of sets has property (P) if the following is true:

(P) If An ∈ C for every n ∈ N, (An)n∈N is increasing and
⋃
n∈N An is bounded,

then cl(
⋃
n∈N An) ∈ C.

In Section 2 we consider a few simple facts. In Section 3, we consider a few
classes of sets with a property, like constant width, diametrically maximal or
some other defined in a somehow similar way. In Section 4 we consider admissible
sets, where the situation seems to be less trivial, and another class of sets: for
both classes (P) fails. Finally, in Section 5 (the last one) we summarize what
we have done and we add a few comments.

For the sake of simplicity, we shall always assume that all sequences under
consideration consist of bounded, closed and convex sets, bcc for short (contain-
ing at least 2 points).

2 A few simple facts

Some results involving increasing sequences of sets (mainly in finite dimen-
sional spaces) were given in [8].
In [9], results concerning increasing sequences of cones in En were given.

Recall the following simple result (see for example [11, Proposition 4]):

(r) If the sequence (An)n∈N is increasing and
⋃
n∈N An is bounded, then

δ(A) = limn→∞ δ(An).

It is known that the class B of balls satisfies (P) (see [11, Proposition 7]).

It is also immediate to see that the class of convex sets, so the class BCC of
bcc sets, satisfies (P).

It is simple to see that the class K of compact sets does not satisfy (P), as
the following example shows.
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Example 1. Let co be the space of real sequences converging to 0, with the
max norm. Let:

An = {x = (xi)n∈N | 0 ≤ xi ≤ 1 for i = 1, 2, ..., n; xi = 0 for i > n}.
The sets An are compact. The closure of their union is the set of sequences,
going to 0, with all components in [0, 1], which is not compact.

3 Constant width and related classes of sets

Given a bcc set A and f ∈ S(X∗) (f a norm one functional), let

wf (A) = sup{f(a1)− f(a2) | a1, a2 ∈ A},
and

W (A) = sup{wf (A) | f ∈ S(X∗)}.
We say that A has constant width, (CW) for short, if wf (A) is constant for

f ∈ S(X∗). We indicate by CW the class consisting of these sets. Of course,
balls are (CW) sets.

Theorem 1. The class CW satisfies (P).

Proof. Consider an increasing sequence (An)n∈N of (CW) sets, whose union
is bounded. We recall that for every bcc set A we have (see for example [3,
Proposition 4.5]): δ(A) = W (A).

Take f ∈ S(X∗). For every n ∈ N we have: wf (An) = W (An) = δ(An).
Moreover (use (r)) wf (A) ≥ limn→∞wf (An) = limn→∞ δ(An) = δ(A) = W (A).
Therefore wf (A) = W (A) for every f ∈ S(X∗), and this concludes the proof.

QED

Remark 1. Set:
w(A) = inf{wf (A) | f ∈ S(X∗)} (minimal width of A).

Clearly, if (An)n∈N is increasing and A = cl(
⋃
n∈N An) is bounded, then w(A) ≥

limn→∞w(An). Example 1 shows that we can have strict inequality: in fact, in
that example, w(An) = 0 for every n ∈ N , while w(A) = 1.

We shall consider now larger classes of bcc sets, that have been considered
in the literature: see for example [10]. They are larger and larger, since the
properties defining them are weaker at any step. All of them contain the class
BCC. Consider

CD: the class of constant difference sets; namely, of sets A satisfying:

(CD) r(A, x) = δ(A) + dist(x,A) for all x /∈ A.
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DM: the class of diametrically maximal sets; namely, of sets A satisfying:

(DM) δ(A ∪ {x}) > δ(A) for all x /∈ A.

Finally, in the last section, we shall consider the following class, larger than
all the previous ones:

M: the class of sets which are intersection of balls, also called admissible
sets.

We start with the following result.

Theorem 2. The class CD satisfies (P).

Proof. Let (An)n∈N be an increasing sequence of (CD) sets withA = cl(
⋃
n∈N An)

bounded. Assume (by contradiction) that A does not satisfy (CD): therefore
there exist x̄ /∈ A and ε > 0 such that r(A, x̄) = δ(A) + dist(x̄, A) − ε; set
dist(x̄, A) = d (> 0). According to (CD) we have: r(An, x̄) = dist(x̄, An) +
δ(An) ≥ d+ δ(An) for all n ∈ N . Therefore δ(A) + d− ε = r(A, x̄) ≥ r(An, x̄) ≥
d+ δ(An).
Pass to the limit for n→∞: by applying (r) we obtain δ(A) +d− ε ≥ d+ δ(A):
this contradiction proves the theorem. QED

Concerning the class DM, we give a direct proof of a ”partial” result.

Proposition 1. If X is uniformly convex, then DM satisfies (P).

