Note di Matematica Note Mat. **38** (2018) no. 1, 83–88.

Almost semi-braces and the Yang-Baxter equation

Maria Maddalena MICCOLI¹

Dipartimento di Matematica e Fisica "Ennio De Giorgi", University of Salento maddalena.miccoli@unisalento.it

Received: 13.1.2018; accepted: 13.2.2018.

Abstract. In this note we find new set-theoretic solutions of the Yang-Baxter equation through almost left semi-braces, a new structure that is a generalization of left semi-braces.

Keywords: Quantum Yang-Baxter equation, set-theoretical solution, semi-brace.

MSC 2000 classification: 16T25, 16Y99, 16N20, 81R50

Introduction

In order to find new solutions of the Yang-Baxter equation, Drinfeld [5] asked the question of finding the so-called set-theoretic solutions on an arbitrary nonempty set. We recall that, if X is a non-empty set, a function $r: X \times X \to X \times X$ is called a *set-theoretic solution* of the Yang-Baxter equation if

$$r_1 r_2 r_1 = r_2 r_1 r_2$$

where $r_1 := r \times id_X$ and $r_2 := id_X \times r$.

After the seminal papers of Etingof, Schedler and Soloviev [6] and of Gateva-Ivanova and M. Van den Bergh [7], many papers about this subject appeared and many links to different topics pointed out. In this context Rump [9] introduced braces, a generalization of radical rings. As reformulated by Cedó, Jespers and Okniński [4], a *left brace* is a set B with two operations + and \circ such that (B, +)is an abelian group, (B, \circ) is a group and

$$a \circ (b+c) + a = a \circ b + a \circ c$$

holds for all $a, b, c \in B$. Recently Guarnieri and Vendramin [8] introduced skew braces, a generalization of braces. A *skew left brace* is a set B with two operations + and \circ such that (B, +) and (B, \circ) are groups and

$$a \circ (b+c) = a \circ b - a + a \circ c$$

ⁱThe author is member of GNSAGA (INdAM

http://siba-ese.unisalento.it/ © 2018 Università del Salento

holds for all $a, b, c \in B$. Note that, recently, Brzeziński [1] introduced a generalization of skew braces, the skew trusses. More precisely, a *skew left truss* is a set B with two operations + and \circ and a function $\sigma : B \to B$ such that (B, +)is a group and (B, \circ) is a semigroupsand

$$a \circ (b+c) = a \circ b - \sigma(a) + a \circ c$$

holds for all $a, b, c \in B$. Let us note that the skew left trusses are related to circle algebras, structures introduced by Catino and Rizzo in [3].

A generalization of skew braces that is useful to find set-theoretic solutions of the Yang-Baxter equation is the semi-brace, introduced by Catino, Colazzo and Stefanelli [2]. A *left semi-brace* is a set B with two operations + and \circ such that (B, +) is a left cancellative semigroup, (B, \circ) is a group and

$$a \circ (b+c) = a \circ b + a \circ (a^- + c)$$

holds for all $a, b, c \in B$, where we denote by a^- the inverse of a with respect to \circ .

In this note we introduce a new structure, the almost semi-brace, a generalization of semi-brace. More precisely, an *almost left semi-brace* is a set B with two operations + and \circ and a map $\iota : B \to B$ satisfying such that (B, +) is a left cancellative semigroup, (B, \circ) is a group and

$$a \circ (b+c) = a \circ b + a \circ (\iota(a) + c)$$

holds for all $a, b, c \in B$. Then we show that given any almost left semi-brace B, the function $r: B \times B \to B \times B$ given by

$$r(a,b) = (a \circ (\iota(a) + b), (\iota(a) + b)^{-} \circ b)$$

is a set-theoretic solution.

1 Basic results

Recall that a semigroup (B, +) is said to be *left cancellative* if a + b = a + c implies that b = c, for all $a, b, c \in B$. Note that in a left cancellative semigroups every idempotent is a left identity.

