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Abstract. We consider the sound ranging problem (SRP), which is to find the position
of source-point from the moments when spherical wave reaches sensor-points, in the infinite-
dimensional separable Hilbert space, and describe the solving methods, for entire space and for
its unit sphere. In the former case, we give some sufficient conditions for solution’s uniqueness.
We also provide two examples with the sets of sensors being a basis: 1st, when SRP and so-
called dual problem both have single solutions, and 2nd, when SRP has two distinct solutions.
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Introduction

By sound ranging (SR), we mean the following problem. Let (X; ρ) be a
metric space, i.e. the set X with metric ρ : X × X → R+. Let s ∈ X be an
unknown point, “source”. At unknown moment te ∈ R of time the source “emits
the (sound) wave”, which is the sphere

S
(
s; v(t− te)

)
=
{
x ∈ X | ρ(x; s) = v(t− te)

}
for any moment t > te. Here v is known “sound velocity”, and we may assume,
without loss of generality, that v = 1 (switching to scaled time t← vt if v 6= 1).

Let R = {r(i)}i∈I , r(i) ∈ X, be an indexed set of “sensors”, whose positions
are known. Suppose that for each sensor we know the moment ti when it was
reached by the expanding wave; that is, ti = te + ρ(r(i); s) are known.

The problem is to find s and te, — from known moments when wave reaches
known sensors, (R; {ti}). We’re also interested in uniqueness of the solution.

Retrospection. The researches on SR, — also called passive location, sound
triangulation, time-(difference-)of-arrival source localization, — are considered
to begin at the times of World War I, with the works of William L. Bragg,
Lucien Bull, Erich Waetzmann among the others (see [3], [4], [5], and [23], [29]
for a survey). Similar questions were studied in [2], [9], [11], [17] from that
“geometrical” era. During the century that followed, along with military ([7],
[12], [15], [26], [27]) and surveillance-related ([25]) applications, SR attracted
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acousticians and seismologists, to name a few, — [13], [21], [31], [37], [38, 5.7].
For a fairly long time, SR problems accompany the studies of (wireless) sensor
networks ([1], [6], [10], [22], [24], [30], [32]; see also [40]).

Naturally, the majority of these researches relates to R2 or R3 (emphasized
occasionally: [35], [37], [39]), though there are exceptions ([6], [22], [28], [30],
[36]). The basic problem was generalized to take into account the “wind” or
“flow” giving additional movement to the wave, the variations of sound velocity
at different space regions, diffraction and reverberation, measurement inaccu-
racy and its influence on the solution(s), noise removal etc. ([16], [19], [21]), —
generally speaking, the factors imposed by “physics” (as a result, sometimes
there’s the inclination towards practical applicability instead of rigour).

The uniqueness of the solution is analyzed in e.g. [8], [21], [28], [33], [34].
The substantial part of the studies in the field deals with the so-called overde-

termined problems, when the data from each sensor contains some random error,
and the position of the source is estimated in attempt to reduce the uncertainty
([6], [10], [13], [14], [19], [20], [36]).

Aim. The generalization here concerns only the infinite dimensionality of
the (empty) space where source and sensors are placed, and omits “physical”
factors (it is of much less “applicability” than most of papers in References).

Consider (associated) question about such problem: what limitations do we
impose on the “procedure” — or “algorithm” — of obtaining the solution?
There’s always a “universal” one, U : “go over all s ∈ X and select those satis-
fying ti = te + ρ(r(i); s)” (if we take s, te can be found as ti − ρ(r(i); s) for some
i). But U seems to be too “heavy”. If, in a sense, the verification of each s takes
a non-zero amount of time τ , then for many kinds of spaces X we’ll need an
infinite, non-countable set of “verificating entities” to confine into a finite time.

Less heavy but still not appropriate (here) procedure N is as follows: take
some point b ∈ X as the “origin” and, at each n-th step, make the “ 1

n -net Nn”
in the ball B(b;n) (∀x ∈ B(b;n) ∃y ∈ Nn: ρ(x; y) < 1

n). In turn, for each

y ∈ Nn calculate the “defect” δ(y) = sup
i∈I

∣∣te + ρ(r(i); y) − ti
∣∣ (or, when R is

finite, let δ(y) = 1
|R|
∑
i∈I

[
1
|R|
∑
j∈I

(
tj − ρ(r(j); y)

)
+ ρ(r(i); y)− ti

]2
), and select the

y with defect not greater than inf
y∈Nn

δ(y) + 1
n . ρ(b; s) <∞ implies the existence

of the sequence {y′n ∈ Nn} such that y′n → s as n→∞ (not unique, though).
We prefer more “countable”, “aimed” methods; on the other hand, we “allow

ourselves” the calculation of infinite sums in a finite time, as short as we want.

Well-knowns. Hereinafter, H is the separable infinite-dimensional Hilbert
space over the field of reals R. We denote by <x; y> the scalar product of
x,y ∈ H; ‖x‖ is the norm of x. As usual, <x; x> = ‖x‖2. Since the field is R,
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<y; x> = <x; y> (the complex case reduces to the real one with “twice more
dimensions”, due to representability of distance between 2 points with complex
coordinates through their real and imaginary parts). x ⊥ y means <x; y> = 0.

Some common properties of scalar product and norm (see e.g. [18]) are used
without explicit reference:

• for any orthonormal basis {ek}k∈N of H, if x =
∞∑
k=1

xkek and y =
∞∑
k=1

ykek,

then <x; y> =
∞∑
k=1

xkyk, independent of basis {ek}.

• Cauchy-Bunyakowsky-Schwartz inequality (CBS): |<x; y>| 6 ‖x‖ · ‖y‖,
which becomes equality if and only if x and y are linearly dependent, that is,
∃a, b ∈ R: a2 + b2 6= 0 and ax + by = θ (θ is the zero of H as linear vector
space). Moreover, if <x; y> = ‖x‖ · ‖y‖ and y 6= θ, then x = cy, where c > 0.

• ‖x±y‖ = ‖x‖±‖y‖ ⇒ x, y are linearly dependent. •
∣∣‖x‖−‖y‖∣∣ 6 ‖x−y‖.

Disclaimer. X = H introduces nuances (mostly dealing with limits and
convergency), however the basic method is that of Rn case. We surmise many of
subsequent results, — “auxiliary” ones especially, — to be already known, even
as “folklore”, perhaps; if so, then this is merely where they come together. . .
once more (see also “Acknowledgements”).

1 SR in Hilbert space

Hereinafter, the set R ⊂ H of sensors is finite or countable, and the SRProb-
lem is supposed to have at least one solution (s0; te;0), which may be unknown.

To simplify the notation, we move “the origin of space and time” to one of
sensors at the moment when wave reaches it. So, R = {r(0), r(1), . . . , r(n), . . .}
with r(0) = θ, and the wave reaches these sensors at the moments t0 = 0, t1, t2,
. . ., where ti = te;0 + ‖r(i) − s0‖.

By L(A) we denote the linear closure of the set A ⊆ H. Note that L(R) =
L({r(i)}i∈N), of all sensors but r(0). We denote {r(i)}i∈N by Ṙ.

