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Abstract. We give criteria for cuspidal butterflies and cuspidal S−1 (cS−1 ) singularities in
terms of the Weierstrass data for maximal surfaces, and also show non- existence of cuspidal S+

1

(cS+
1 ) singularities on maximal surfaces. Moreover, we show duality between these singularities

considering the conjugate maximal surfaces each other.
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1 Introduction

There are classes of surfaces with singularities called frontals and (wave)
fronts. Arnol’d and Zakalyukin showed that generic singularities of fronts in
3-space are cuspidal edges and swallowtails. Moreover, they showed that bi-
furcations in generic one-parameter families in 3-space are cuspidal lips/beaks,
cuspidal butterflies and D±4 singularities (cf. [1, 2]). It is known that there are
useful criteria for these singularities (see [17, 18, 22, 30, 31]). For frontals in
3-space, criteria for cuspidal cross caps and cuspidal S±k singularities are also
given in [11, 29]. Several new geometric properties for frontals and fronts are
obtained by applying these criteria (cf. [6, 10, 12, 13, 15, 32]).

On the other hand, for maximal surfaces in 3-dimensional Lorentz space
R2,1 of sigunature (− + +), a Weierstrass-type representation was stated by
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Kobayashi in [21], and was later refined to include certain singularities (called
maxfaces) by Umehara and Yamada in [33]. The following fact is known.

Fact 29 ([33, Theorem 2.6]). Any maxface f : Σ ⊂ C → R2,1 can be
represented as

f = Re

[∫
(−2g, 1 + g2, i(1− g2))ω

]
(i =

√
−1) (1.1)

for a simply-connected domain Σ, where g is a meromorphic function, and ω =
ω̂ dz is a holomorphic 1-form such that g2ω̂ is holomorphic on Σ, and (1 +
|g|2)2|ω|2 6= 0.

We call the pair (g, ω) appearing in Fact 29 the Weierstrass data of a max-
face. In [33], criteria for cuspidal edges and swallowtails were obtained by using
Weierstrass data (g, ω). Similarly, in [11] Fujimori, Saji, Umehara and Yamada
showed that maxfaces have frontal singularities as generic singularities, and con-
structed criteria for cuspidal cross caps by using the Weierstrass data (g, ω). On
the other hand, maxfaces have other singularities called cone-like singularities
and fold singularities. Maxfaces with fold singularities are closely related to real
anayitic extensions. For geometric properties about maxfaces with these two sin-
gularities, see [7, 8, 10, 19, 20]. Moreover, in [13, 14], singularities of spacelike
constant mean curvature surfaces are studied.

In this paper, we give criteria for cuspidal butterflies and cuspidal S−1 sin-
gularities on maxfaces by using the Weierstrass data. More precisely, we shall
prove the following theorem.

Theorem 30. Let f : Σ→ R2,1 be a maxface constructed from the Weier-
strass data (g, ω), where Σ is a simply-connected domain of the complex plane
(C, z), and let p be a singular point of f .

(1) f is A-equivalent to a cuspidal butterfly at p if and only if Re[ϕ] 6= 0,
Im[ϕ] = 0, Re[φ] = 0 and Im[Φ] 6= 0 at p.

(2) f is A-equivalent to a cuspidal S−1 singularity at p if and only if Re[ϕ] = 0,
Im[ϕ] 6= 0, Im[φ] = 0 and Re[Φ] 6= 0 at p.

Here, the functions ϕ, φ and Φ are defined by

ϕ :=
gz
g2ω̂

, φ :=
g

gz

(
gz
g2ω̂

)
z

, Φ :=
g

gz

{
g

gz

(
gz
g2ω̂

)
z

}
z

. (1.2)

In particular, a maxface cannot have a cuspidal S+
1 singularity.

In general, there are useful criteria for cuspidal butterflies and cuspidal S−1
singularities on arbitrary surfaces as in [17, 29]. However, for general surfaces,
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it is difficult to find dualities between these two types of singularities, because
there are some gaps between the criterion for cuspidal butterflies and one for
cuspidal S−1 singularities: We only need the data of “third” differentiation of
surfaces in order to specify cuspidal butterflies. On the other hand, we need
the data of “fifth” differentiation of surfaces in order to specify cuspidal S−1
singularities. As in the above theorem, restricting to maxfaces, we can show the
duality between cuspidal butterflies and cuspidal S−1 singularities (see Corollary
37).

