Almost semi-braces and the Yang-Baxter equation

Maria Maddalena MICCOLI ${ }^{\mathrm{i}}$
Dipartimento di Matematica e Fisica "Ennio De Giorgi", University of Salento maddalena.miccoli@unisalento.it

Received: 13.1.2018; accepted: 13.2.2018.

Abstract

In this note we find new set-theoretic solutions of the Yang-Baxter equation through almost left semi-braces, a new structure that is a generalization of left semi-braces.

Keywords: Quantum Yang-Baxter equation, set-theoretical solution, semi-brace.
MSC 2000 classification: $16 \mathrm{~T} 25,16 \mathrm{Y} 99,16 \mathrm{~N} 20,81 \mathrm{R} 50$

Introduction

In order to find new solutions of the Yang-Baxter equation, Drinfeld [5] asked the question of finding the so-called set-theoretic solutions on an arbitrary nonempty set. We recall that, if X is a non-empty set, a function $r: X \times X \rightarrow X \times X$ is called a set-theoretic solution of the Yang-Baxter equation if

$$
r_{1} r_{2} r_{1}=r_{2} r_{1} r_{2}
$$

where $r_{1}:=r \times i d_{X}$ and $r_{2}:=i d_{X} \times r$.
After the seminal papers of Etingof, Schedler and Soloviev [6] and of GatevaIvanova and M. Van den Bergh [7], many papers about this subject appeared and many links to different topics pointed out. In this context Rump [9] introduced braces, a generalization of radical rings. As reformulated by Cedó, Jespers and Okniński [4], a left brace is a set B with two operations + and \circ such that $(B,+)$ is an abelian group, (B, \circ) is a group and

$$
a \circ(b+c)+a=a \circ b+a \circ c
$$

holds for all $a, b, c \in B$. Recently Guarnieri and Vendramin [8] introduced skew braces, a generalization of braces. A skew left brace is a set B with two operations + and \circ such that $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

[^0]holds for all $a, b, c \in B$. Note that, recently, Brzeziński [1] introduced a generalization of skew braces, the skew trusses. More precisely, a skew left truss is a set B with two operations + and \circ and a function $\sigma: B \rightarrow B$ such that $(B,+)$ is a group and (B, \circ) is a semigroupsand
$$
a \circ(b+c)=a \circ b-\sigma(a)+a \circ c
$$
holds for all $a, b, c \in B$. Let us note that the skew left trusses are related to circle algebras, structures introduced by Catino and Rizzo in [3].
A generalization of skew braces that is useful to find set-theoretic solutions of the Yang-Baxter equation is the semi-brace, introduced by Catino, Colazzo and Stefanelli [2]. A left semi-brace is a set B with two operations + and \circ such that $(B,+)$ is a left cancellative semigroup, (B, \circ) is a group and
$$
a \circ(b+c)=a \circ b+a \circ\left(a^{-}+c\right)
$$
holds for all $a, b, c \in B$, where we denote by a^{-}the inverse of a with respect to o.

In this note we introduce a new structure, the almost semi-brace, a generalization of semi-brace. More precisely, an almost left semi-brace is a set B with two operations + and \circ and a map $\iota: B \rightarrow B$ satisfying such that $(B,+)$ is a left cancellative semigroup, (B, \circ) is a group and

$$
a \circ(b+c)=a \circ b+a \circ(\iota(a)+c)
$$

holds for all $a, b, c \in B$. Then we show that given any almost left semi-brace B, the function $r: B \times B \rightarrow B \times B$ given by

$$
r(a, b)=\left(a \circ(\iota(a)+b), \quad(\iota(a)+b)^{-} \circ b\right)
$$

is a set-theoretic solution.

1 Basic results

Recall that a semigroup $(B,+)$ is said to be left cancellative if $a+b=a+c$ implies that $b=c$, for all $a, b, c \in B$. Note that in a left cancellative semigroups every idempotent is a left identity.