We begin by excluding the sets of sensors such that the solution, if it exists, is
obviously not unique. If L(Ṙ) 6= H and the source s0 /∈ L(Ṙ), then by projection
theorem s0 = u+h, where u ∈ L(Ṙ), h ⊥ L(Ṙ) and h 6= θ. Then for each sensor
the square of “reaching time”,

(ti − te;0)2 = ‖r(i) − s0‖2 = ‖r(i) − u− h‖2 = ‖r(i) − u‖2 + ‖h‖2
(<r(i) − u; h> = 0 since these elements are orthogonal) would be the same for
s′0 = u− h, — SRP has 2 solutions being non-distinguishable by the {ti}.

Moreover, if H = L(Ṙ) ⊕K and dimK > 2, then ∃w 6= θ: w ⊥ L(Ṙ) and
w ⊥ h. Consider normalized h̃ = h

‖h‖ , w̃ = w
‖w‖ , and let
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s(ϕ) = u + ‖h‖(cosϕ · h̃ + sinϕ · w̃)
— it is easy to see that s(ϕ) is a solution of SRP for any ϕ ∈ [0; 2π): we have
an infinite, non-countable set of solutions.

Let L(Ṙ) = H, and let Ṙ be a linearly independent set. In other words, let
Ṙ be a basis of H.

We introduce the orthonormal basis B = {ei}i∈N, derived from Ṙ by Gram-
Schmidt orthogonalization. With B, H is l2 and

r(i) =
∞∑
j=1

r
(i)
j ej = (r

(i)
1 ; r

(i)
2 ; . . . ; r

(i)
i ; 0; 0; . . .)

where r
(i)
i 6= 0. To find s is to find its coordinates (s1; s2; . . .).

The SRP is equivalent to the following set of equations:
ti = t+ ‖r(i) − s‖, i ∈ Z+ (1)

Note that 0-th equation is actually 0 = t+ ‖θ − s‖ ⇔ t = −‖s‖.
(For instance, takeH = L2[a; b], and let f ∈ L2[a; b] be an unknown function.

Suppose that for each i ∈ N we know ti = t +
( b∫
a
|f(x) − xi−1|2dx

) 1
2 , where

t = −
( b∫
a
f2(x)dx

) 1
2 is unknown too.)

We now proceed to the implied set of equations
‖r(i) − s‖2 = (ti − t)2, i ∈ Z+ (2)

which may have additional solutions (s; t). To distinguish them from those of
(1), we verify that ∀i ∈ Z+: t 6 ti (in particular, t 6 t0 = 0) — “the wave was
emitted before it reached sensors”.

Dual problem. The additional solutions of (2) such that t > ti are the
solutions of the dual, “in-mission” problem (in contrast with the original “out-
mission” one), where the wave is emitted from the source and propagates back-
ward in time (being observed in “usual” time, it collapses into source): ti =
t− ρ(r(i); s). In reversed time T = −t these problems are swapped.

If (s′; t′) is a solution of SRP, and (s′′; t′′) is a solution of dual problem, then
for any r(i): ti = t′ + ρ(r(i); s′) and ti = t′′ − ρ(r(i); s′′), thus

ρ(r(i); s′) + ρ(r(i); s′′) = t′′ − t′ = const
which may be interpreted as: all sensors belong to the “ellipsoid” with s′ and
s′′ being its “focuses”. The following example shows that it’s possible in H.

Example 1. C Let E =
{
x ∈ l2 |

x21
2 +

∞∑
k=2

x2
k = 1

}
, and s′ = (−1; 0; 0; . . .),

s′′ = (1; 0; 0; . . .). We claim that ∀x ∈ E: ‖x − s′‖ + ‖x − s′′‖ = 2
√

2. Indeed1,

x2
1 = 2

(
1−

∞∑
k=2

x2
k

)
6 2, thus x1 ∈ [−

√
2;
√

2] ⊂ [−2; 2] and

1This (simpler) proof was pointed out to us by the referee.
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‖x− s′‖+ ‖x− s′′‖ =

√
(x1 + 1)2 +

∞∑
k=2

x2
k +

√
(x1 − 1)2 +

∞∑
k=2

x2
k =

=

√
x21
2 + 2x1 + 2 +

√
x21
2 − 2x1 + 2 = 1√

2

(
|x1 + 2|+ |x1 − 2|

)
= 2
√

2

We place sensors in E as follows: r(0) = (−
√

2; 0; 0; . . .), r(1) = (
√

2; 0; 0; . . .),
r(k) = (0; . . . ; 0;︸ ︷︷ ︸

k−1

1; 0; 0; . . .) for k > 2

(so r(1) − r(0) = (2
√

2; 0; 0; . . .), r(k) − r(0) = (
√

2; 0; . . . ; 0; 1; 0; 0; . . .) for k > 2;
Ṙ = {r̂(k)}k∈N = {r(k) − r(0)}k∈N is a basis of H). Since ∀k ∈ Z+: ‖r(k) − s′‖+
‖r(k) − s′′‖ = 2

√
2, we have for t′ = −

√
2, t′′ =

√
2, and tk = t′ + ‖r(k) − s′‖:

tk = (t′′ − 2
√

2) + (2
√

2− ‖r(k) − s′′‖) = t′′ − ‖r(k) − s′′‖.
In other words, for sensors R = {r(k)}k∈Z+ and moments {tk}k∈Z+ , (s′; t′) is

the solution of SRP, and (s′′; t′′) is the solution of dual problem. B

(It was enough to show that ∀k ∈ Z+: ‖r(k)−s′‖+‖r(k)−s′′‖ = 2
√

2, without
resort to E.)

Now we return to solving SRP, with the wave propagating forward in time.

Since ‖r(i) − s‖2 =
∞∑
j=1

(r
(i)
j − sj)2, r

(0)
j ≡ 0, and t0 = 0, we arrive to

∞∑
j=1

s2
j = t2, ∀i ∈ N:

∞∑
j=1

[
(r

(i)
j )2 + s2

j − 2r
(i)
j sj

]
= t2i + t2 − 2tti

Subtract 1st equation from others, transform and recall that r
(i)
j = 0, j > i:

∞∑
j=1

s2
j = t2,

i∑
j=1

r
(i)
j sj = 1

2

[
‖r(i)‖2 − t2i

]
+ tti, i ∈ N

(3)

Let bi = 1
2

[
‖r(i)‖2 − t2i

]
, ci = ti, so

i∑
j=1

r
(i)
j sj = bi + tci for all i ∈ N.

Let the infinite matrix A = ‖aij‖i,j∈N = ‖r(i)
j ‖ =

r
(1)
1 0 0 . . .

r
(2)
1 r

(2)
2 0 . . .

. . . . . . . . .
. . .

,

S =

s1

s2

. . .

, G(t) = B + tC, where B =

 b1
b2
. . .

, C =

 c1

c2

. . .

. Then AS = G(t).