2 Preliminaries

2.1 Spacelike surfaces in the Lorentz 3-space

We recall some notions of the Lorentz 3-space.
Let R3 = {(x1, x2, x3) | xi ∈ R, 1 ≤ i ≤ 3} be a 3-dimensional vector space.

For any x = (x1, x2, x3) and y = (y1, y2, y3) ∈ R3, we define the pseudo-inner
product by

〈x,y〉 = −x1y1 + x2y2 + x3y3.

We denote R2,1 = (R3, 〈, 〉) and call it the 3-dimensional Lorentz space (or
Lorentz 3-space). If two vectors x, y ∈ R2,1 satisfy 〈x,y〉 = 0, then we say that
x and y are pseudo-orthogonal. Take a vector x ∈ R2,1 \ {0}. Then x is said to
be spacelike, lightlike or timelike if 〈x,x〉 > 0, = 0 or < 0, respectively.

Let e1, e2 and e3 be the pseudo-orthogonal basis of R2,1 such that e1 is a
timelike unit vector, and let x = (x1, x2, x3) and y = (y1, y2, y3) be vectors in
R2,1. Then we define the pseudo-vector product x ∧ y as

x ∧ y =

∣∣∣∣∣∣
−e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .
By the definition, one can check that 〈x ∧ y, z〉 = det(x,y, z) holds for x, y,
z ∈ R2,1, where det is the canonical determinant of 3× 3 matrices. Thus x ∧ y
is pseudo-orthogonal to both x and y.

Let f : Σ→ R2,1 be an immersion, where Σ is a domain in (R2;u, v). Then
f is said to be a spacelike if the plane spanned by {fu, fv} consists of spacelike
vectors, where fu = ∂f/∂u and fv = ∂f/∂v. In this case, we note that fu ∧ fv
is a timelike vector. We set a map ν : Σ→ H2 as

ν(u, v) =
fu ∧ fv
|fu ∧ fv|

(u, v),

where H2 = {x ∈ R2,1 | 〈x,x〉 = −1} is the hyperbolic 2-space and |x| =√
|〈x,x〉| for any x ∈ R2,1. We call ν the pseudo-unit normal vector to f .
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2.2 Frontals and fronts

We describe some notions of frontals and fronts. For more details, see [1, 2,
16, 32]. Let f : Σ → R3 be a C∞ map, where Σ is a domain in R2 with local
coordinates u, v. We call the map f a frontal if there exists a unit vector field
ν along f such that 〈df(Xp), ν(p)〉E = 0 for any p ∈ Σ and Xp ∈ TpΣ, where
〈·, ·〉E means the canonical Euclidean inner product. A frontal f is said to be a
front if the pair Lf = (f, ν) : Σ→ R3 × S2 gives an immersion, where S2 is the
unit sphere in R3.

We fix a frontal f . A point p ∈ Σ is called a singular point of f if rank dfp < 2
holds. Let S(f) denote the set of singular points of f . We now define a function
λ : Σ→ R called the signed area density function as

λ(u, v) = det(fu, fv, ν)(u, v).

One can see that S(f) = λ−1(0). Take a singular point p ∈ S(f). If dλ(p) 6=
0, then p is called a non-degenerate singular point. Assume that p is a non-
degenerate singular point. Then by the implicit function theorem, there exist a
neighborhood U of p and a regular curve γ : (−ε, ε)t 7→ γ(t) ∈ U(⊂ Σ) (ε > 0)
such that U ∩S(f) is locally parametrized by γ. We call this curve γ a singular
curve and the direction of γ′ = dγ/dt the singular direction. In this case, there
exists a vector field ξ on U such that ξ is tangent to S(f), namely, ξ is parallel to
γ′ on S(f). Moreover, a non-degenerate singular point p is a corank one singular
point, namely, rank dfp = 1, there exists a never vanishing vector field η on U
such that dfq(η) = 0 for any q ∈ U ∩ S(f). This vector field η is called a null
vector field.