Proof. We recall (see for example [1, Proposition 3.1 a)]) that the sets A in DM
can also be characterized in the following way:

(1) A =
⋂
a∈A

B
(
a, δ(A)

)
.

Let (An)n∈N be an increasing sequence of (DM) sets with
⋃
n∈N An bounded.

Assume (by contradiction) that A is not (DM). According to (1), there exists

x̄ /∈ A such that x̄ ∈
⋂
a∈A

B
(
a, δ(A)

)
, or ‖x̄ − a‖ ≤ δ(A) for every a ∈ A. Of

course, (A) is bcc; set ε = dist(x̄, A)(> 0). Let x̄′ ∈ A be the best approximation
to x̄ from A; namely, ‖x̄ − x̄′‖ = infa∈A‖x̄ − a‖ = ε. For every a ∈ A we also
have: ‖x̄′ − a‖ ≤ δ(A).

Let δX(.) denote the modulus of uniform convexity of X: therefore ‖x−p‖ ≤
r, ‖y − p‖ ≤ r, ‖x− y‖ ≥ ε imply ‖x+y

2 − p‖ ≤ r
(
1− δX(ε/r)

)
. So we have (for

a ∈ A):

(2) ‖ x̄+x̄′

2 − a‖ ≤
(
1− δX(ε/δ(A))

)
. δ(A).

Since limn→∞δ(An) = δ(A), for n large enough we have:

δ(A)− δ(An) < δX(ε/δ(A)) .δ(A):
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by (2) and (1) this implies ‖ x̄+x̄′

2 −a‖ < δ(An) for all a ∈ An ⊆ A; thus x̄+x̄′

2 ∈ An
(which is (DM) ). But x̄+x̄′

2 /∈ A, so x̄+x̄′

2 /∈ An ⊆ A. This contradiction proves
the result. QED

Previous result can be generalized by considering another class of sets.

More precisely, we introduce now two more classes of sets (based on conditions
that look similar): they are both larger than DM (and smaller than M); we
shall see that they satisfy (P).

Given x ∈ A, we shall denote by r′(A, x) the sup of the radii of balls centered
at x and contained in A. By r′(A) we will denote the inner radius of A, namely,
sup{r′(A, x) | x ∈ A}.

We can consider the following property for a set A, called in [10] constant
radius:

(CR) δ(A) = r(A, a) + r′(A, a) for all a ∈ A,

and the corresponding class:

CR: the class of the sets A satisfying (CR), or (CR) sets.

We also consider the following ”sum” property

(S) δ(A) = r(A) + r′(A),

and the corresponding class:

S: the class of the sets A satisfying (S), or (S) sets.

Remark 2. It is simple to see that the following inequalities are always
true:

δ(A) ≥ r(A) + r′(A); δ(A) ≥ r(A, a) + r′(A, a) for all a ∈ A.

Remark 3. The property (DM) implies both (CR) and (S), which are in-
dependent (see [2, examples 4 and 5]). The conditions (CR) and (S) together,
for a set A, do not imply either that A is admissible: see the example in [10,
p.827], or also Example 2 below.

Theorem 3. The class CR satisfies (P).

Proof. Let (An)n∈N be an increasing sequence of (CR) sets with A = cl(
⋃
n∈N An)

bounded.

Let x ∈ A. Take ε > 0; there exists x̄ ∈
⋃
n∈N An such that ‖x − x̄‖ < ε,

so |r(A, x̄) − r(A, x)| < ε and |r′(A, x̄) − r′(A, x)| < ε. Let x̄ ∈ An for all
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n from some n̄ onwards. According to (r), we can choose n′ ≥ n̄ such that
δ(An′) > δ(A)− ε. Since An′ is (CR) we have:

r(A, x̄) ≥ r(An′ , x̄) = δ(An′) − r′(An′ , x̄) > δ(A) − ε − r′(An′ , x̄) ≥ δ(A) −
ε − r′(A, x̄). Therefore r(A, x) > r(A, x̄) − ε > δ(A) − 2ε − r′(A, x̄); so, since
r′(A, x) > r′(A, x̄) − ε, we have r(A, x) + r′(A, x) > δ(A) − 3ε. Since ε > 0 is
arbitrary we have: r(A, x) + r′(A, x) ≥ δ(A).

But the reverse inequality is always true, so we have equality: this proves
the result. QED

Recall now the following definition (see for example [5, p.39]): X is said to
have normal structure, (NS) for short, if for every bcc set A there exists x̄ ∈ A
such that r(A, x̄) < δ(A). Recall that uniformly convex spaces have (NS) (see
[5, p.53]).

The following result improves Proposition 1.

Theorem 4. If X has (NS), then the class DM satisfies (P).