The way that we’ve specified {r(i)} allows to express sk through t from the
first k equations of this set; if we “cut off” A, S, and G(t) after first k rows and
columns, the resulting matrix equation AkSk = Gk(t) is equivalent to the set of
k equations with k unknowns s1, . . . , sk. By Cramer rule,
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sk = det


r

(1)
1 0 0 . . . 0 g1(t)

r
(2)
1 r

(2)
2 0 . . . 0 g2(t)

. . . . . . . . .
. . . . . . . . .

r
(k)
1 r

(k)
2 r

(k)
3 . . . r

(k)
k−1 gk(t)

 /detAk =

=



∣∣∣∣∣∣∣∣∣∣
r

(1)
1 0 . . . b1

r
(2)
1 r

(2)
2 . . . b2

. . . . . .
. . . . . .

r
(k)
1 r

(k)
2 . . . bk

∣∣∣∣∣∣∣∣∣∣
+ t

∣∣∣∣∣∣∣∣∣∣
r

(1)
1 0 . . . c1

r
(2)
1 r

(2)
2 . . . c2

. . . . . .
. . . . . .

r
(k)
1 r

(k)
2 . . . ck

∣∣∣∣∣∣∣∣∣∣

 /
k∏
i=1

r
(i)
i = b̃k + tc̃k (4)

S = B̃ + tC̃ with B̃ =

 b̃1
b̃2
. . .

 and C̃ =

 c̃1

c̃2

. . .

; A(B̃ + tC̃) = B + tC ⇒

AB̃ = B, AC̃ = C.

Substituting (4) into
∞∑
j=1

s2
j = t2 gives

∞∑
j=1

(b̃j + tc̃j)
2 = t2 (5)

Case 0: t = 0 is a root of (5). We claim that s = θ is the unique solution of
SRP then.

Proof. t = 0 turns (5) into equality:
∞∑
j=1

b̃j
2

= 0 ⇔ b̃j = 0 for all j ∈ N. Since

AB̃ = B, it follows that bi = 0 for any i ∈ N: ‖r(i)‖2 = t2i ⇔ ‖r(i)‖ = |ti|. On the
other hand, for any solution (s; t) of SRP ti = t+ ‖r(i)− s‖ = −‖s‖+ ‖r(i)− s‖.
Therefore ‖r(i)‖ =

∣∣‖r(i) − s‖ − ‖s‖
∣∣.

a) ‖r(i)‖ = ‖r(i) − s‖ − ‖s‖ ⇔ ‖r(i)‖+ ‖ − s‖ = ‖r(i) + (−s)‖.
b) ‖r(i)‖ = −‖r(i) − s‖+ ‖s‖ ⇔ ‖s‖ − ‖r(i)‖ = ‖s− r(i)‖.
In any case, r(i) and s are linearly dependent for any i ∈ N. Since Ṙ =

{r(i)}i∈N is linearly independent, it is only possible when s = θ. QED

Until now, the method had little relation with infinite dimensionality of H.

Case 1: t = 0 isn’t a root of (5) (thus
∞∑
j=1

b̃j
2
6= 0, and s 6= θ).

We divide it by t:
∞∑
j=1

(c̃j + zb̃j)
2 = 1 (6)

where z = 1/t < 0. By assumption, SRP has at least 1 solution, so for some
ze;0 = 1/te;0 (6) holds true, implying {c̃j + ze;0b̃j}j∈N = v ∈ H.

The relations C̃ = v−ze;0B̃ and B̃ = 1
ze;0

(v− C̃) show that B̃ and C̃ belong

or don’t belong to H simultaneously; the series
∞∑
j=1

b̃j
2

and
∞∑
j=1

c̃j
2 both converge

or both diverge.
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Subcase 1a (ruled out in Rn):
∞∑
j=1

b̃j
2

and
∞∑
j=1

c̃j
2 diverge. Yet for some ze;0:

∞∑
j=1

(c̃j + ze;0b̃j)
2 converges to 1. Assuming ∃z′ 6= ze;0 such that

∞∑
j=1

(c̃j + z′b̃j)
2

converges, we obtain from equality b̃j = 1
ze;0−z′

(
(c̃j + ze;0b̃j) − (c̃j + z′b̃j)

)
the

convergence of
∞∑
j=1

b̃j
2
, which contradicts the assumption of the subcase.

Hence ze;0 is the unique value not just satisfying (6), but providing conver-
gence of the series in the left side of (6). How to obtain it? (Recall that we don’t
allow ourselves to “go over all z < 0 and select the one satisfying (6)”).

∃n0:
n0∑
j=1

b̃j
2
> 0, therefore for any n > n0: fn(z) =

n∑
j=1

(c̃j + zb̃j)
2 − 1 =

=
[ n∑
j=1

b̃j
2]
z2 +

[
2

n∑
j=1

b̃j c̃j
]
z +

[ n∑
j=1

c̃j
2 − 1

]
= αnz

2 + βnz + γn

is a quadratic trinomial with αn > 0. fn(z) 6 fn+1(z) 6 f∞(z), so fn(ze;0) 6 0:
the equation fn(z) = 0 has at least one root. We know that {z ∈ R : fn(z) 6 0}
is the segment [z

(n)
− ; z

(n)
+ ], whose center is zn = − βn

2αn
.

For any ε > 0 the series diverges at ze;0−ε and ze;0 +ε, therefore ∃n = n(ε):

fn(ze;0−ε) > 0 and fn(ze;0+ε) > 0. Consequently, [z
(n)
− ; z

(n)
+ ] ⊂ (ze;0−ε; ze;0+ε);

in particular, zn ∈ (ze;0 − ε; ze;0 + ε).

That is, zn = −
[ n∑
j=1

b̃j c̃j
]
/
[ n∑
j=1

b̃j
2]
−−−→
n→∞

ze;0.

Subcase 1b:
∞∑
j=1

b̃j
2

and
∞∑
j=1

c̃j
2 converge. From the common properties of

series it follows that we can rewrite (6) as[ ∞∑
j=1

b̃j
2]
z2 +

[
2
∞∑
j=1

b̃j c̃j
]
z +

[ ∞∑
j=1

c̃j
2 − 1

]
= 0 (7)

or αz2 + βz + γ = 0, where α > 0; what’s left to do is to solve it, z± = −β+
√
D

2α
(D = β2− 4αγ > 0 since ze;0 is a root), and select the root(s) z such that z < 0
and t = 1/z 6 ti for any i ∈ N.

This concludes the description of the solving method for SRP in H.

(7) can have 2 distinct roots satisfying t 6 ti
∣∣
i∈Z+

; even when sensors make a

basis, SRP in H can have 2 distinct solutions, as the following example indicates.

Example 2. C Let non-θ sensors, Ṙ = {r(k)}k∈N, be r(k) = 1
kek, where {ek}

is an orthonormal basis of H. For the source s′ = −
∞∑
k=1

1
kek = (−1;−1

2 ;−1
3 ; . . .),

which emits the wave at the moment t′ = −‖s′‖ = −
√
∞∑
k=1

1
k2

= − π√
6
, the
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moments {tk} when k-th sensor is reached by this wave are such that

(tk − t′)2 = ‖r(k) − s′‖2 =
∑

i∈N,i 6=k
(0− s′i)2 + ( 1

k − s
′
k)

2 =
∑
i∈N

1
i2

+ 3
k2

= π2

6 + 3
k2

implying tk = − π√
6

+
√

π2

6 + 3
k2

= 3

k2
(
π√
6

+
√
π2

6
+ 3
k2

) > 0 (by construction, for

r(0) = θ, t0 = 0).