Definition 1. Let B be a set with two operations + and \circ such that $(B,+)$ is a left cancellative semigroup, (B, \circ) is a group and there exists a function $\iota: B \rightarrow B$ such that, for all $a, b \in B$,

$$
\begin{equation*}
\iota(a \circ b)=b^{-} \circ \iota(a), \quad(\iota(a)+b) \circ \iota(1)=\iota(a)+b \circ \iota(1) \tag{1.1}
\end{equation*}
$$

where b^{-}is the inverse of b with respect \circ and 1 is the identity of (B, \circ).
We say that $(B,+, \circ, \iota)$ is an almost left semi-brace if

$$
\begin{equation*}
a \circ(b+c)=a \circ b+a \circ(\iota(a)+c), \tag{1.2}
\end{equation*}
$$

for all $a, b, c \in B$.
If $(B,+, \circ)$ is a left semi-brace, then it is an almost semi-brace with $\iota(a)=a^{-}$, for every $a \in B$, and viceversa.
Examples of almost left semi-braces can be obtained by any group. In fact, if (E, \circ) is a group, then $(E,+, \circ, \iota)$, where $a+b=b$ for all $a, b \in E$ and $\iota: E \rightarrow E, a \mapsto a^{-} \circ e$ with e a fixed element of E, is an almost semi-brace.

Definition 2. Let ($B_{1},+_{1}, \circ_{1}, \iota_{1}$) and ($B_{2},+_{2}, o_{2}, \iota_{2}$) almost left semi-braces. A function $f: B_{1} \rightarrow B_{2}$ is a homomorphism of almost left semi-braces if f is a semigroup homomorphism from $\left(B_{1},+_{1}\right)$ to $\left(B_{2},+_{2}\right), f$ is a group homomorphism from $\left(B_{1}, \circ_{1}\right)$ to (B_{2}, \circ_{2}) and, $f \iota_{1}=\iota_{2} f$.

Note that a semi-brace $(B,+, \circ)$ reviewed as almost semi-brace can not be isomorphic to an almost semi-brace $\left(B,+, 0, \iota_{B}\right)$ with $\iota_{B}(1) \neq 1$. Indeed such isomorphism f have to satisfy $\iota_{B}(1)=\iota_{B} f(1)=f(1)=1$.

Proposition 1. Let $(B,+, \circ, \iota)$ be an almost left semi-brace. Then, $\iota(1)$ is a left identity of $(B,+)$ and, $\iota(a)=a^{-} \circ \iota(1)$ for every $a \in B$. Moreover, the function ८ is bijective.

Proof. By (1.2) we have

$$
\iota(1)+\iota(1)=1 \circ(\iota(1)+\iota(1))=1 \circ \iota(1)+1 \circ(\iota(1)+\iota(1))=\iota(1)+\iota(1)+\iota(1)
$$

and by left cancellativity $\iota(1)=\iota(1)+\iota(1)$. Thus, $\iota(1)$ is a left identity of $(B,+)$. Now, if $a \in B$, by (1.1) we have $\iota(a)=\iota(1 \circ a)=a^{-} \circ \iota(1)$.
Finally, ι is bijective. In fact, if $a, b \in B$ and $\iota(a)=\iota(b)$, then $a^{-} \circ \iota(1)=b^{-} \circ \iota(1)$, so $a=b$. Moreover, if $b \in B$, then $\iota\left(\iota(1) \circ b^{-}\right)=b \circ \iota(1)^{-} \circ \iota(1)=b$.

QED

We close this section with a pair of results that are useful for the next section.
Proposition 2. Let $(B,+, \circ, \iota)$ be an almost left semi-brace and $a \in B$. Then, the function

$$
\lambda_{a}: B \rightarrow B, b \mapsto a \circ(\iota(a)+b)
$$

is an automorphism of the semigroup $(B,+)$ and $\lambda_{a}^{-1}=\lambda_{a^{-}}$. Moreover, the function λ from the group (B, \circ) into the group of the automorphisms of $(B,+)$ given by $\lambda(b)=\lambda_{b}$, for every $b \in B$, is a homomorphism.

Proof. Let $a, b, c \in B$. Then

$$
\begin{aligned}
\lambda_{a}(b+c) & =a \circ(\iota(a)+b+c)=a \circ(\iota(a)+b)+a \circ(\iota(a)+c) \\
& =\lambda_{a}(b)+\lambda_{a}(c)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\lambda_{a \circ b}(c) & =a \circ b \circ(\iota(a \circ b)+c)=a \circ(b \circ \iota(a \circ b)+b \circ(\iota(b)+c)) \\
& =a \circ\left(b \circ b^{-} \circ \iota(a)+b \circ(\iota(b)+c)\right)=a \circ(1 \circ \iota(a)+b \circ(\iota(b)+c) \\
& =\lambda_{a} \lambda_{b}(c)
\end{aligned}
$$

Finally, $\lambda_{1}(c)=1 \circ(\iota(1)+c)=\iota(1)+c=c$, for every $c \in B$, and so $\lambda_{a} \lambda_{a^{-}}=$ $\lambda_{a \circ a^{-}}=i d_{B}=\lambda_{a^{-} \circ a}=\lambda_{a^{-}} \lambda_{a}$.
Therefore, λ is a homomorphism from the $\operatorname{group}(B, \circ)$ into the group $A u t(B,+)$ of the automorphisms of $(B,+)$.