Definition 1. Let *B* be a set with two operations + and \circ such that (B, +) is a left cancellative semigroup, (B, \circ) is a group and there exists a function $\iota: B \to B$ such that, for all $a, b \in B$,

$$\iota(a \circ b) = b^{-} \circ \iota(a), \quad (\iota(a) + b) \circ \iota(1) = \iota(a) + b \circ \iota(1) \tag{1.1}$$

Almost semi-braces and Yang-Baxter equation

where b^- is the inverse of b with respect \circ and 1 is the identity of (B, \circ) . We say that $(B, +, \circ, \iota)$ is an *almost left semi-brace* if

$$a \circ (b+c) = a \circ b + a \circ (\iota(a) + c), \tag{1.2}$$

for all $a, b, c \in B$.

If $(B, +, \circ)$ is a left semi-brace, then it is an almost semi-brace with $\iota(a) = a^-$, for every $a \in B$, and viceversa.

Examples of almost left semi-braces can be obtained by any group. In fact, if (E, \circ) is a group, then $(E, +, \circ, \iota)$, where a + b = b for all $a, b \in E$ and $\iota : E \to E, a \mapsto a^- \circ e$ with e a fixed element of E, is an almost semi-brace.

Definition 2. Let $(B_1, +_1, \circ_1, \iota_1)$ and $(B_2, +_2, \circ_2, \iota_2)$ almost left semi-braces. A function $f : B_1 \to B_2$ is a homomorphism of almost left semi-braces if f is a semigroup homomorphism from $(B_1, +_1)$ to $(B_2, +_2)$, f is a group homomorphism from (B_1, \circ_1) to (B_2, \circ_2) and, $f\iota_1 = \iota_2 f$.

Note that a semi-brace $(B, +, \circ)$ reviewed as almost semi-brace can not be isomorphic to an almost semi-brace $(B, +, \circ, \iota_B)$ with $\iota_B(1) \neq 1$. Indeed such isomorphism f have to satisfy $\iota_B(1) = \iota_B f(1) = f(1) = 1$.

Proposition 1. Let $(B, +, \circ, \iota)$ be an almost left semi-brace. Then, $\iota(1)$ is a left identity of (B, +) and, $\iota(a) = a^{-} \circ \iota(1)$ for every $a \in B$. Moreover, the function ι is bijective.

Proof. By (1.2) we have

$$\iota(1) + \iota(1) = 1 \circ (\iota(1) + \iota(1)) = 1 \circ \iota(1) + 1 \circ (\iota(1) + \iota(1)) = \iota(1) + \iota(1) + \iota(1)$$

and by left cancellativity $\iota(1) = \iota(1) + \iota(1)$. Thus, $\iota(1)$ is a left identity of (B, +). Now, if $a \in B$, by (1.1) we have $\iota(a) = \iota(1 \circ a) = a^{-} \circ \iota(1)$.

Finally, ι is bijective. In fact, if $a, b \in B$ and $\iota(a) = \iota(b)$, then $a^{-} \circ \iota(1) = b^{-} \circ \iota(1)$, so a = b. Moreover, if $b \in B$, then $\iota(\iota(1) \circ b^{-}) = b \circ \iota(1)^{-} \circ \iota(1) = b$.

QED

We close this section with a pair of results that are useful for the next section.

Proposition 2. Let $(B, +, \circ, \iota)$ be an almost left semi-brace and $a \in B$. Then, the function

$$\lambda_a: B \to B, \ b \mapsto a \circ (\iota(a) + b)$$

is an automorphism of the semigroup (B,+) and $\lambda_a^{-1} = \lambda_{a^-}$. Moreover, the function λ from the group (B,\circ) into the group of the automorphisms of (B,+) given by $\lambda(b) = \lambda_b$, for every $b \in B$, is a homomorphism.

Proof. Let $a, b, c \in B$. Then

$$\lambda_a(b+c) = a \circ (\iota(a) + b + c) = a \circ (\iota(a) + b) + a \circ (\iota(a) + c)$$
$$= \lambda_a(b) + \lambda_a(c)$$

Moreover,

$$\lambda_{a\circ b}(c) = a \circ b \circ (\iota(a \circ b) + c) = a \circ (b \circ \iota(a \circ b) + b \circ (\iota(b) + c))$$

= $a \circ (b \circ b^{-} \circ \iota(a) + b \circ (\iota(b) + c)) = a \circ (1 \circ \iota(a) + b \circ (\iota(b) + c))$
= $\lambda_a \lambda_b(c)$

Finally, $\lambda_1(c) = 1 \circ (\iota(1) + c) = \iota(1) + c = c$, for every $c \in B$, and so $\lambda_a \lambda_{a^-} = \lambda_{a \circ a^-} = id_B = \lambda_{a^- \circ a} = \lambda_{a^-} \lambda_a$.