Proof. Let (An)n∈N be an increasing sequence of (DM), thus also (CR) sets, with
A = cl(

⋃
n∈N An) bounded. According to Theorem 3, A satisfies (CR). But X

satisfies (NS): thus every bcc set satisfying (CR) has r′(A, x̄) = δ(A)−r(A, x̄) >
0 for some x̄ ∈ A. So A has interior points, and it is known (see [10, p.45]) that
every (CR) set with an interior point is (DM). This proves the result. QED

We conclude the section by indicating another ”positive” result.

Theorem 5. The class S satisfies (P).

Proof. Let (An)n∈N be an increasing sequence of (S) sets with A = cl(
⋃
n∈N An)

bounded. We trivially have r(A) ≥ limn→∞ r(An) and r′(A) ≥ limn→∞ r
′(An)

(while equalities do not always hold: see [11, Proposition 4]). Moreover δ(A) ≥
r(A) + r′(A) always; therefore (S) implies:

δ(A) ≥ r(A) + r′(A) ≥ limn→∞
(
r(An) + r′(An)

)
= limn→∞ δ(An).

But according to (r), δ(A) = limn→∞ δ(An). Thus all these are equalities, and
so δ(A) = r(A) + r′(A), that is the thesis. QED
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4 Failure of property (P)

In this section we shall deal with two classes of sets that do not satisfy (P).

Consider the already defined class M of admissible sets; a set A belongs to
M exactly when it satisfies the property:

(M) A =
⋂
x∈X

B
(
x, r(A, x)

)
.

Note that in any case the set
⋂
x∈X

B
(
x, r(A, x)

)
is an intersection of balls, and

it is the smallest set with this property containing A, usually denoted by Aa.
We send to [12] for some facts concerning admissible sets.

The class of admissible sets has received much attention in the last decades.
In fact, the spaces where every bcc set is admissible have been deeply studied, see
for example [6]; this property for a space is called Mazur Intersection Property.

Not so many examples of bcc sets which are not admissible appear in the liter-
ature.

The class M does not satisfy (P). The following example shows this.

Example 2. Let X be the space C[0, 1]. Set

An = {f ∈ X | 0 ≤ f(x) ≤ 1 for x ∈ [0, 1]; f(x) = 0 forx ∈ [0, 1/n]}.
Clearly An ⊆ An+1 for every n ∈ N .

Set A = {f ∈ X | 0 ≤ f(x) ≤ 1 for x ∈ [0, 1]; f(0) = 0}. We claim that

A = cl(
⋃
n∈N

An).

Clearly An ⊆ A for every n ∈ N , so cl(
⋃
n∈N

An) ⊆ A.

Now take f ∈ A; given ε > 0, we will show that there exist n ∈ N and fn ∈ An
such that ‖fn − f‖ < ε.

Let η such that 0 ≤ f(x) ≤ ε for x ∈ [0, η]. Take fn as follows:

fn(x) =


0 if 0 ≤ x ≤ η/2;
fn is linear in [η/2, η];
f(x) if η ≤ x ≤ 1.

If η
2 ≥

1
n , we have fn ∈ An and ‖fn − f‖ ≤ ε. Thus A ⊆ cl(

⋃
n∈N

An), and

then equality holds.

We claim that A is not admissible; more precisely, we say that Aa = {f ∈
X | 0 ≤ f(x) ≤ 1 for x ∈ [0, 1]}.
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Denote by Aα the set on the right hand side (which is clearly admissible and
contains An for every n ∈ N).

Indicate by 1 the constant function whose value is 1 on the whole interval.
We claim that the function 1 belongs to Aa (so, since the null function Θ ∈
Aa, Aa = Aα).

Take f ∈ X; set r = r(A, f). We have ‖f − g‖ ≤ r for every g ∈
⋃
n∈N

An.

Given x ∈ (0, 1], there exists ḡ in some An (n > 1/x) such that ḡ(x) = 1: thus
|f(x)−1| ≤ r for every x ∈ (0, 1]. This implies ‖f−1‖ ≤ r, so 1 ∈ B

(
f, r(A, f)

)
for every f ∈ X. This proves the claim that A is not admissible.

Finally, we show that all An are admissible.
Fix n ∈ N . Let (for m > n):

gm,n(x) =


−1 if x ∈ [0, 1/n− 1/m];
gm,n is linear in [1/n− 1/m, 1/n]

(
gm,n(x) = mx−m/n

)
;

0 if x ∈ [1/n, 1].

It is easy to see that An = B(1, 1)
⋂( ⋂

m>n
B(gm,n, 1)

)
.

This shows that M does not satisfy (P).

We give a second example concerning the failure of property (P).