QED

Proposition 3. Let $(B,+, \circ, \iota)$ be an almost left semi-brace and let

$$
\rho_{b}: B \rightarrow B, a \mapsto(\iota(a)+b)^{-} \circ b
$$

for every $b \in B$. Then the function ρ from the group (B, \circ) into the monoid B^{B} of the functions of B into itself given by $\rho(b)=\rho_{b}$, for every $b \in B$, is a semigroup antihomomorphism.

Proof. Let $a, b, c \in B$. Then

$$
\begin{aligned}
\rho_{b \circ c}(a) & =(\iota(a)+b \circ c)^{-} \circ b \circ c=\left(b^{-} \circ(\iota(a)+b \circ c)\right)^{-} \circ c \\
& =\left(b^{-} \circ(\iota(a)+b \circ(\iota(1)+c))^{-} \circ c\right. \\
& =\left(b^{-} \circ(\iota(a)+b \circ \iota(1)+b \circ(\iota(b)+c))^{-} \circ c\right. \\
& =\left(b^{-} \circ\left(\iota(a)+\iota\left(b^{-}\right)+b \circ(\iota(b)+c)\right)^{-} \circ c\right. \\
& =\left(b^{-} \circ\left(\iota(a)+\iota\left(b^{-}\right)\right)+b^{-} \circ\left(\iota\left(b^{-}\right)+b \circ(\iota(b)+c)\right)^{-} \circ c\right. \\
& =\left(b^{-} \circ\left(\iota(a)+\iota\left(b^{-}\right)\right)+b^{-} \circ(b \circ \iota(1)+b \circ(\iota(b)+c))^{-} \circ c\right. \\
& =\left(b^{-} \circ\left(\iota(a)+\iota\left(b^{-}\right)\right)+b^{-} \circ b \circ(\iota(1)+c)\right)^{-} \circ c \\
& =\left(b^{-} \circ\left(\iota(a)+\iota\left(b^{-}\right)\right)+c\right)^{-} \circ c \\
& =\left(b^{-} \circ(\iota(a)+b \circ \iota(1))+c\right)^{-} \circ c \\
& =\left(b^{-} \circ \iota\left(1 \circ(\iota(a)+b)^{-}\right)+c\right)^{-} \circ c \\
& =\left(\iota\left((\iota(a)+b)^{-} \circ b\right)+c\right)^{-} \circ c=\left(\iota\left(\rho_{b}(a)\right)+c\right)^{-} \circ c \\
& =\rho_{c} \rho_{b}(a)
\end{aligned}
$$

2 Almost semi-braces and solutions

In this section we obtain a left non-degenerate solution of the Yang-Baxter equation from every almost semi-braces.

Theorem 1. Let $(B,+, \circ, \iota)$ be an almost semi-brace. Then the function $r: B \times B \rightarrow B \times B$ defined by

$$
r(a, b)=\left(a \circ(\iota(a)+b), \quad(\iota(a)+b)^{-} \circ b\right)
$$

is a left non-degenerate solution of the Yang-Baxter equation.
Proof. First for all, we remark that if $a, b \in B$, then

$$
\begin{equation*}
\lambda_{a}(b) \circ \rho_{b}(a)=a \circ b \tag{2.1}
\end{equation*}
$$

Now, let $a, b, c \in B$ and set

$$
\begin{aligned}
\left(t_{1}, t_{2}, t_{3}\right): & =r_{1} r_{2} r_{1}(a, b, c) \\
& =\left(\lambda_{\lambda_{a}(b)} \lambda_{\rho_{b}(a)}(c), \rho_{\lambda_{\rho_{b}(a)}(c)}\left(\lambda_{a}(b)\right), \rho_{c} \rho_{b}(a)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(s_{1}, s_{2}, s_{3}\right): & =r_{2} r_{1} r_{2}(a, b, c) \\
& =\left(\lambda_{a} \lambda_{b}(c), \lambda_{\rho_{\lambda_{b}(c)}(a)}\left(\rho_{c}(b)\right), \rho_{\rho_{c}(b)} \rho_{\lambda_{b}(c)}(a)\right)
\end{aligned}
$$