Therefore, λ is a homomorphism from the group (B, \circ) into the group Aut(B, +) of the automorphisms of (B, +).

QED

Proposition 3. Let $(B, +, \circ, \iota)$ be an almost left semi-brace and let

$$\rho_b: B \to B, \ a \mapsto (\iota(a) + b)^- \circ b$$

for every $b \in B$. Then the function ρ from the group (B, \circ) into the monoid B^B of the functions of B into itself given by $\rho(b) = \rho_b$, for every $b \in B$, is a semigroup antihomomorphism.

Proof. Let $a, b, c \in B$. Then

$$\begin{split} \rho_{boc}(a) &= (\iota(a) + b \circ c)^{-} \circ b \circ c = (b^{-} \circ (\iota(a) + b \circ c))^{-} \circ c \\ &= (b^{-} \circ (\iota(a) + b \circ (\iota(1) + c))^{-} \circ c \\ &= (b^{-} \circ (\iota(a) + u(b^{-}) + b \circ (\iota(b) + c))^{-} \circ c \\ &= (b^{-} \circ (\iota(a) + \iota(b^{-})) + b^{-} \circ (\iota(b^{-}) + b \circ (\iota(b) + c))^{-} \circ c \\ &= (b^{-} \circ (\iota(a) + \iota(b^{-})) + b^{-} \circ (b \circ \iota(1) + b \circ (\iota(b) + c))^{-} \circ c \\ &= (b^{-} \circ (\iota(a) + \iota(b^{-})) + b^{-} \circ b \circ (\iota(1) + c))^{-} \circ c \\ &= (b^{-} \circ (\iota(a) + \iota(b^{-})) + c)^{-} \circ c \\ &= (b^{-} \circ (\iota(a) + b \circ \iota(1)) + c)^{-} \circ c \\ &= (b^{-} \circ \iota(1 \circ (\iota(a) + b)^{-}) + c)^{-} \circ c \\ &= (\iota((\iota(a) + b)^{-} \circ b) + c)^{-} \circ c = (\iota(\rho_{b}(a)) + c)^{-} \circ c \\ &= \rho_{c}\rho_{b}(a) \end{split}$$

QED

Almost semi-braces and Yang-Baxter equation

2 Almost semi-braces and solutions

In this section we obtain a left non-degenerate solution of the Yang-Baxter equation from every almost semi-braces.

Theorem 1. Let $(B, +, \circ, \iota)$ be an almost semi-brace. Then the function $r: B \times B \to B \times B$ defined by

$$r(a,b) = (a \circ (\iota(a) + b), (\iota(a) + b)^{-} \circ b)$$

is a left non-degenerate solution of the Yang-Baxter equation.

Proof. First for all, we remark that if $a, b \in B$, then

$$\lambda_a(b) \circ \rho_b(a) = a \circ b. \tag{2.1}$$

Now, let $a, b, c \in B$ and set

$$\begin{aligned} (t_1, t_2, t_3) : &= r_1 r_2 r_1(a, b, c) \\ &= (\lambda_{\lambda_a(b)} \lambda_{\rho_b(a)}(c), \ \rho_{\lambda_{\rho_b(a)}(c)}(\lambda_a(b)), \ \rho_c \rho_b(a)) \end{aligned}$$

and

$$(s_1, s_2, s_3) := r_2 r_1 r_2(a, b, c) = (\lambda_a \lambda_b(c), \ \lambda_{\rho_{\lambda_b(c)}(a)}(\rho_c(b)), \ \rho_{\rho_c(b)} \rho_{\lambda_b(c)}(a)).$$