Definition 31. Let f1, f2 : (R2,0)→ (R3,0) be C∞ map germs. Then f1 and
f2 are A-equivalent if there exist diffeomorphism germs θ : (R2,0) → (R2,0)
on the source and Θ : (R3,0)→ (R3,0) on the target such that Θ ◦ f1 = f2 ◦ θ
holds.

Definition 32. A cuspidal edge is a map germ A-equivalent to the map germ
(u, v) 7→ (u, v2, v3) at 0. A swallowtail is a map germ A-equivalent to (u, v) 7→
(u, 3v4 + uv2, 4v3 + 2uv) at 0. A cuspidal butterfly is a map germ A-equivalent
to (u, v) 7→ (u, 4v5 + uv2, 5v4 + 2uv) at 0. A cuspidal cross cap is a map
germ A-equivalent to (u, v) 7→ (u, v2, uv3) at 0. A cuspidal S±k singularity (or
cS±k singularity, for short) (k ≥ 1) is a map germ A-equivalent to (u, v) 7→
(u, v2, v3(uk+1 ± v2)) at 0. (See Figure 1.)

We note that cuspidal edges, swallowtails and cuspidal butterflies are fronts.
On the other hand, cuspidal cross caps and cS±k singularities are frontals but
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Figure 1. From top left to bottom right: cuspidal edge, swallowtail, cuspidal
butterfly, cuspidal cross cap, cS+

1 singularity and cS−1 singularity.

not fronts. One can see that cuspidal cross caps and cS±0 singularities are A-
equivalent, and if k is even, cS+

k and cS−k areA-equivalent to each other (cf. [29]).
When we substitute u = 0 in the normal form (i.e. the standard parametrization
as in Definition 32) of the cS±k singularity (u, v2, v3(uk+1 ± v2)), it reduces to
a (2, 5)-cusp curve through 0, where (2, 5)-cusp curve means a curve which is
A-equivalent to t 7→ (t2, t5, 0) (see Figure 2).

Figure 2. Surface with cS−1 singularity. The red curve is a (2, 5)-cusp curve on
the surface through 0 which lies in the normal plane to γ̂ at γ̂(0).

We define functions along the singular curve γ by

δ(t) = det(γ′(t), η(t)), ψ(t) = det(γ̂′(t), ν ◦ γ(t), dνγ(t)(η(t))) (2.1)

for t ∈ (−ε, ε), where γ̂ = f ◦ γ (cf. [11, 22]).

Fact 33 ([17, 22, 31]). Let f : Σ→ R3 be a front, p ∈ Σ be a non-degenerate
singular point, γ a singular curve with p = γ(0) and η a null vector field.

(1) f is A-equivalent to a cuspidal edge at p if and only if δ(0) 6= 0 holds.
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(2) f is A-equivalent to a swallowtail at p if and only if δ(0) = 0 and δ′(0) 6= 0
hold.

(3) f is A-equivalent to a cuspidal butterfly at p if and only if δ(0) = δ′(0) = 0
and δ′′(0) 6= 0 hold.

Fact 34 ([11, 29]). Let f : Σ→ R3 be a frontal and p ∈ Σ a non-degenerate
singular point.

(1) f is A-equivalent to a cuspidal cross cap at p if and only if δ(0) 6= 0,
ψ(0) = 0 and ψ′(0) 6= 0 hold.

(2) f is A-equivalent to a cS±k−1 singularity (k ≥ 2) at p if and only if the
following conditions (a)-(d) hold:

(a) δ(0) 6= 0.

(b) There exists a curve c : (−ε, ε)→ Σ such that c′(0) is parallel to η(0),
ĉ′(0) = 0, ĉ′′(0) 6= 0 and there exists ` ∈ R satisfying ĉ′′′(0) = `ĉ′′(0)
and A := det(γ̂′, ĉ′′, 3ĉ(5) − 10`ĉ(4))(0) 6= 0, where ĉ = f ◦ c.

(c) ψ(0) = ψ′(0) = · · · = ψ(k−1)(0) = 0 and B := ψ(k)(0) 6= 0.

(d) If k is even, the sign ± of the cS±k−1 singularity coincides with the

sign of the product AB = det(γ̂′, ĉ′′, 3ĉ(5)−10`ĉ(4))(0) ·ψ(k)(0). Here,
we choose η and t so that c′(0) points the same direction as the null
vector η(0) and that (γ′, η)(0) is positively oriented.