Now we solve the corresponding SRP in accordance with the procedure de-
scribed above, knowing that (s′; t′) is a solution. The basis is {ei}; the equations
from (3) take the form of

1
i si = 1

2

[
1
i2
−
{

3

i2
(
π√
6

+
√
π2

6
+ 3
i2

)}2
]

+ t 3

i2
(
π√
6

+
√
π2

6
+ 3
i2

) ⇔ sk = b̃k + tc̃k

where b̃k = 1
k ·

1
2

[
1− 9

k2
(
π√
6

+
√
π2

6
+ 3
k2

)2 ], c̃k = 1
k ·

3
π√
6

+
√
π2

6
+ 3
k2

.

It is clear that t = 0 isn’t a root of
∞∑
k=1

(b̃k + tc̃k)
2 = t2,

∞∑
k=1

b̃k
2

converges and

∞∑
k=1

c̃k
2 converges. So we can switch to z = 1/t and the equation αz2+βz+γ = 0

from Subcase 1b. D > 0 because z′ = 1/t′ = −
√

6
π is a root.

Let z′′ be a second root; we claim that z′′ < 0 and z′′ 6= z′.

Proof. z′z′′ = γ
α . Since α > 0, sign z′z′′ = sign γ. From

∞∑
k=1

c̃k
2 =

∞∑
k=1

9

k2
(
π√
6

+
√
π2

6
+ 3
k2

)2 > 9(
π√
6

+

√
π2

6
+3
)2 ∞∑

k=1

1
k2

=

= 3π2

2
(
π√
6

+

√
π2

6
+3
)2 = 3

2
(

1√
6

+
√

1
6

+ 3
π2

)2 > 3

2
(

1√
6

+ 1√
2

)2 = 9
(1+
√

3)2
> 1

it follows that γ > 0, hence z′′ < 0.

Assume that z′ = z′′, then γ
α = (z′)2 = 6

π2 ⇔
∞∑
k=1

c̃k
2 = 1 + 6

π2

∞∑
k=1

b̃k
2
⇔

∞∑
k=1

(
c̃k

2 − 6
π2 b̃k

2)
= 1.

However, when k > 3, 0 < kb̃k 6 1
2

[
1 − 9

k2
(
π√
6

+

√
π2

6
+ 1

3

)2 ] 6 1
2 < 1 <

3
π√
6

+

√
π2

6
+ 1

3

< kc̃k ⇒ 0 < b̃k < c̃k ⇒ 0 <
√

6
π b̃k < c̃k ⇒ c̃k

2 > 6
π2 b̃k

2
. A little

more numerical computation, and we get
3∑

k=1

(
c̃k

2 − 6
π2 b̃k

2)
≈ 1.139918 > 1, so

∞∑
k=1

(
c̃k

2 − 6
π2 b̃k

2)
> 1; a contradiction. Therefore z′′ 6= z′. QED

Then t′′ = 1/z′′ < 0 < tk, and s′′ = {b̃j + t′′c̃j}, is another solution, different
from (s′; t′). B
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Remark. Non-uniqueness of SRP solution is a well known occasion in Rn: in
R2 we can place 3 sensors on half-hyperbola, and emit the wave at the moment
t′ from the focus s′. Then another focus s′′, emitting at the moment

t′′ = t′ + ‖r(i) − s′‖ − ‖r(i) − s′′‖ = t′ + const

is a different solution of the SRP defined by {ti}3i=1.

Some sufficient conditions for uniqueness of SRP solution follow (Prop. 1–4).

Proposition 1. If the dual “in-mission” problem, “ti = t−‖r(i)−s‖ for any
i ∈ Z+”, also has a solution, then the solution of the original SRP is unique.

Proof. The implied set of equations (2), when solved in t, has no more than 2
roots, and includes the solution t′ 6 0 of SRP, along with the solution t′′ > 0 of
dual problem. Note that t′′ 6= t′, otherwise t′ = t′′ = 0, s′ = s′′ = θ, and the wave
reaches r(1) at the moment t1 6= 0 when propagating both forward and backward
in time, — t1 = ‖r(1)‖ > 0 and t1 = −‖r(1)‖ < 0; a contradiction. In other words,
t′′ > 0 cannot be a solution of SRP, and t′ is the unique solution. QED

Proposition 2. If the solution s′ of the SRP is identical to one of sensors,
then this solution is unique. (This conforms with Case 0 above.)

Proof. Without loss of generality we suppose s′ = r(0) = θ, and t′ = 0. Now,
assume that (s′′; t′′) is another solution. Then for each r(i), i ∈ N, we have{
ti = 0 + ‖r(i) − θ‖,
ti = t′′ + ‖r(i) − s′′‖,

and for i = 0: 0 = t′′ + ‖θ − s′′‖ ⇔ t′′ = −‖s′′‖. Thus

‖r(i)‖ = −‖s′′‖+‖r(i)−s′′‖ ⇔ ‖r(i)‖+‖−s′′‖ = ‖r(i)+(−s′′)‖; linear dependency
of r(i) and s′′ follows. s′′ 6= θ leads to r(i) ∈ L({s′′}), for any i. This contradicts
the linear independency of Ṙ, so the assumption is wrong. QED

Of course, we prefer the conditions relating only to the set of sensors, so that
for any position of the source the solution of SRP is that position and unique,
— this is important when sensors must be placed before the source appears
anywhere in space and emits the wave.

Proposition 3. If SRP has a solution, and ∃{nk}∞k=1, nk < nk+1: r(nk) ⊥
r(i) for 1 6 i < nk, and ‖r(nk)‖ ∈ [λ;µ] with λ > 0, then this solution is unique.

Proof. We denote the SRP solution by (s′; t′). If s′ = θ = r(0), it is unique by
Prop. 2. Consider s′ 6= θ. B = {ek} is made from Ṙ = {r(k)} by Gram-Schmidt

orthogonalization: ek = dk/‖dk‖, where dk = r(k) −
k−1∑
j=1

<r(k); ej>ej , so in B

r
(nk)
j = <r(nk); ej> = 0 for j < nk, r

(nk)
nk = ‖r(nk)‖. Let n = nk, then by (4):



56 S.V. Goncharov

c̃n =

∣∣∣∣∣∣∣∣∣∣∣∣

r
(1)
1 0 0 . . . 0 t1

r
(2)
1 r

(2)
1 0 . . . 0 t2

. . . . . . . . .
. . . . . . . . .

r
(n−1)
1 r

(n−1)
2 r

(n−1)
3 . . . r

(n−1)
n−1 tn−1

0 0 0 . . . 0 tn

∣∣∣∣∣∣∣∣∣∣∣∣
/

n∏
i=1

r
(i)
i =

= tn(−1)n+n detAn−1/
n∏
i=1

r
(i)
i = tn/r

(n)
n = tn/‖r(n)‖, so |c̃n| > |tn|/µ.