Then we have $t_1 \circ t_2 \circ t_3 = s_1 \circ s_2 \circ s_3$. In fact, by (2.1), we have that

$$t_{1} \circ t_{2} \circ t_{3} = \lambda_{\lambda_{a}(b)} \lambda_{\rho_{b}(a)}(c) \circ \rho_{\lambda_{\rho_{b}(a)}(c)}(\lambda_{a}(b)) \circ \rho_{c} \rho_{b}(a)$$
$$= \lambda_{a}(b) \circ \lambda_{\rho_{b}(a)}(c) \circ \rho_{c} \rho_{b}(a)$$
$$= \lambda_{a}(b) \circ \rho_{b}(a) \circ c$$
$$= a \circ b \circ c$$

and similarly

$$s_1 \circ s_2 \circ s_3 = \lambda_a \lambda_b(c) \circ \lambda_{\rho_{\lambda_b(c)}(a)}(\rho_c(b)) \circ \rho_{\rho_c(b)}\rho_{\lambda_b(c)}(a)$$

$$= \lambda_a \lambda_b(c) \circ \rho_{\lambda_b(c)}(a) \circ \rho_c(b)$$

$$= a \circ \lambda_b(c) \circ \rho_c(b)$$

$$= a \circ b \circ c$$

Moreover, by Proposition 2 and (2.1),

$$t_1 = \lambda_{\lambda_a(b)} \lambda_{\rho_b(a)}(c) = \lambda_{\lambda_a(b) \circ \rho_b(a)}(c) = \lambda_{a \circ b}(c) = \lambda_a \lambda_b(c) = s_1$$

and by Proposition 3 and (2.1),

$$s_{3} = \rho_{\rho_{c}(b)}\rho_{\lambda_{b}(c)}(a) = \rho_{\lambda_{b}(c)\circ\rho_{c}(b)}(a) = \rho_{b\circ c}(a) = \rho_{c}\rho_{b}(a) = t_{3}$$

Hence $t_2 = s_2$, since (B, \circ) is a group. Therefore r is a solution of the Yang-Baxter equation. Furthermore, r is left non-degenerate, since λ_b is bijective, for every $b \in B$, by Proposition 2.

QED

Remark. If $(B_1, +, \circ, \iota_1)$ and $(B_2, +, \circ, \iota_2)$ are isomorphic almost semibrace, then the solutions r_1 and r_2 associated respectively to B_1 and B_2 are isomoprhic (in the sense of [4], p. 105). In fact, if $f: B_1 \to B_2$ is an almost left semibrace isomorphism, by the equality $f\iota_1 = \iota_2 f$, we obtain $(f \times f)r_1 = r_2(f \times f)$.

Acknowledgements. I thank the referee for the detailed review.

References

- [1] T. BRZEZIŃSKI: Trusses: between braces and rings, arXiv.1710.02870v2 (2017).
- [2] F. CATINO, I. COLAZZO, P. STEFANELLI: Semi-braces and the Yang-Baxter equation, J. Algebra 483 (2017), 163–187.
- [3] F. CATINO, R. RIZZO, Regular subgroups of the affine group and radical circle algebras, Bull. Aust. Math. Soc. **79** (2009), 103–107.
- [4] F. CEDÓ, E. JESPERS, J. OKNIŃSKI, Brace and the Yang-Baxter Equation, Commun. Math. Phys. 327 (2014), 101–116.
- [5] V. G. DRINFELD, On some unsolved problems in quantum group theory, in: Quantum Groups (Leningrad, 1990), Lecture Notes in Math. 1510, Springer, Berlin, (1992), 1–8.
- [6] P. ETINGOF, T. SCHEDLER, A. SOLOVIEV, Set-theoretical solutions to the quantum Yang-Baxter equation, *Duke Math. J.* 100 (1999), 169–209.
- [7] T. GATEVA-IVANOVA, M. VAN DEN BERGH, Semigroups of I-type, J. Algebra 206 (1998), 97–112.
- [8] L. GUARNERI, L. VENDRAMIN, Skew braces an Yang-Baxter equation, Math. Comp. 86 (2017), 2519–2534.
- [9] W. RUMP, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), 153–170.