We note that the conditions in Facts 33 and 34 do not depend on the choice
of coordinates on the source, the choice of η, on the choice of ν nor on the
choice of coordinates on the target. We note that criteria for (2, 5)-cuspidal
edges (u, v) 7→ (u, v2, v5) are given in [14, Theorem 4.1].

Lemma 35. Let f : Σ → R3 be a frontal, p a non-degenerate singular
point and γ a singular curve through p. Let ξ and η be C∞ vector fields
on a neighborhood of p such that ξ is tangent to γ and η is a null vector
for each point on the singular curve. Suppose that the pair (ξ, η) is posi-
tively oriented along γ, namely, det(ξ, η) > 0 along γ. Moreover, assume that
〈ξf(p), ηηf(p)〉E = 0 and ηηηf(p) = 0. Then there exists a curve c(t) having the
properties in (2) (b) in Fact 34, and the real number A in Fact 34 is expressed
as A = det(ξf, ηηf, η5f)(p), where ηkf means a k-times derivative η · · · ηf . In
particular, if η5f(p) 6= 0, A does not vanish.

Proof. Without loss of generality, we can consider p = (0, 0). It is known that
there exisits the following local coordinate system (U ;u, v) around p (cf. [27,
32]): the singular curve is the u-axis and the null vector η is η = ∂v. In this
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case, ξ can be taken as ξ = ∂u, and hence (ξ, η) is positively oriented. Under
this local coordinate system, fuv(p) = 0 holds because fv = 0 on the u-axis. We
now consider the set Λ defined by

Λ = {f(u, v) | 〈f(u, v), fu(p)〉E = 0}.

Since fu(p) 6= 0, there exists a C∞ curve c(t) = (u(t), t) such that

〈ĉ(t), fu(p)〉E = 0, (2.2)

where ĉ = f ◦ c. We show that this curve c satisfies the properties in (2) (b) in
Fact 34.

Differentiating of (2.2), we have

〈u′(v)fu(u(v), v), fu(p)〉E + 〈fv(u(v), v), fu(p)〉E = 0,

where u′ = du/dv. Since ηf(p) = fv(p) = 0, we have u′(0) = 0. Thus the
differential of c(v) = (u(v), v) by v is parallel to η at v = 0. Moreover, we see
that

u′′(0)〈fu(p), fu(p)〉E + 〈fvv(p), fu(p)〉E = 0,

u′′′(0)〈fu(p), fu(p)〉E + u′′(0)〈fuv(p), fu(p)〉E + 〈fvvv(p), fu(p)〉E = 0

hold. Thus u′′(0) = u′′′(0) = 0 hold by 〈fvv(p), fu(p)〉E = 0, fuv(p) = fvvv(p) =
0. On the other hand, differentials of ĉ satisfies ĉ′ = 0, ĉ′′ = fvv 6= 0, ĉ′′′ = 0 at
v = 0, and a real number ` satisfying ĉ′′′(0) = `ĉ′′(0) is ` = 0. This implies that
the curve c satisfies the properties in (2) (b) in Fact 34.

The 5-time derivative of ĉ is

ĉ(5) = u(5)fu + fvvvvv

at v = 0. Thus the real number A in Fact 34 (2) (b) can be written as

A = det(γ̂′, ĉ′′, 3ĉ(5) − 10`ĉ(4))(0) = det(fu, fvv, 3fvvvvv)(p)

= 3 det(ξf, ηηf, η5f)(p).

Therefore we may take A = (ξf, ηηf, η5f)(p), and hence we have the assertion.
QED

We suppose that the pair (ξ, η) satisfies the conditions of Lemma 35. If we
take another pair of vector fields (ξ̄, η̄) as

ξ̄ = a1(u, v)ξ + a2(u, v)η, η̄ = b1(u, v)ξ + b2(u, v)η,
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where ai, bi : U → R (i = 1, 2) are C∞ functions and a2 = b1 = 0 on the set of
singular point of f . Assume that a1b2 > 0 at p and (ξ̄, η̄) also satisfies the condi-
tion of Lemma 35. Under this settings, we show the sign of det(ξf, ηηf, η5f)(p)
coinsides with the sign of det(ξ̄f, η̄η̄f, η̄5f)(p).