In turn, tn = t′ + ‖r(n) − s′‖ = −‖s′‖+
√
<r(n) − s′; r(n) − s′> =

=
√
‖s′‖2 + ‖r(n)‖2 − 2<r(n); s′>− ‖s′‖ =

√
‖s′‖2 + ‖r(n)‖2 − 2‖r(n)‖s′n − ‖s′‖

‖r(n)‖ 6 µ, s′ ∈ H ⇒ s′n −−−→
k→∞

0, implying ‖r(n)‖s′n −−−→
k→∞

0 (n = nk → ∞

as k → ∞). Therefore lim
k
tn = sup

m∈N
inf
k>m

tn >
[√
‖s′‖2 + λ2 − ‖s′‖

]
> 0, and

lim
k
|c̃n| > 0. Consequently, lim

k→∞
c̃nk 6= 0, so

∞∑
j=1

c̃j
2 =∞.

Thus we are in Subcase 1a, where the solution of SRP is unique. QED

The trivial example of such Ṙ is orthonormal basis of H (nk = k, λ = µ = 1).

Now, for arbitrary basis Ṙ of H, let Ṙ′ be the following “extension” of Ṙ:
Ṙ′ = Ṙ ∪ {r(ω+1)}, where r(ω+1) = −r(1). Respectively, R′ = R ∪ {r(ω+1)}. The
wave reaches this additional sensor, opposite to r(1), at the moment tω+1.

Proposition 4. If the SRP defined by R′ and {ti}i∈Z+∪{ω+1} has a solution,
then it is unique.

Proof. Assuming the contrary, let (s′; t′) and (s′′; t′′) be the distinct solutions
of such SRP. The reasonings above show that s is determined uniquely by t
(sj = b̃j + tc̃j), therefore t′ 6= t′′. From (3) for i = 1 and i = ω + 1 (it is clear

that r(ω+1) = (−r(1)
1 ; 0; 0; . . .) and ‖r(ω+1)‖ = ‖r(1)‖):{
r

(1)
1 s′1 = 1

2

[
‖r(1)‖2 − t21

]
+ t′t1, (1′)

−r(1)
1 s′1 = 1

2

[
‖r(1)‖2 − t2ω+1

]
+ t′tω+1 (2′){

r
(1)
1 s′′1 = 1

2

[
‖r(1)‖2 − t21

]
+ t′′t1, (1′′)

−r(1)
1 s′′1 = 1

2

[
‖r(1)‖2 − t2ω+1

]
+ t′′tω+1 (2′′)

Subtract (1′′) from (1′), and (2′′) from (2′):{
r

(1)
1 (s′1 − s′′1) = (t′ − t′′)t1,
−r(1)

1 (s′1 − s′′1) = (t′ − t′′)tω+1

⇒ (t′ − t′′)(t1 + tω+1) = 0 ⇒ tω+1 = −t1

Then add (1′) and (2′): 0 = ‖r(1)‖2 − t21 ⇔ |t1| = ‖r(1)‖. To be definite,
suppose t1 > 0. For any solution (s; t) of the SRP under study (that is, for

(s′; t′) and (s′′; t′′)), we have t = −‖s‖ and

{
t1 = t+ ‖r(1) − s‖,
tω+1 = t+ ‖r(ω+1) − s‖,

hence
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‖r(1) − (−r(1))‖ = 2t1 = ‖r(1) − s‖ − ‖ − r(1) − s‖ ⇔
⇔
∥∥(r(1) − s)− (−r(1) − s)

∥∥ = ‖r(1) − s‖ − ‖ − r(1) − s‖
so (r(1)−s) and (−r(1)−s) are linearly dependent. a(r(1)−s)+ b(−r(1)−s) = θ
⇔ (a + b)s = (a − b)r(1). a + b 6= 0, otherwise we divide the 1st equation by
a and come to r(1) − s + r(1) + s = θ, or r(1) = θ, — a contradiction. Thus
we can divide the 2nd equation by (a + b): s = a−b

a+br
(1) ∈ L({r(1)}), therefore

s = (s1; 0; 0; . . .), and ‖r(1) − s‖ = |r(1)
1 − s1|, ‖r(ω+1) − s‖ = |r(1)

1 + s1|.
t1 > 0 ⇒ |r(1)

1 + s1| 6 |r(1)
1 − s1|. B = {ei} was made from Ṙ by Gram-

Schmidt orthogonalization, so r
(1)
1 > 0, r

(ω+1)
1 = −r(1)

1 < 0. Hence s1 6 0 ⇒
t = −‖s‖ = s1.

Now take into account other sensors, e.g. 2nd one: r(2) = (r
(2)
1 ; r

(2)
2 ; 0; . . .) =

(p;h; 0; . . .), where h 6= 0. t2 = t + ‖r(2) − s‖ = t +
√

(p− s1)2 + h2 turns into
equality for (s′; t′) and (s′′; t′′): t′ +

√
(p− t′)2 + h2 = t′′ +

√
(p− t′′)2 + h2.

But for f(t) = t +
√

(t− p)2 + h2: f ′(t) = 1 + t−p√
(t−p)2+h2

> 0, because

|t−p| <
√

(t− p)2 + h2; f(t) is strictly increasing, so t′ = t′′, — a contradiction.

Therefore the initial assumption is wrong; the solution is unique. QED

Proposition 5. If SRP (1) has a solution, and (s′′; t′′) is a different solution
of implied (2), then (s′′; t′′) is the solution of either SRP (1), or the dual problem.

Proof. Assume the contrary, then ∃m, k ∈ Z+:

{
tm = t′′ − ‖r(m) − s′′‖,
tk = t′′ + ‖r(k) − s′′‖.

Let

(s′; t′) be the solution of SRP (1), so ∀i ∈ Z+: ti = t′+ ‖r(i)− s′‖. In particular,{
tm = t′ + ‖r(m) − s′‖,
tk = t′ + ‖r(k) − s′‖.

Therefore

‖r(m) − s′‖+ ‖r(m) − s′′‖ = t′′ − t′ = ‖r(k) − s′‖ − ‖r(k) − s′′‖
By triangle inequality, ‖r(m) − s′‖+ ‖r(m) − s′′‖ > ‖s′ − s′′‖; contrariwise,∣∣‖r(k) − s′‖ − ‖r(k) − s′′‖

∣∣ 6 ‖s′ − s′′‖

Hence

{
‖s′ − r(m)‖+ ‖r(m) − s′′‖ = ‖s′ − s′′‖,
‖r(k) − s′‖ − ‖r(k) − s′′‖ = ‖s′′ − s′‖.

From the 1st equality we

obtain linear dependency of s′−r(m) and r(m)− s′′: ∃a, b: a(s′−r(m)) + b(r(m)−
s′′) = θ ⇔ (b − a)r(m) = bs′′ − as′. a 6= b, otherwise we could divide by a and
get s′ − s′′ = θ; so r(m) = 1

b−a(bs′′ − as′) ∈ L({s′; s′′}).
From 2nd equality: r(k) − s′ and r(k) − s′′ are linearly dependent, a(r(k) −

s′)+b(r(k)−s′′) = θ⇔ (a+b)r(k) = as′+bs′′, a+b 6= 0 or it would be s′−s′′ = θ,
thus r(k) ∈ L({s′; s′′}).