We say that a set is balanced (or symmetric) if tS ⊆ S for all t ∈ [−1, 1].
According to [4], we say that a set S ⊆ X is a star if there exists xo ∈ S such
that S − x0 is balanced; in this case x0 is called a center of S. We recall that
every nested (decreasing) sequence of stars has nonempty intersection if and
only if X is finite dimensional (see [4, Theorem 1]).

This class of sets, apart from the case when X is a Euclidean space, has
seldom been considered; it is simple to see that for a bounded star, the center
is necessarily unique (see for example [7, Section 4]).

Indicate by ST the class of stars. Next example shows that ST fails property
(P).

Example 3. Let X = c0. Consider the following bcc sets:
An = {x = (xk)k∈N ∈ c0 | 1/k ≤ xk ≤ 2− 1/k for k = 1, 2, ..., n; xk = 1/k

for k > n}.
Clearly (An)n∈N is an increasing sequence of bcc and star sets. Their centers

are the points (x0,n) whose coordinates are:
(x0,n)k = 1 for k = 1, 2, ..., n; (x0,n)k = 1/k for k > n.

The closure of their union is the bcc set:
A = {x = (xk)k∈N ∈ c0 | 1/k ≤ xk ≤ 2− 1/k for every k ∈ N}.
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But A is not a star: in fact, the ”candidate” center would be the sequence with
all components equal to 1, which is not in c0.

But we can also indicate a ”positive” result concerning the class ST .

Lemma 1. Consider an increasing sequence (An)n∈N of stars, whose union
is bounded; for every n ∈ N , let an be the center of An. If (an)n∈N has a
converging subsequence, then A = cl(

⋃
n∈N An) is a star.

Proof. We must prove that, if all assumptions are true, then A = cl(
⋃
n∈N An)

is a star.
There exists a subsequence (ank)k∈N of (an)n∈N converging, say to a0. Take

a ∈ A; there is an increasing subsequence of (nk)k∈N , say nki (i ∈ N), such that
for every i ∈ N we can choose bi ∈ Anki satisfying: ‖bi − a‖ < 1/i. Since the
sequence (An)n∈N is increasing, it is enough to show that cl(

⋃
i∈N Anki ) is a

star.

Then, for every t ∈ [−1, 1] we have: t(Anki − anki ) ⊆ Anki − anki ; thus t(bi −
anki ) + anki ⊆ Anki ⊆ A for every i ∈ N . Letting i→∞, we obtain: t(a− a0) ⊆
A− a0. This shows that A is a star and that a0 is its center. QED

Proposition 2. Property (P) for bcc stars holds if X is finite dimensional.

Proof. It is a consequence of previous lemma, together with the compactness of
bounded closed sets in finite dimensional spaces. QED

5 Final remarks

In this paper we have considered several conditions; we list them and we
indicate the implications among them.

ball ⇒ (CW) ⇒ (CD) ⇒ (DM) ⇒ (M) ⇒ bcc.
Moreover: (DM) ⇒ (CR) and (DM) ⇒ (S); (M) 6⇒ (CR) and (M) 6⇒ (S);

(CR) and (S) together 6⇒ (M) (see Remark 3).

The notion of star applies to sets that are not necessarily bcc; Example 3
shows that condition (P) fails also if we consider star, bcc sets.

Of course, a ball is a (bcc) star. A (CW) set is not necessarily a star: think
for example at the classical Reuleaux triangle in the Euclidean plane; another
example is the closure of the union in Example 1.

Note 1. Are there conditions on infinite dimensional spaces implying that
the class of stars satisfy (P)? Is the existence of an inner product one of them?
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Note 2. We have seen (Theorem 4 ) that in many spaces the class DM
satisfies (P); we are not able to decide if it satisfies (P) in general.

References

[1] M. Baronti and P.L. Papini: Diameters, centers and diametrically maximal sets, IVth
Italian Conference on Integral Geometry, Geometric Probability Theory and Convex Bod-
ies (Bari, 1994). Rend. Circ. Mat. Palermo (2) Suppl., No. 38 (1995), 11-24.

[2] L. Caspani and P.L. Papini: Complete sets, radii, and inner radii, Beitr. Algebra Geom.,
52 (2011), no. 1, 163-170.

[3] L. Caspani and P.L. Papini: On constant width sets in Hilbert spaces and around, J.
Convex Anal., 22 (2015), no. 3, 889-900.

[4] S.J. Dilworth: Intersection of centred sets in normed spaces, Far East J. Math. Sci.,
1998, Special Volume, Part II, 129-136.

[5] K. Goebel and W.A. Kirk: Topics in metric fixed point theory. Cambridge Studies in
Advanced Mathematics, 28. Cambridge University Press, Cambridge, 1990. viii+244 pp.
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