By direct computations, we have

ξ̄f(p) = a1(p)ξf(p), η̄f(p) = b2(p)ηf(p) = 0,

η̄η̄f(p) = b2(p)(ηb2(p)ξf(p) + b2(p)ηηf(p))

holds. Since (ξ̄, η̄) satisfies 〈ξ̄f, η̄η̄f〉E(p) = 0, we have ηb1(p) = 0. By this
assumption and ηηηf(p) = 0, we have

η̄η̄η̄f(p) = b2(p)2(ηηb1(p)ξf(p) + 3ηb2(p)ηηf(p)) = 0.

Since ξf(p) and ηηf(p) are linearly independent, it follows that ηηb1(p) =
ηb2(p) = 0. Similarly, we also obtain

η̄5f(p) = b2(p)3
{
b2(p)η4b1(p) + η3b1(p)ξb1(p)

}
ξf(p)

+ 5b2(p)4η3b2(p)ηηf(p) + b2(p)5η5f(p)

using the conditions b1(p) = ηb1(p) = ηηb1(p) = ηb2(p) = 0 and ηf(p) =
η3f(p) = ξηf(p) = 0. So we have

det(ξ̄f, η̄η̄f, η̄5f)(p) = (a1(p)b2(p))b2(p)6 det(ξf, ηηf, η5f)(p).

Thus, the sign of det(ξf, ηηf, η5f)(p) coinsides with the sign of det(ξ̄f, η̄η̄f, η̄5f)(p).
This implies that we don’t need to mind the choice of the pair (ξ, η) if (ξ, η)
satisfies the conditions of Lemma 35.

3 Proof of Theorem 30

In this section, we shall prove Theorem 30 in Section 1. Before the proof,
we introduce the related results given in [11, 33] as follows:

Fact 36 ([11, 33]). Let f : Σ → R2,1 be a maxface constructed from the
Weierstrass data (g, ω), where Σ is a simply-connected domain of the complex
plane (C, z), and let p be a singular point of f .

(1) f has a non-degenerate singular point at p if and only if gz 6= 0 at p.

(2) f is a front at p if and only if Re[ϕ] 6= 0 at p.

(3) f is A-equivalent to a cuspidal edge at p if and only if Re[ϕ] 6= 0 and
Im[ϕ] 6= 0 at p.
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(4) f is A-equivalent to a swallowtail at p if and only if Re[ϕ] 6= 0, Im[ϕ] = 0
and Re[φ] 6= 0 at p.

(5) f is A-equivalent to a cuspidal cross cap at p if and only if Re[ϕ] = 0,
Im[ϕ] 6= 0 and Im[φ] 6= 0 at p.

Here, the functions ϕ and φ are same as in (1.2).

We show Theorem 30.

Proof of Theorem 30 (1). Now we prove the criterion for cuspidal butterflies by
using a similar calculation as in the proof of the above Fact 36 (see [11, 33]).

By (1.1), we see that

fz =
ω̂

2

(
−2g, 1 + g2, i(1− g2)

)
, fz̄ =

¯̂ω

2

(
−2ḡ, 1 + ḡ2,−i(1− ḡ2)

)
. (3.1)

We now identify R2,1 with R3. Then using the Euclidean inner product 〈·, ·〉E,
we can define the following Euclidean unit normal vector n to f as

n :=
1√

(1 + |g|2)2 + 4|g|2
(
1 + |g|2, 2 Re[g], 2 Im[g])

)
. (3.2)

By (3.1) and (3.2), the signed area density function λ of f is given by

λ = 〈fu × fv,n〉E = (|g|2 − 1)|ω̂|2
√

(1 + |g|2)2 + 4|g|2, (3.3)

where we used identifications 2fz = fu − ifv and 2fz̄ = fu + ifv (cf. [11, 33]).
We notice by (3.3) that the singular set of f is

S(f) =
{
z ∈ Σ | |g(z)|2 = 1

}
.