Moreover, for any j ∈ Z+ such that tj = t′′+‖r(j)− s′′‖ we can repeat these
reasonings for the same m, but taking j instead of k. Consequently,
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R+ =
{
r(j) | tj = t′′ + ‖r(j) − s′′‖

}
⊆ L({s′; s′′})

Similarly, keeping k and going over suitable m,
R− = {r(j) | tj = t′′ − ‖r(j) − s′′‖} ⊆ L({s′; s′′})

Since R = R+ ∪ R−, we have R ⊆ L({s′; s′′}), which is impossible, because
Ṙ = R\{θ} is a basis of H, while dimL({s′; s′′}) 6 2. This contradiction proves
that the assumption is wrong. QED

In other words, when a solution of SRP exists, the transition from (1) to (2)
may add only the solution of dual problem, not some “mixed” one.

When we have the countable set R of sensors and corresponding moments
{ti}i∈Z, we may “downdimension” the original SRP by taking into account only
the sensors from 0-th to n-th, Rn = {r(i)}ni=0. Since r(0) = θ, we have Ln :=
L(Rn) = L(Ṙn) and is isomorphic to Rn.

Further, we seek the solution (s; t) of the problem “ti = t+‖r(i)− s‖ for any
i = 0, n” inside Ln. We denote this “downdimensioned” problem by SRPn.

Proposition 6. If SRP has a solution, then ∀n ∈ N: SRPn has a solution.

Proof. Denote the solution of original SRP by (s(∞); t(∞)). By projection theo-
rem, s(∞) = u+h, where u ∈ Ln and h ⊥ Ln. If h = θ, then s(∞) is the solution
of SRPn. We consider another case, h 6= θ. Let h = ‖h‖.

Let L′n = Ln ⊕ L({h}) = L(Rn ∪ {h}). It is isomorphic to Rn+1; x ∈ L′n
is (x1; . . . ;xn;xn+1) in the basis made, using Gram-Schmidt orthogonalization,
from Ṙn ∪ {h}. In particular, for i = 1, n the sensor r(i) has the coordinates

{r(i)
j }j , r

(i)
n+1 = 0. Also, s(∞) ∈ L′n and s(∞) = (s

(∞)
1 ; . . . ; s

(∞)
n ; s

(∞)
n+1), s

(∞)
n+1 = h.

We now consider the SRP defined by (Rn; {ti}ni=0) in L′n; it has (at least
one) solution (s(∞); t(∞)). Following the way of (1)-(2)-(3)-(4)-(5) (now there’s
a finite sum instead of series),

sj = b̃j + tc̃j for j = 1, n;
n∑
j=1

(b̃j + tc̃j)
2 + s2

n+1 = t2

We rewrite the latter equation, in t, as αt2 + βt + γ + s2
n+1 = 0. Note that

γ =
n∑
j=1

b̃j
2
> 0. There’s a solution t = t(∞) 6 ti, i = 0, n, when sn+1 = ±h

(hence this SRP has at least 2 solutions in L′n, symmetrical with respect to Ln).

We claim that it has a solution t(n) 6 ti when sn+1 = 0. Consider the cases:

Case α > 0: fh2(t) = αt2 + βt+ γ + h2 = 0 has a root t(∞) 6 ti. If t′ is its
lesser root, then all the more t′ 6 ti. Since fh2(t) is a quadratic trinomial, for
h2 replaced by 0 it has 2 roots, with the lesser one t′′ < t′. Let t(n) = t′′.

Case α < 0: f0(t) has a root(s) because D = β2 − 4α(γ + 0) > β2 > 0

(perhaps the root is multiple). Its roots are t± = −β±
√
D

2α , and t+t− = γ
α 6 0,
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thus t+ 6 0 (and t− > 0). In other words, there’s only 1 root satisfying t 6 0,
which distinguishes the solution of SRP from the solution of dual problem.

Now, if we repeat the solving method after re-enumerating the sensors so
that i-th sensor (i = 1, n) becomes r(0), and moving “the origin of space and
time” to this new r(0), then we come to essentially the same SRP, Ln, L′n, . . .
in different reference frame. And we obtain the single root T+ 6 0. But T+ and
t+ are the same moment of time, only in different temporal reference frames.
Therefore, T+ 6 0 means t+ 6 ti. Let t(n) = t+.

Case α = 0, β 6= 0: fh2(t) = βt+ γ+h2 = 0 ⇔ t = t(∞) = −γ+h2

β . t(∞) 6 0

⇒ β > 0, thus f0(t̂) = 0 for t̂ = − γ
β 6 0. Similarly, the symmetry implies t̂ 6 ti

for any i = 1, n. Let t(n) = t̂.

Case α = 0, β = 0: impossible, because γ + h2 > 0.

Anyway, ∃t(n) 6 ti for any i = 0, n:
n∑
j=1

(b̃j + t(n)c̃j)
2 = (t(n))2. It determines

the solution s(n) = {b̃j + t(n)c̃j}nj=1 ∈ Ln of SRPn. QED

The statement of Prop. 6 remains true for any finite R̂ = {r(ij)}nj=1 ⊂ Ṙ, if

we seek the solution of ‘truncated” SRP “tij = t + ‖r(ij) − s‖ for j = 0, n” in

L(R̂), — just re-enumerate elements of Ṙ so that R̂ = {r(1); . . . ; r(n)}, Ṙ\R̂ =
{r(n+1); r(n+2); . . .} to get SRPn.

However, this statement is false for infinite R̂ ⊂ Ṙ, in general case. Consider

Example 3. C Let Ṙ = B be an orthonormal basis of H, r(i) = ei, thus

r
(i)
j = δij ; also, let s′ = r(1) = (1; 0; 0; . . .) and t′ = −1. Then t0 = t′ + ‖s′‖ = 0,

t1 = t′ + ‖r(1) − s′‖ = −1, and ∀i > 2: ti = t′ + ‖r(i) − s′‖ = −1 +
√

2.

Obviously, (s′; t′) is the solution of the SRP defined by
(
R; {ti}i∈Z+

)
. We

claim that for any infinite R̂ ⊂ Ṙ such that r(1) /∈ R̂ the truncated SRP “ti =
t+ ‖r(i) − s‖ for any r(i) ∈ R̂ ∪ {r(0)}” has no solution in L̂ = L(R̂).

Proof. Assume the contrary and enumerate the elements of R̂ as the subse-
quence of Ṙ, ascending: R̂ = {r̂(1); r̂(2); . . .}. R̂ is the orthonormal basis of L̂,

in itself r̂
(i)
j = δij as well, and dim L̂ =∞. We denote the solution of truncated

SRP in L̂ by (s; t), with s = (s1; s2; . . .).