Then we have $t_{1} \circ t_{2} \circ t_{3}=s_{1} \circ s_{2} \circ s_{3}$. In fact, by (2.1), we have that

$$
\begin{aligned}
t_{1} \circ t_{2} \circ t_{3} & =\lambda_{\lambda_{a}(b)} \lambda_{\rho_{b}(a)}(c) \circ \rho_{\lambda_{\rho_{b}(a)}(c)}\left(\lambda_{a}(b)\right) \circ \rho_{c} \rho_{b}(a) \\
& =\lambda_{a}(b) \circ \lambda_{\rho_{b}(a)}(c) \circ \rho_{c} \rho_{b}(a) \\
& =\lambda_{a}(b) \circ \rho_{b}(a) \circ c \\
& =a \circ b \circ c
\end{aligned}
$$

and similarly

$$
\begin{aligned}
s_{1} \circ s_{2} \circ s_{3} & =\lambda_{a} \lambda_{b}(c) \circ \lambda_{\rho_{\lambda_{b}(c)}(a)}\left(\rho_{c}(b)\right) \circ \rho_{\rho_{c}(b)} \rho_{\lambda_{b}(c)}(a) \\
& =\lambda_{a} \lambda_{b}(c) \circ \rho_{\lambda_{b}(c)}(a) \circ \rho_{c}(b) \\
& =a \circ \lambda_{b}(c) \circ \rho_{c}(b) \\
& =a \circ b \circ c
\end{aligned}
$$

Moreover, by Proposition 2 and (2.1),

$$
t_{1}=\lambda_{\lambda_{a}(b)} \lambda_{\rho_{b}(a)}(c)=\lambda_{\lambda_{a}(b) \circ \rho_{b}(a)}(c)=\lambda_{a \circ b}(c)=\lambda_{a} \lambda_{b}(c)=s_{1}
$$

and by Proposition 3 and (2.1),

$$
s_{3}=\rho_{\rho_{c}(b)} \rho_{\lambda_{b}(c)}(a)=\rho_{\lambda_{b}(c) \circ \rho_{c}(b)}(a)=\rho_{b o c}(a)=\rho_{c} \rho_{b}(a)=t_{3}
$$

Hence $t_{2}=s_{2}$, since (B, \circ) is a group. Therefore r is a solution of the YangBaxter equation. Furthermore, r is left non-degenerate, since λ_{b} is bijective, for every $b \in B$, by Proposition 2 .

Remark. If $\left(B_{1},+, \circ, \iota_{1}\right)$ and $\left(B_{2},+, \circ, \iota_{2}\right)$ are isomorphic almost semibrace, then the solutions r_{1} and r_{2} associated respectively to B_{1} and B_{2} are isomoprhic (in the sense of [4], p. 105). In fact, if $f: B_{1} \rightarrow B_{2}$ is an almost left semibrace isomorphism, by the equality $f \iota_{1}=\iota_{2} f$, we obtain $(f \times f) r_{1}=r_{2}(f \times f)$.

Acknowledgements. I thank the referee for the detailed review.

References

[1] T. Brzeziński: Trusses: between braces and rings, arXiv.1710.02870v2 (2017).
[2] F. Catino, I. Colazzo, P. Stefanelli: Semi-braces and the Yang-Baxter equation, J. Algebra 483 (2017), 163-187.
[3] F. Catino, R. Rizzo, Regular subgroups of the affine group and radical circle algebras, Bull. Aust. Math. Soc. 79 (2009), 103-107.
[4] F. Cedó, E. Jespers, J. Okniński, Brace and the Yang-Baxter Equation, Commun. Math. Phys. 327 (2014), 101-116.
[5] V. G. Drinfeld, On some unsolved problems in quantum group theory, in: Quantum Groups (Leningrad, 1990), Lecture Notes in Math. 1510, Springer, Berlin, (1992), 1-8.
[6] P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum YangBaxter equation, Duke Math. J. 100 (1999), 169-209.
[7] T. Gateva-Ivanova, M. Van den Bergh, Semigroups of I-type, J. Algebra 206 (1998), 97-112.
[8] L. Guarneri, L. Vendramin, Skew braces an Yang-Baxter equation, Math. Comp. 86 (2017), 2519-2534.
[9] W. Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra $\mathbf{3 0 7}$ (2007), 153-170.

[^0]: ${ }^{\text {i }}$ The author is member of GNSAGA (INdAM
 http://siba-ese.unisalento.it/ © 2018 Università del Salento