We also define the null direction η as

η =
i

gω̂
∂z −

i

gω̂
∂z̄. (3.4)

Assume that f is a front at p and p is a non-degenerate singular point,
namely, Re[ϕ] as in (1.2) does not vanish at p. Then we apply Fact 33 (3).
In this case, there exists a singular curve γ(t) passing through γ(0) = p with
|g(γ(t))| = 1. Then one can choose a suitable parametrization of γ(t) such that
ξ(t) = γ′(t), where ξ(t) is

ξ = i

(
gz
g

)
∂z − i

(
gz
g

)
∂z̄. (3.5)
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By (3.4) and (3.5), the function δ(t) = det(ξ, η) can be written as

δ = Im[ϕ]

on γ(t). Differentiating this, we have δ′ = −|gz|2 Re[φ] on γ(t), where φ =
g
gz

(
gz
g2ω̂

)
z
. Under the assumption that δ(0) = δ′(0) = 0 hold, it follows that

δ′′ = −|gz|4 Im[Φ] at t = 0, where Φ = g
gz

{
g
gz

(
gz
g2ω̂

)
z

}
z
. By non-degeneracy,

Fact 33 (3) and Fact 36, it follows that δ(0) = δ′(0) = 0 and δ′′(0) 6= 0 if and only
if Im[ϕ] = Re[φ] = 0 and Im[Φ] 6= 0 at p. Thus we have the conclusion. QED

Proof of Theorem 30 (2). In the proof of Theorem 30 (1), we already checked
the condition (2)(a):

δ = Im[ϕ] 6= 0 (3.6)

at p(= γ(0)). We check the condition (2)(c). By (2.1), we have

ψ = −|ω̂|2 Im[ϕ] Re[ϕ], ψ′ = |gz|2|ω̂|2 Im[ϕ] Im[φ], ψ′′ = |gz|4|ω̂|2 Im[ϕ] Re[Φ]

at p(= γ(0)). Thus, the condition (2)(a) and (2)(c) hold if and only if Im[ϕ] 6= 0,
Re[ϕ] = Im[φ] = 0 and Re[Φ] 6= 0 at p = γ(0).

Now assuming the conditions (2)(a) and (2)(c), we prove that (2)(b) is triv-
ial. Differentiating f by the singular direction ξ as in (3.5) and by the null
direction η as in (3.4) on γ(t), we obtain

ξf =

(
2 Re

[
−iω̂g

(
gz
g

)]
, 2 Re

[
iω̂

2

(
gz
g

)
(1 + g2)

]
,−2 Re

[
ω̂

2

(
gz
g

)
(1− g2)

])
,

ηf =

(
0, 2 Re

[
i

2g
(1 + g2)

]
, 2 Re

[
−1

2g
(1− g2)

])
,

η2f =

(
0,−2 Re

[ϕ
2

(g − g−1)
]
, 2 Re

[
iϕ

2
(g − g−1)

])
,

η3f =

(
0, 2 Re

[
−i
2

{
φϕ(g − g−1) + ϕ2(g + g−1)

}]
,

2 Re

[
−1

2

{
φϕ(g + g−1) + ϕ2(g − g−1)

}])
.

By using these equations and condition (2) (c) in Fact 34, namely, ϕ + ϕ̄ =
φ− φ̄ = 0 at p, we get

〈ξf(p), ηηf(p)〉E = 0 and η3f(p) = 0.
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Continuing to differentiate f by η, we also have

η4f =

(
0, 2 Re

[
1

2

{
ϕ(Φϕ+ φ2 + ϕ2)(g − g−1) + 3ϕ2φ(g + g−1)

}]
,

2 Re

[
−i
2

{
ϕ(Φϕ+ φ2 + ϕ2)(g + g−1) + 3ϕ2φ(g − g−1)

}])
,

η5f =
(

0,

2 Re

[
i

2
ϕ
{

(Γϕ2 + 4ϕφΦ + φ3 + 6ϕ2φ)(g − g−1) + (4ϕ2Φ + 7ϕφ2 + ϕ3)(g + g−1)
}]
,

2 Re

[
1

2
ϕ
{

(Γϕ2 + 4ϕφΦ + φ3 + 6ϕ2φ)(g + g−1) + (4ϕ2Φ + 7ϕφ2 + ϕ3)(g − g−1)
}])

,

where we set Γ := g
gz

[
g
gz

{
g
gz

(
gz
g2ω̂

)
z

}
z

]
z
. It follows that η5f does not vanish

at p. Thus we can apply Lemma 35 for maxfaces, and

A = det(ξf, ηηf, η5f)(p). (3.7)

By these functions, we have

A = 32iϕ(p)5|ω̂(p)|2 Re[Φ(p)]

at p, and condition (c) implies A 6= 0. Hence the condition (2)(b) follows if the
conditions (2)(a) and (2)(c) are satisfied.