(1)-(2)-(3)-(4)-(5) implies
∞∑
k=1

s2
k = t2, ∀k ∈ N:

k∑
j=1

r̂
(k)
j sj = sk = 1

2(‖r̂(k)‖2 − t̂2k) + tt̂k

(that is, bk = b̃k, ck = c̃k). Hence sk ≡ 1
2

(
1 − (

√
2 − 1)2

)
+ t(
√

2 − 1) =

(
√

2− 1)(t+ 1), therefore s ∈ H only if sk ≡ 0⇔ t = −1. Then for r̂(0) = θ = s:
t0 = t = −1 6= 0, — a contradiction. QED B
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Proposition 7. If the solution (s(∞); t(∞)), s(∞) 6= θ, of SRP is unique,
and for each n ∈ N the solution (s(n); t(n)), s(n) 6= θ, of SRPn is unique, and
∞∑
j=1

c̃j
2 <∞, then t(n) −−−→

n→∞
t(∞) and s(n) −−−→

n→∞
s(∞).

Proof. (4) gives s(∞) = (b̃1 + t(∞)c̃1; . . . ; b̃n + t(∞)c̃n; s
(∞)
n+1; s

(∞)
n+2; . . .) and s(n) =

(b̃1 + t(n)c̃1; . . . ; b̃n + t(n)c̃n; 0; 0; . . .), consequently

‖s(n) − s(∞)‖2 = (t(n) − t(∞))2
n∑
j=1

c̃j
2 +

∞∑
j=n+1

(s
(∞)
j )2

∞∑
j=n+1

(s
(∞)
j )2 −−−→

n→∞
0 and

n∑
j=1

c̃j
2 −−−→
n→∞

∞∑
j=1

c̃j
2; it remains to prove that

t(n) −−−→
n→∞

t(∞) ⇔ z(n) −−−→
n→∞

z(∞)

where z(∞) = 1/t(∞), z(n) = 1/t(n).

From the assumptions of this proposition it follows that, speaking of SRP,

we’re in Subcase 1b, where z(∞) is one of two roots, z
(∞)
± =

−β±
√
β2−4αγ

2α ,
of (7). Using the symbols αn, βn and γn from Subcase 1a (this is different
from notation in Prop. 6), we state that, similarly, z(n) is one of two roots,

z
(n)
± =

−βn±
√
β2
n−4αnγn

2αn
, of the equation αnz

2 + βnz + γn = 0, which appears
while solving SRPn. αn → α > 0, βn → β, γn → γ as n → ∞, therefore

z
(n)
− → z

(∞)
− , z

(n)
+ → z

(∞)
+ , and the selection of the root z(n) in SRPn (z

(n)
− or

z
(n)
+ ) becomes the same as the selection of the root z(∞) in SRP (perhaps for

n > n0). In any case, z(n) → z(∞) as n→∞. QED

This proposition shows another method, one of Galerkin kind, to obtain the
SRP solution.

2 SR on unit sphere in Hilbert space

Let it be S = {x ∈ H : ‖x‖ = 1}. Instead of “embracing-space-induced”
‖x− y‖, we consider the so-called geodesic metric

d : S × S → R+: d(x; y) = arccos<x; y> ∈ [0;π]

which (we remind) is really a metric. Proof. Obviously, d(x; x) = arccos 1 = 0
and d(x; y) = d(y; x). If d(x; y) = 0, then <x; y> = 1 = ‖x‖ · ‖y‖ ⇒ x and y
are linearly dependent with y = ax, a > 0; 1 = <x; y> = a‖x‖2 = a ⇒ x = y.

The triangle inequality ∀x,y, z ∈ S: d(x; z) 6 d(x; y) + d(y; z) can be es-
tablished as follows. It is equivalent to[

d(x; y) + d(y; z) > π,
cos d(x; z) > cos

(
d(x; y) + d(y; z)

)
, d(x; y) + d(y; z) 6 π;

we rewrite the inequality in the 2nd case as
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<x; z> > <x; y><y; z>−
√

1−<x; y>2 ·
√

1−<y; z>2 ⇔

⇔
[
<x; y><y; z> 6 <x; z>,(
1−<x; y>2

)(
1−<y; z>2

)
>
(
<x; y><y; z>−<x; z>

)2
;

The 2nd inequality here, being rearranged,

1 + 2<x; y><y; z><x; z> > <x; y>2 +<y; z>2 +<x; z>2 (8)

Using projection theorem (and dimH = ∞), we represent y = y1x + y2h,
where h ∈ S, h ⊥ x, and z = z1x + z2h + z3w, where w ∈ S, w ⊥ x,
w ⊥ h. And y2

1 + y2
2 = 1, z2

1 + z2
2 + z2

3 = 1, so (8) ⇔ 1 + 2y1(y1z1 + y2z2)z1 >
y2

1 + (y1z1 + y2z2)2 + z2
1 ⇔ 1− y2

1 > z2
1(1− y2

1) + y2
2z

2
2 ⇔ y2

2z
2
3 > 0. QED

The set of sensors R = {r(i)}i ⊂ S (obviously, θ /∈ R). As before, we assume
the existence of at least one solution (s0; te;0), s0 ∈ S, of the SRP “ti = t +
d(r(i); s) for any i”.

Remark. We may consider the wave to “oscillate forever” on S, from s0 to
antipodal −s0 (d(s0;−s0) = π), then back to s0, and so forth. Then ti is the first
time when the wave reaches r(i). However, the wave as the sphere of increasing
radius t− te;0 vanishes at −s0.

The reasonings we’ve used for the entire H show that if L(R) 6= H and
s0 /∈ L(R), then the solution is certainly not unique: for s0 = u0 + u1 with
u0 ∈ L(R), u1 ⊥ L(R), the “s(ϕ) = u0 + ‖u1‖(cosϕ · ũ1 + sinϕ · ũ2)” (where
ũ2 ⊥ L(R),u1) construction works as well, since s(ϕ) ∈ S and d(r(i); s(ϕ)) =

= arccos
[
<r(i); u0>+ ‖u1‖ cosϕ<r(i); ũ1>+ ‖u1‖ sinϕ<r(i); ũ2>

]
=

= arccos<r(i); u0> = arccos<r(i); u0 + u1> = d(r(i); s0)

Therefore, let R = {r(i)}i∈N be a basis of H, and let B be the orthonormal
basis of H, derived from R by Gram-Schmidt orthogonalization; thus, in B,

r(i) = (r
(i)
1 ; . . . ; r

(i)
i ; 0; 0; . . .) (and r

(1)
1 = 1).

Then s can be written in the form of (s1; s2; . . .).