To end of proof, we should check the condition (2)(d). It follows that A =
32iϕ(p)5|ω̂(p)|2 Re[Φ(p)] and B = −iϕ(p)|gz(p)|4|ω̂(p)|2 Re[Φ(p)] hold. Thus

AB = 32ϕ(p)6|ω̂(p)|4|gz(p)|4 Re[Φ(p)]2 < 0 (3.8)

holds since ϕ(p) ∈ iR by the conditions (2)(a) and (2)(c). Therefore we have
the assertion. QED

By (3.8), we see that a maxface f cannot have cS+
1 singularities.

Let (g, ω) be a Weierstrass data of a maxface f in R2,1. Then we call f̃ a
conjugate maxface if the Weierstrass data of f̃ is given by (g, iω) (cf. [11]). It is
known that a dualty between swallowtails and cuspidal cross caps on maxfaces
holds ([11, Corollary 2.5]). By Theorem 30, we obtain a new duality between
singularities on maxfaces.

Corollary 37. Let f : Σ → R2,1 be a maxface with a Weierstrass data
(g, ω). Then f at p is a cuspidal butterfly (resp. cuspidal S−1 singularity) if and
only if its conjugate f̃ at p is a cuspidal S−1 singularity (resp. cuspidal butterfly).
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4 Examples

Here we show examples of maxfaces with cuspidal butterflies or cS−1 singu-
larities.

Maxface with cuspidal butterflies. Define Weierstrass data as follows:

g(z) = −ez +
1√
2
, ω = ω̂dz = − i

2
e−zdz.

This data was first found in [3] as the data of a special case of maximal Thomsen-
type families. Maximal Thomsen families are defined as both maxfaces in R2,1

and affine minimal surfaces (see [26]).

This surface is periodic in the v-direction, where z = u+iv and for simplicity
we restrict the domain to (u, v) ∈ R× [−π, π). Then, we have

S(f) =

{
(u, v) ∈ R× [−π, π)

∣∣∣∣∣eu =
1√
2

cos v +

√
1− 1

2
sin2 v

}
.

We notice that at p1 = (log(1/
√

2),±π/2)

ϕ(p1) =
gz
g2ω̂

(p1) = ±1, φ(p1) =
g

gz

(
gz
g2ω̂

)
z

(p1) = 2i,

Φ(p1) =
g

gz

{
g

gz

(
gz
g2ω̂

)
z

}
z

(p1) = ∓(2± 2i),

where the sign ± corresponds to one of p1. Thus this surface have cuspidal
butterflies at p1.
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Figure 3. A special case of a maximal Thomsen surface. It has cuspidal butter-
flies at yellow points, swallowtails at green points and cuspidal edges on the red
curve.

Maxface with cuspidal S−1 . Consider the conjugate surface of the above ex-
ample:

g(z) = −ez +
1√
2
, ω = ω̂dz =

1

2
e−zdz.

This data gives the conjugate surface of a special case of the maximal Thomsen-
type family. In [3] and [25], it was found that the resulting surfaces of this data
have planar curvature lines in both the u and v directions, called maximal
Bonnet-type surfaces.

This conjugate surface is also periodic in the v-direction, and for simplicity
we restrict the domain to (u, v) ∈ R × [−π, π). We also notice that at p1 =
(log(1/

√
2),±π/2)

ϕ(p1) =
gz
g2ω̂

(p1) = ±i, φ(p1) =
g

gz

(
gz
g2ω̂

)
z

(p1) = −2,

Φ(p1) =
g

gz

{
g

gz

(
gz
g2ω̂

)
z

}
z

(p1) = ∓i(2± 2i),

where the sign ± corresponds to one of p1. Thus this conjugate surface have
cuspidal S−1 at p1.
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Figure 4. A special case of a maximal Bonnet-type surface. It has cS−1 singu-
larities at yellow points, swallowtails at green points and cuspidal edges on the
red curve.
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