Since t 6 ti and ti− t = d(r(i); s) 6 π, we have t ∈ [sup{ti}−π; inf{ti}] = ∆
(|∆| 6 π). The equations of SRP are equivalent to cos(ti − t) = <r(i); s>.
Adding “s ∈ S”, we have

∞∑
j=1

s2
j = 1, ∀i ∈ N:

i∑
j=1

r
(i)
j sj = cos t cos ti + sin t sin ti (9)

Similarly to (3)-(4)-(5), we obtain sj = p̃j cos t+ q̃j sin t, where

p̃k =

∣∣∣∣∣∣∣∣∣∣
r

(1)
1 0 . . . cos t1

r
(2)
1 r

(2)
2 . . . cos t2

. . . . . .
. . . . . .

r
(k)
1 r

(k)
2 . . . cos tk

∣∣∣∣∣∣∣∣∣∣
/

k∏
i=1

r
(i)
i , q̃k =

∣∣∣∣∣∣∣∣∣∣
r

(1)
1 0 . . . sin t1

r
(2)
1 r

(2)
2 . . . sin t2

. . . . . .
. . . . . .

r
(k)
1 r

(k)
2 . . . sin tk

∣∣∣∣∣∣∣∣∣∣
/

k∏
i=1

r
(i)
i (10)

and
∞∑
j=1

(p̃j cos t+ q̃j sin t)2 = 1 (11)
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Case 1a:
∞∑
j=1

p̃j
2 converges,

∞∑
j=1

q̃j
2 diverges. If the series in the left side of

(11) converges for t such that sin t 6= 0, then {q̃j} = 1
sin t

(
{p̃j cos t + q̃j sin t} −

{p̃j cos t}
)
∈ H, which contradicts the assumption. Thus, if t satisfies (11), then

sin t = 0 (in particular, sin te;0 = 0, so
∞∑
j=1

p̃j
2 = 1).

All t = πm ∈ ∆, where m ∈ Z (there’s 1 or 2 such values), satisfy (11).
Then sj = p̃j cos t+ q̃j sin t = p̃j cos t, j ∈ N.

Case 1b:
∞∑
j=1

p̃j
2 diverges,

∞∑
j=1

q̃j
2 converges. Similarly, the convergence of

the series in the left side of (11) leads to cos t = 0 (
∞∑
j=1

q̃j
2 = 1 since it converges

when t = te;0), and we take t ∈ (π2 + πZ) ∩∆, satisfying (11).

Case 2:
∞∑
j=1

p̃j
2,
∞∑
j=1

q̃j
2 diverge. (11) is true for t′ = te;0; if the series in the

left side converges for t′′ ∈∆, t′′ 6= t′, then

{
cos t′{p̃j}+ sin t′{q̃j} = v′ ∈ S,
cos t′′{p̃j}+ sin t′′{q̃j} = v′′ ∈ H

⇒

{
cos t′ sin t′′{p̃j}+ sin t′ sin t′′{q̃j} = sin t′′ · v′ ∈ H,
cos t′′ sin t′{p̃j}+ sin t′′ sin t′{q̃j} = sin t′ · v′′ ∈ H

⇒

{p̃j} = 1
sin(t′−t′′)(sin t′ · v′′ − sin t′′ · v′) ∈ H (sin(t′ − t′′) 6= 0, because t′, t′′ ∈∆,

|∆| 6 π), — a contradiction. So, t′ is the unique value providing the convergence
of series in the left side of (11).

We obtain t′ using the method analogous to that of Subcase 1a (Section 1).

fn(t) =
n∑
j=1

(p̃j cos t + q̃j sin t)2 − 1 is non-decreasing relative to n, fn(t) 6

fn+1(t). Rearranging, fn(t) = (αn − 1) cos2 t+ (βn − 1) sin2 t+ γn cos t sin t.

cos t 6= 0, otherwise
∞∑
j=1

q̃j
2 = 1. Consequently, to solve fn(t) = 0, we can

divide it by cos t: (βn − 1) tan2 t+ γn tan t+ (αn − 1) = 0.

This quadratic trinomial (in tan t) has no more than 2 roots (βn → +∞ as
n → ∞), hence fn(t) has a finite number of zeroes in ∆. Between them, the
sign of continuous fn(t) is constant. We consider it “easy enough” to determine,
for each n ∈ N, the set Un = {t ∈ ∆ | fn(t) 6 0}. It is clear that Un ⊇ Un+1.
Moreover, {t′} =

⋂
n∈N

Un, since fn(t′) 6 f∞(t′) = 0 and ∀t 6= t′ ∃n0: fn0(t) > 0.

Case 3:
∞∑
j=1

p̃j
2,
∞∑
j=1

q̃j
2 converge. Then we denote α =

∞∑
j=1

p̃j
2, β =

∞∑
j=1

q̃j
2,

γ = 2
∞∑
j=1

p̃j q̃j , and rewrite (11) as (α− 1) cos2 t+ (β− 1) sin2 t+ γ sin t cos t = 0
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⇔
[
β = 1, cos t = 0,
(β − 1) tan2 t+ γ tan t+ (α− 1) = 0, cos t 6= 0.

Subcase 3a: (β − 1)2 + γ2 + (α − 1)2 > 0. Then again (11) has a finite
number of “easy to obtain” (in accordance with our allowances) roots in ∆.

Subcase 3b: β − 1 = γ = α − 1 = 0, therefore {p̃j} ∈ S, {q̃j} ∈ S, and
{p̃j} ⊥ {q̃j}. Then any t ∈∆ satisfies (11).

Each root t, in turn, determines s = {p̃j cos t+ q̃j sin t}j .
This concludes the description of the solving method for SRP on S with d.

Again, there’s the question about the conditions providing the uniqueness
of the solution, especially in Subcase 3b with the most “ambiguity”. We restrict
our attention to the finiteness of the set of solutions.

Proposition 8. If r(1) ⊥ r(2) ⊥ r(3) ⊥ r(1), then Subcase 3b is impossible.

Proof. In the basis B, not only r(1) = (1; 0; 0; . . .), but r(2) = (0; 1; 0; 0; . . .) and
r(3) = (0; 0; 1; 0; 0; . . .) then. From (10) it follows that p̃k = cos tk and q̃k = sin tk

for k = 1, 2, 3; therefore
∞∑
j=1

(p̃j
2 + q̃j

2) >
3∑
j=1

(p̃j
2 + q̃j

2) = 3.

Meanwhile, in Subcase 3b we have
∞∑
j=1

p̃j
2 +

∞∑
j=1

q̃j
2 = α+β = 2 < 3. QED

The orthogonality constraint in Prop. 8 can be weakened:
3∑
j=1

(p̃j
2 + q̃j

2) > 2

would suffice.

Example 4. (analogous to Ex. 3). C Let R be an orthonormal basis of H,

r
(i)
j = δij , and let s′ = r(1), t′ = 0. Then t1 = t′ = 0, tk = t′ + d(r(k); s′) =

arccos 0 = π
2 for any k > 2. (s′; t′) is the solution, on S, of the SRP (R; {ti}i∈N).

Meanwhile, for any infinite R̂ ⊂ R such that r(1) /∈ R̂, the truncated SRP
“ti = t + d(r(i); s) for r(i) ∈ R̂” has no solution on Ŝ = {x ∈ L(R̂) | ‖x‖ = 1}.
Proof. R̂ is the orthonormal basis of L(R̂), and we enumerate the elements of R̂

as they follow in R: R̂ = {r̂(1); r̂(2); . . .}; then, decomposing R̂ in itself, r̂
(i)
j = δij .

Assuming (s; t), s ∈ Ŝ, to be the solution of truncated SRP, we have π
2 ≡ t̂k =

t+ arccos<r̂(k); s> = t+ arccos sk, thus sk ≡ cos(π2 − t) = sin t. dimL(R̂) =∞,

so s ∈ H implies sk ≡ 0 ⇔ s = θ /∈ Ŝ, — a contradiction. QED B
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